This is a repository copy of Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102364/

Version: Published Version

Article:
Edwards, Peter orcid.org/0000-0002-1076-6793 (2016) Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques. ISSN 1867-8548

https://doi.org/10.5194/amt-2015-388

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

Warneke C.1,2, M. Trainer2, J.A. de Gouw1,2, D.D. Parrish1,2, D.W. Fahey2, A.R. Ravishankara2,9, A.M. Middlebrook3, C.A. Brock3, J.M. Roberts2, S.S. Brown2, J.A. Neuman1,2, B.M. Lerner1,2, D. Lack1,2, D. Law1,2, G. Hübner1,2, I. Pollack1,2,9, S. Sjostedt1,2, T.B. Ryerson2, J.B. Gilman1,2, J. Liao1,2, J. Holloway1,2, J. Peischl1,2, J.B. Nowak1,2,10, K. Aikan1,2, K.-E. Min1,2,11, R.A. Washenfelder1,2, M.G. Graus1,2,12, M. Richardson1,2, M.Z. Markovic1,2,13, N.L. Wagner1,2, A. Welti1,2,14,14, P.R. Veres1,2, P. Edwards1,2,15, J.P. Schwarz2, T. Gordon1,2, W.P. Dube1,2, S. McKeen1,2, J. Brioude1,2, R. Ahmadov1,2, A. Bougiatioti3, J. Lin3, A. Nenes3, G.M. Wolfe4,16, T.F. Hanisco4, B.H. Lee5, F.D. Lopez-Hilfiker5, J.A. Thornton5,19, F.N. Keutsch6,17, J. Kaiser6, J. Mao7,18, C. Hatch8

1 Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
2 Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
3 Georgia Institute of Technology, Atlanta, GA
4 NASA Goddard Space Flight Center, Greenbelt, MD
5 University of Washington
6 University of Wisconsin-Madison, Madison, WI
7 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ
8 Department of Chemistry, Hendrix College, 1600 Washington Ave., Conway, AR, USA
9 now at Department of Atmospheric Science, Colorado State University, Ft Collins, CO, USA
10 now at Aerodyne Research Inc., Billerica, MA
11 now Gwangju Institute of Science and Technology, Gwangju, Korea
12 now at Institute of Atmospheric and Cryospheric Sciences University of Innsbruck, Austria
13 now at Air Quality Processes Research Section, Environment Canada, Toronto, Ontario, Canada
14 now at Leibniz Institute for Tropospheric Research
15 now at University of York, UK
16 University of Maryland Baltimore County
17 now at Harvard University, Cambridge, MA
18 Princeton University
19 now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Abstract:
The Southeast United States (US) might not have warmed as much as the rest of the country over the past 50-100 years. Providing an improved understanding of this potential anomaly, and specifically the roles played by aerosols, was one of the main goals for the Southeast Atmosphere Study (SAS). Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the SAS study and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.

During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN.

Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were almost all within the stated uncertainties.

The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.
1. Introduction

The SENEX campaign (Southeast Nexus-Studying the Interactions between Natural and Anthropogenic Emissions at the Nexus of Climate Change and Air Quality) was a large-scale National Oceanic and Atmospheric Administration (NOAA) led field study in the Southeastern United States (U.S.) in summer 2013. The SENEX measurement platform was the NOAA WP-3D aircraft operated out of Smyrna, Tennessee. SENEX was part of a large, comprehensive and coordinated research effort to understand the emission sources, chemistry, and meteorology of the summertime atmosphere in the Southeast U.S.: the Southeast Atmosphere Study (SAS) (Xu et al., 2015), which included the other field campaigns: Southern Oxidant and Aerosol Study (SOAS), Tropospheric HONO (TrophONO), and the North American Airborne Mercury Experiment (NAAMEX). Besides the NOAA WP-3D, measurements during SAS were made on the following platforms and locations: the National Science Foundation (NSF) National Center for Atmospheric Research (NCAR) C-130 aircraft, the Purdue University Duchess aircraft, the State University of New York-Stony Brook Long-EZ aircraft, the Centreville and Alabama Aquatic Biodiversity Centre (AABC) flux ground site located in Alabama, the Look Rock, Tennessee ground site, the Research Triangle Park (RTP) ground site in North Carolina and Caltech chamber studies (FIXIT).

The detailed science goals for SENEX can be found in the SENEX white paper (http://esrl.noaa.gov/csd/projects/senex/) and are briefly listed here:

(1) Understanding the emissions of aerosol, aerosol and ozone (O$_3$) precursors, and greenhouse gases in the Southeast U.S. Special focus was aimed at evaluating available emission inventories for organic aerosol, black carbon, NO$_x$ (NO+NO$_2$), volatile organic compounds (VOCs), sulfur dioxide (SO$_2$), greenhouse gases, and aerosol precursors from point sources such as coal-fired power plants, urban areas as well as biogenic VOC emissions. Another focus was to understand the importance of emissions from biomass burning in the region.

(2) Understanding the formation mechanisms of secondary species such as ozone, sulfate and organic aerosols in the Southeast U.S. The main focus here was to determine the influence of biogenic emissions, nighttime chemistry, aqueous-phase processes, and organic nitrates on the formation of the secondary species.
Determining the composition and distribution of aerosol in the Southeast U.S. by looking at the relative abundance of sulfate, organics and other chemical components over the whole study region and at accessible altitude levels.

Quantifying deposition and loss processes critical for determining atmospheric concentrations of aerosol, ozone and NO$_x$ (sum of nitrogen oxides).

Determining the climate-relevant properties of aerosol in the Southeast U.S. by looking at the extinction, absorption and CCN properties of aerosol from primary and secondary sources and their dependence on the high humidity in the Southeast U.S. Special focus was given on determining the fraction of organic aerosol that occurs naturally versus the fraction that is controlled by anthropogenic emissions and how each may change in the future as a result of warming and changes in anthropogenic emissions.

Additional focus was on black carbon and its co-emitted species to understand whether controlling specific BC sources has a net warming or cooling effect.

Quantifying methane (CH$_4$) and VOC emissions from selected shale gas extraction regions (Marcellus, Haynesville and Fayetteville).

In this paper we describe the payload of the NOAA WP-3D, describe the locations of the SENEX flights, show inter-comparisons used to evaluate the measurements and describe an example flight to showcase the measurement strategies that were used during SENEX.

2. NOAA WP-3D aircraft

The two NOAA WP-3D aircraft have been used in air quality and climate related airborne field campaigns since 1994. The NOAA WP-3D carried its maximum payload of 3600 kg of scientific equipment during SENEX and 4-6 scientists. The aircraft has a range of 3000 km and a ceiling of about 7600 m. During SENEX the highest altitude was about 6400 m due to the heavy payload. Flight duration was typically around 7 hr, and the majority of the flights were conducted in the daytime boundary layer approx. 0.5 km above ground level. A picture of the aircraft taken during SENEX is shown in Figure 1.

The WP-3D was equipped by the NOAA Aircraft Operations Center (AOC) flight facility with instruments detailing the position and motion of the aircraft as well as many meteorological parameters such as 3D wind speed and direction, ambient, potential and
dew point temperatures, water vapor mixing ratios, pressure and sea surface temperature. A list of the most commonly used aircraft-provided parameters and their uncertainties is given in Table 1.

3. NOAA WP-3D SENEX flight summaries

During SENEX a total of 20 research flights were conducted; of those, two were test flights from Tampa, Florida and two were the transfer flights between Tampa, FL and Smyrna, TN. All of the flights, including the test and transfer flights, addressed multiple science goals. All the SENEX flight tracks are shown in Figure 2 on a map of the Southeast US that also shows most of the larger point sources in the region. Twelve daytime, three nighttime and five shale gas region flights (Marcellus, Haynesville and Fayetteville shale) were conducted to answer the major SENEX science questions. The flight tracks in Figure 2 are color-coded by those three categories and details about each flight can be found in Tables 2, 3, and 4, where a short description of the flight, the investigated emission sources, and the coordinating activities are listed.

4. NOAA WP-3D SENEX chemical and aerosol instrumentation

The WP-3D instrumentation payload on the WP-3D was specifically designed to provide the necessary measurements to answer the SENEX science questions. The instrumentation included a wide variety of gas and aerosol-phase measurements. A schematic drawing of the payload of the WP-3D is shown in Figure 1b. All the instruments for aerosol phase measurements are listed in Table 5 and for gas phase measurements in Table 6 together with their measurement technique, accuracy and precision, sample interval, and a reference to a publication describing the respective instrument in detail. Overall 22 different instruments were installed on the NOAA WP-3D with a total power consumption of 40 A (110V, 400 Hz 3 phase), 130 A (110V, 400 Hz), 40A (110V 60 Hz), and 42 A (28 V DC). Most instruments were mounted inside the fuselage, but two instrumented wingpods added significant scientific payload capacity including 72 whole-air canister samples, a carbon monoxide (CO) analyzer and the fine particle counter to add significant scientific payload capacity. Four to six scientists were on board during each flight to monitor all the instruments and adjust the flight plans to current meteorological
conditions as needed. During the flights, selected aircraft and instrument data were streamed to the ground and could be monitored in near real time on a website for situational awareness for all SONGNEX scientists.

A detailed description for each instrument can be found in the SI; in the following two paragraphs the instrument name and measurement technique are given and in Tables 5 and 6, accuracy, precision, sample interval and literature reference are listed in addition.

Aerosol‐phase measured parameters were: (1) the particle (0.004‐8.3μm) number, size and volume with parallel condensation particle counters (CPCs) and white and laser light scattering, (2) sub‐micrometer extinction and absorption of dry, humidified, and thermodenuded aerosol at three wavelengths spanning the visible with a cavity ringdown aerosol extinction spectrometer (CRD) and a photoacoustic aerosol absorption spectrometer (PAS), (3) the non‐refractory submicron aerosol composition of organics, sulfate, nitrate, ammonium and chloride with an aerosol mass spectrometer (AMS), (4) cloud condensation nuclei (CCN) and supersaturation, (5) accumulation‐mode refractory black carbon (rBC) mass content of single particles with an SP2. Most of the aerosol instrumentation was connected to a low turbulence inlet (LTI) (Wilson et al., 2004), which slows down the sample flow from aircraft speeds to 5 m/s generating minimal turbulence and improving particle transmission.

Gas‐phase measurements were: (1) the greenhouse gases carbon dioxide (CO2) and methane (CH4) with wavelength scanned cavity ringdown spectroscopy, (2) two measurements of nitric oxide (NO) and O3, each measured by gas‐phase chemiluminescence (CL) and by cavity ringdown absorption spectroscopy (CRDS), three measurements of nitrogen dioxide (NO2), by UV photolysis and gas‐phase chemiluminescence (P‐CL) and by CRDS and by airborne cavity enhanced absorption spectroscopy (ACES), NOy by gold‐catalyzed thermal conversion and gas‐phase CL, (3) carbon monoxide (CO) with vacuum UV resonance fluorescence, (4) SO2 with pulsed UV fluorescence, (5) ammonia (NH3), nitric acid (HNO3), and two measurements of nitrous acid (HONO), and formic acid (HCOOH) with chemical ionization mass spectrometry (CIMS), and (6) the nighttime oxidants NO3 and N2O5 with CRDS and CIMS. Various volatile organic compounds (VOCs) were measured with several different techniques: (7)
oxygenates, aromatics, isoprene, monoterpenes and acetonitrile with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS); (8) hydrocarbons, halocarbons and a few selected oxygenates from canister samples and post-flight GC-MS analysis (iWAS/GCMS); (9) formaldehyde with the In Situ Airborne Formaldehyde (ISAF) using laser induced fluorescence (LIF); (10) glyoxal with ACES; (11) organic and inorganic acids by UW-TOF-CIMS; and (12) peroxyacetyl nitrates PANs and nitryl chloride (ClNO2) with a separate CIMS.

In addition up and down welling photolysis rates (j_{NO2} and j_{O3}) were measure with filter radiometers.

5. Inter-comparison of Duplicate Measurements on the WP-3D

Some parameters were measured by more than one instrument on the WP-3D, giving opportunities for inter-comparisons and the results are described in the following.

Three instruments measured NO2: P-CL, CRDS, and ACES. The agreement between CRDS and ACES with the standard P-CL technique, as shown in Figure 3, was on average 6% and 10% and the measurements were correlated with a linear correlation coefficient (R^2) of 0.99 and 0.93, respectively. The agreement is within the combined uncertainties, given in Table 6, for CRDS and just outside for ACES and P-CL. Two instruments measured ozone: P-CL and CRDS and the inter-comparison is also shown in Figure 3. The ozone measurements correlated with R^2 of 0.96 and agreed on average within 8%, which is within the combined measurement uncertainties of the two instruments as given in Table 6. All the data for the whole campaign were included for this inter-comparison using 1-second ozone data; NO2 data were averaged to the 5-second ACES time resolution. Two instruments measured NO: CL and CRDS, with the CRDS data subject to an optical instability that degraded the detection limit during this campaign. The large majority of the data were below this degraded detection limit, and therefore the inter-comparison was not included here.

Several VOCs were measured on the WP-3D with both the PTR-MS and with iWAS/GCMS. As an example the isoprene time series for the flight on June 29, 2013 is shown for both instruments in Figure 4. For the purpose of this comparison, the PTR-MS data are averaged over an interval that starts 10 s before and stops 10 s after the canister filling time to ensure at least one PTR-MS data point was used in the comparison. Isoprene
has a very high variability in the boundary layer, due to its short lifetime and high emissions. This variability and imperfect time alignment causes a large part of the scatter observed in Figure 4. The scatter plots for the inter-comparison of isoprene and other VOCs are shown in Figure 4 as well. The comparison had slopes between 0.64-1.45, which is just within the combined uncertainties of the two instruments given in Table 6, and R^2 of 0.5 or higher. The iWAS/GCMS was deployed during SENEX for the first time and some instrument issues occurred, causing some degradation of the data quality compared to previous inter-comparisons (de Gouw and Warneke, 2007; Warneke et al., 2011). More details on the instrument performance during SENEX, the inter-comparison and the stability of VOCs, especially oxygenates, in canisters can be found in Lerner et al (2015).

Two instruments measured formic acid (HCOOH): the HNO$_3$-CIMS and the University of Washington high-resolution time-of-flight chemical ionization mass spectrometer (UW HR-ToF-CIMS) and their comparison is shown in Figure 5. The time series shows results from one individual flight and the scatter plot shows all data from the campaign, where the color code indicates the individual flights. The comparison using all the data has a slope of 1.03 and R^2 of 0.80, while the slopes of individual flights ranged from 1.40 to 0.66 with R^2 always higher than 0.91. The reason for the flight-to-flight variability in their agreement is yet unknown. The output of the continuously added 13C formic acid permeation device – to which the UW HR-ToF-CIMS instrument sensitivity was referenced (see SI) – may have contributed to the variability of the reported formic acid mixing ratio between flights, because an independent method of quantification of its output was not available (Veres et al., 2010). Cross calibrations were not conducted between the two instruments during the campaign and therefore do not allow direct comparisons of instrument sensitivity on a flight-to-flight basis. Nevertheless, the variability between the two measurements is within the combined uncertainties of the two instruments ($\pm 20\%$ for HNO$_3$-CIMS and $\pm 50\%$ for UW HR-ToF-CIMS).

During the night flights two instruments measured ClNO$_2$: the UW HR-ToF-CIMS and the PAN-CIMS and N$_2$O$_5$ was measured with the UW HR-ToF-CIMS and CRDS. The comparison is shown in Figure 6 as time series and scatter plots for the flight on 07/03/2013. The slopes are 1.19 and 0.91 and the R^2 0.74 and 0.92, respectively. For small signals such as ClNO$_2$, the signal to noise of the UW HR-ToF-CIMS is aided by its
ability to distinguish isobaric contaminants from halogen containing molecules, which have a distinct mass defect (Kercher et al., 2009; Lee et al., 2014). The scatter plot displays some non-linearity and the N$_2$O$_5$ is just outside the range of a previous comparison (Chang et al., 2011), but the results are within the combined uncertainties of the instruments given in Table 6.

Figure 7 shows the NO$_y$ budget for all the individually measured NO$_y$ species compared to the measured total NO$_y$ for the NOAA WP-3D flight on June 16, 2013. Aerosol nitrate might contribute about 2% to the sum. This assumes a quantitative sampling and conversion of aerosol nitrate. This is likely not the case and NO$_y$ from aerosol nitrate is likely an upper limit and the data are shown with and without the potential aerosol contribution. The highest mixing ratios of NO$_y$ are observed in power plant plumes, where most NO$_y$ consists of NO$_x$. For a more detailed comparison the NO$_z$ (=NO$_y$-NO$_x$) budget is shown in Figure 7 as well. The power plant plumes were removed for this comparison, because the time resolution and the accuracy of NO$_y$ and NO$_x$ are not high enough to calculate small differences in NO$_x$ during these periods with very high NO$_x$ mixing ratios.

On this flight the sum of individually measured NO$_y$ constituents was roughly 90% of the total measured as NO$_y$, similar to the whole campaign NO$_y$ budget. The unmeasured NO$_y$ outside power plants was about 25% (or 15%, when including aerosol nitrate). This missing fraction may be comprised largely of organic nitrates derived from the oxidation of isoprene and monoterpene (Lee et al., 2014).

The aerosol volume derived from the chemical composition data (AMS and SP2) was compared to the volume derived from the measured size distributions, following Middlebrook et al. (2012). All of these measurements sampled aerosol downstream of a 1 micron impactor. For each 10-s AMS measurement, the composition-derived volume was calculated by adding the average rBC mass from the SP2 instrument to the AMS total aerosol mass and dividing it by the density estimated from the AMS and BC composition. The mass-weighted density (ρ) was calculated using $\rho_{\text{org}} = 1.25$ g cm$^{-3}$ (Cross et al., 2007; Kiendler-Scharr et al., 2009; Zelenyuk et al., 2008), $\rho_{\text{inorg}} = 1.75$ g cm$^{-3}$ (primarily dry ammonium sulfate, (Perry and Green, 1997)), and $\rho_{\text{BC}} = 1.8$ g cm$^{-3}$ (Park et al., 2004), for organic mass, inorganic mass, and BC, respectively. The measured AMS lens transmission curve (Bahreini et al., 2008) was applied to the particle number distributions to account for
for particle transmission losses in the AMS lens before calculating the volume from the size distributions, which were also averaged over the AMS sampling time. For this field project, the fraction of aerosol volume behind the 1 micron impactor that was transmitted into the AMS instrument by the lens was on average 99% with a minimum of 92%.

The composition-derived volume was then plotted against the volume calculated from the size distributions for each flight with available data. Resulting slopes are depicted in Figure 8 as a function of flight date color coded with the linear correlation coefficient R^2. The grey bands indicate the overall combined 2σ uncertainty of ±60% (Bahreini et al., 2009; Brock et al., 2011; Schwarz et al., 2006). The volumes from most of the flights agree within this combined uncertainty and with R^2 values between 0.62 to 0.98, indicating that most of the aerosol in the AMS lens transmission size-range was composed of non-refractory material and black carbon. Only the slopes for flights on 29 June 2013 were outside the uncertainty band. We note that rBC only contributed 1% on average to the total accumulation mode mass, and in 1-min averages only exceeded 3% less than 1% of the time during SENEX.

On June 29, 2013 the NOAA WP-3D and the NSF NCAR C-130 did coordinated wing-to-wing flight legs in the free troposphere and the boundary layer for an inter-comparison in southern Tennessee and northern Alabama with a duration of just over one hour. Several over-flights over the SOAS ground site in Centreville were performed during SENEX. Results of the platform inter-comparisons will not be presented here.

6. Example Flight on 16 June 2013 near Atlanta, GA

Results from the SENEX research flight on 16 June 2013 are presented here to demonstrate the strategy used to address many of the SENEX science questions such as the determination of anthropogenic and biogenic emissions, and the subsequent atmospheric chemistry, transformation, and production of secondary species. Flights over the shale gas regions will not be discussed here, but calculations of the methane emission fluxes from the three shale gas regions can be found elsewhere (Peischl et al., 2015; Yuan et al., 2015). The major goal of the 16 June 2013 flight was to investigate the Atlanta urban plume and the Scherer and Harllee Branch power plant plumes as they were transported over heavily forested areas in Georgia with strong biogenic emissions.
6.1 Anthropogenic, biogenic and point source emissions

Figure 9a shows the WP-3D flight track over Atlanta and surrounding areas color-coded by NO$_x$ on top of a map showing anthropogenic emission sources, which are the urban areas and point sources: power plants, landfills, paper mills and coal mines. Other point sources studied that are not shown on this map include bio-fuel refineries (de Gouw et al., 2015a). The point sources are sized by their respective emission strengths or capacity. The flight included eight tracks perpendicular to the wind direction (numbered 0-7 in Figure 9a): one upwind of Atlanta, three over the metro area and four downwind. The flight tracks were set such that the distance between each leg represents about 1 hour of transport at the prevailing wind speed and also such that many of the point source plumes were intercepted.

Figure 10 shows results for the intercepts of such point source plumes. In Figure 10a the methane measurements along transect 4 downwind of the Pine Bluff landfill in Georgia are shown. Landfills are an important source of methane in the US, but they do not emit many other compounds and indeed methane was the only species measured aboard the WP-3D payload that showed a detectable enhancement in the plume. The forested Southeast US is heavily managed for large-scale wood and wood products and therefore has a large density of pulp and paper mills. Pulp and paper mills use a significant amount of energy, which they often produce partially on site. For example the investigated facility has four steam producing boilers at close to 80 MWh that mainly burn coal, natural gas, oil and wood/bark waste biomass. The power production results in emissions of the combustion species NO, NO$_2$, CO, SO$_2$ and CO$_2$ (only NO is shown in Figure 10b). The paper mill plumes were intercepted on transect 0 during this flight. High mixing ratios of monoterpenes, methanol and acetaldehyde were also observed downwind of those facilities (Figure 10b).

U.S. urban emissions, and therefore urban mixing ratios of many air pollutants have decreased significantly over the last few decades (Dallmann and Harley, 2010; Emmons et al., 2015; von Schneidemesser et al., 2010; Warneke et al., 2012). For example, Warneke et al. (2012) analyzed 50 years of ambient measurements and found that VOCs and CO have decreased at an annual rate of about 7.5% in Los Angeles, CA. Blanchard et al. (2015)
analyzed Southeastern Aerosol Research and Characterization (SEARCH) network data and found downward trends in ambient carbon monoxide (CO), sulfur dioxide (SO$_2$), and oxidized nitrogen species (NO$_x$) concentrations averaged 1.2 ± 0.4 to 9.7 ± 1.8% per year from 1999 to 2010. The NOAA WP-3D flew over Atlanta, GA during SOS (Southern Oxidant Study 1999) on 6 July 1999 and the results are shown in Figure 11 and are compared to the SENEX 16 June 2013 data. These two days were comparable in meteorological conditions with wind speeds around 4 m/s, temperatures around 26 degrees C in the boundary layer, and boundary layer heights of about 1.6 km on 6 July 1999 and 1-1.2 km on 16 June 2013. The flight track on top of the map color coded with 1999 NO$_x$ shows qualitatively that the pollution was more intense and widespread. The time series of CO and NO$_x$ for the two flights in Figure 11 are consistent with significant emissions decreases between 1999 and 2013. It is expected that the comparison between the 1999 and 2013 airborne data sets will provide important insights and evidence to answer the main science questions from SENEX.

6.2 Coal and natural gas fired power plant plumes

During SENEX several power plant plumes were sampled. Figure 12 shows the flight track from the 22 June 2013 over Atlanta that included transects downwind of the coal fired Bowen and the natural gas combined cycle McDonough power plants. The emission intensities of these two different kinds of power plants are very different; combined cycle natural gas power plant have much lower CO$_2$, SO$_2$ and NO$_x$ emissions per unit energy produced than coal fired power plants (de Gouw et al., 2014). The Bowen power plant produced 3.3 TWh and McDonough 4.7 TWh in the 1st quarter of 2013. According to the continuous emissions monitoring systems (CEMS) monitoring data, during the 1st quarter of 2013 the Bowen power plant emitted 930 g/kWh CO$_2$, 0.20 g/kWh SO$_2$ and 0.56 g/kWh NO$_x$, while McDonough emitted 360 g/kWh CO$_2$, 0.0019 g/kWh SO$_2$ and 0.018 g/kWh NO$_x$. These large differences in emission intensities are clearly reflected in the enhancements measured in the downwind transects shown in Figure 12. In the Bowen power plant plume about 20 ppmv CO$_2$, 5 ppbv NO$_x$ and 4 ppbv SO$_2$ enhancements were observed, while the McDonough plume had only about 5 ppmv of CO$_2$ enhancement and SO$_2$ and NO$_x$ were not measurably enhanced above background. To...
account for the different dilutions during transport (5km distance for Bowen and 10 km for McDonough at about 3m/s average wind speed) enhancement ratios need to be considered. In the Bowen plume 0.24 ppb/ppm of NO_y/CO₂ and 0.13 ppb/ppm of SO₂/CO₂ were measured. Because no enhancements in the McDonough plume were seen, enhancement ratios cannot be determined, but using a S/N=2 the upper limit for enhancement ratios in the McDonough plume are 0.06 ppb/ppm for NO_y/CO₂ and 0.11 ppb/ppm for SO₂/CO₂ are determined. This shows that the NO_y and SO₂ enhancements in the gas fired McDonough plant are clearly smaller than in the coal fired Bowen plant. In addition to investigating emissions from the power plant plumes as was shown here, the emissions of those power plants mix with the large emissions of isoprene in this area as can be seen in Figure 9. This provides an ideal case for studying the interactions between natural and anthropogenic emissions. The chemistry of isoprene, OH, formaldehyde and NO_x in power plant plumes and other areas during SENEX will be described in detail elsewhere (de Gouw et al., 2015b; Kaiser et al., 2015; Wolfe et al., 2015).

6.3 Modeling Support for SENEX

Figure 13 shows example results from one of the modeling tools that is available for analysis of the SENEX results, the Lagrangian particle dispersion model FLEXPART (Stohl et al., 2005). From locations along the flight tracks, 20,000 particles were released in the model and tracked for 10 days backward in time. The model outputs the residence time of the particles in a volume such as the surface layer. By multiplying the footprint with gridded emission fluxes the model calculates the mixing ratio of the emitted species at the location of the aircraft. All species are considered as conserved tracers; the model does not contain chemical transformations, but it does keep track of the time since emission. As an example, Figure 13 a and b show the time series of FLEXPART NO_y (accumulating emissions from the previous 48 hours) together with the flight track color coded with NO_y. Comparing the modeled and measured NO_y in Figure 13a and Figure 9, it can be seen that the model reproduces the time series qualitatively, including the broader features and the power plant plume encounters. The very high mixing ratios in the narrow power plant plumes are underestimated in the model (the plumes are too narrow for the model resolution). The footprint map for a point along the last flight track downwind of
the Harllee Branch power plant plume is shown in Figure 13c showing that the mixing ratios at this point along the flight track will have the highest contribution from the immediate upwind area that includes the Harllee Branch power plant, just as expected. But there was also a significant contribution to the mixing ratios from long-range transport from the Northeast US. Other available FLEXPART model outputs include CO, biomass burning CO, SO\(_2\), isoprene and monoterpenes. Besides FLEXPART other models are (or will be) also available including the NOAA AM3 model (http://esrl.noaa.gov/csd/projects/senex/), an MCM-based 0-D box model (Wolfe et al., 2015) and WRF-Chem (Weather Research and Forecasting with Chemistry) simulations.

7. Summary

The Southeast Atmosphere Study (SAS) was a large collaborative and community effort to understand the air quality and climate issues in the Southeast United States. This paper provides a summary of the experimental setup for the NOAA-led SENEX study, which was an important component of the SAS. The NOAA WP-3D aircraft capabilities, the payload, instrument descriptions, inter-comparisons and flight locations and goals are described in detail in this paper. The flight on 16 June 2013 in the Atlanta area was described in some detail to demonstrate the strategies used during SENEX to study the air quality and climate relevant interactions of biogenic and anthropogenic emissions in the Southeast, which was one of the main foci of the SAS study.

ACKNOWLEDGMENT

The US Weather Research Program within NOAA/OAR Office of Weather and Air Quality supported S. McKeen and R. Ahmadov. We are grateful M. Dumas (NOAA Holling’s Scholar), D. Hughes, and A. Jaksich from Hendrix College for their help with the iWAS2 measurements. Participation of ISAF was enabled by US EPA Science to Achieve Results (STAR) program grant 83540601.
Tables

Table 1: Standard NOAA WP-3D provided parameters

<table>
<thead>
<tr>
<th>Aircraft Parameters</th>
<th>Technique</th>
<th>Units</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>aircraft position</td>
<td>GPS latitude</td>
<td>deg</td>
<td>±16m</td>
</tr>
<tr>
<td></td>
<td>GPS longitude</td>
<td>deg</td>
<td>±16m</td>
</tr>
<tr>
<td></td>
<td>pressure altitude</td>
<td>m</td>
<td>±16m</td>
</tr>
<tr>
<td></td>
<td>radar altitude above ground</td>
<td>m</td>
<td>±16m</td>
</tr>
<tr>
<td>aircraft meteorology</td>
<td>ambient temperature</td>
<td>deg C</td>
<td>±0.5C</td>
</tr>
<tr>
<td></td>
<td>dew point temperature</td>
<td>deg C</td>
<td>±0.5C</td>
</tr>
<tr>
<td></td>
<td>TDL dew point temperature</td>
<td>deg C</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>H₂O mixing ratio*</td>
<td>g/kg</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>potential temperature</td>
<td>deg K</td>
<td>±0.5K</td>
</tr>
<tr>
<td></td>
<td>relative humidity*</td>
<td>%</td>
<td>±5%</td>
</tr>
<tr>
<td></td>
<td>static pressure</td>
<td>mb</td>
<td>±2.2mb</td>
</tr>
<tr>
<td></td>
<td>vertical wind speed</td>
<td>m/s</td>
<td>±0.5 m/s</td>
</tr>
<tr>
<td></td>
<td>wind direction</td>
<td>deg</td>
<td>5 deg</td>
</tr>
<tr>
<td></td>
<td>wind speed</td>
<td>m/s</td>
<td>1 m/s</td>
</tr>
<tr>
<td>aircraft miscellaneous</td>
<td>attack angle</td>
<td>deg</td>
<td>±0.2 deg</td>
</tr>
<tr>
<td></td>
<td>cabin pressure</td>
<td>mb</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>ground speed</td>
<td>m/s</td>
<td>±3.4 m/s</td>
</tr>
<tr>
<td></td>
<td>heading</td>
<td>deg</td>
<td>±0.5 deg</td>
</tr>
<tr>
<td></td>
<td>pitch angle</td>
<td>deg</td>
<td>±0.05 deg</td>
</tr>
<tr>
<td></td>
<td>roll angle</td>
<td>deg</td>
<td>±0.05 deg</td>
</tr>
<tr>
<td></td>
<td>slip angle</td>
<td>deg</td>
<td>±0.2 deg</td>
</tr>
<tr>
<td></td>
<td>true air speed</td>
<td>m/s</td>
<td>±0.5 m/s</td>
</tr>
</tbody>
</table>

* H₂O mixing ratio and relative humidity are derived from dew point temperature.
Table 2: Flight descriptions for the NOAA WP-3D daytime flights in the SE US

<table>
<thead>
<tr>
<th>Flight Date in 2013</th>
<th>Day of the week</th>
<th>Description</th>
<th>Investigated Emission Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/29 Wednesday</td>
<td>Testflight in Florida</td>
<td>biogenic urban power plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville St John's River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/31 Friday</td>
<td>Testflight in Florida</td>
<td>biogenic urban power plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville St John's River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/03 Monday</td>
<td>Transfer Tampa to Smyrna Birmingham</td>
<td>urban power plant coal mine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC Gaston, Johnsonville, Cumberland, Colbert Centreville spiral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/11 Tuesday</td>
<td>Centreville Birmingham west to east</td>
<td>urban power plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC Gaston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/12 Wednesday</td>
<td>Atlanta west to east</td>
<td>urban power plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scherer, Bowen, Yates, Wansley, Harlee Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/16 Sunday</td>
<td>Atlanta southwest to northeast on weekend</td>
<td>urban power plant point sources agriculture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scherer, Bowen, Yates, Wansley, Harlee Branch paper mills, landfills poultry farming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/18 Tuesday</td>
<td>Aborted flight, circled over Franklin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/22 Saturday</td>
<td>Birmingham and Atlanta west to east</td>
<td>urban power plant point sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centreville EC Gaston coal mines, land fills, paper mills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/23 Sunday</td>
<td>Indianapolis biogenic/landscape emission change</td>
<td>urban biogenic power plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Johnsonville, Cumberland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/29 Saturday</td>
<td>Centreville C-130 inter-comparison Birmingham James H Miller Jr, EC Gaston</td>
<td>urban power plant</td>
<td></td>
</tr>
<tr>
<td>7/05 Friday</td>
<td>Ozarks St Louis Archer Daniels Midland biofuel refinery</td>
<td>biogenic urban point source</td>
<td></td>
</tr>
<tr>
<td>7/10 Wednesday</td>
<td>Transfer flight Smyrna to Tampa coal mines, paper mill hog farming</td>
<td>point sources agriculture</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Fight descriptions for the NOAA WP-3D nighttime flights in the SE US

<table>
<thead>
<tr>
<th>Flight Date in 2013</th>
<th>Day of the week</th>
<th>Description</th>
<th>Investigated Emission Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/19</td>
<td>Wednesday</td>
<td>Atlanta day into night Missed approaches step profile in aged Atlanta plume</td>
<td>urban</td>
</tr>
<tr>
<td>7/02</td>
<td>Tuesday</td>
<td>Birmingham north to south Centreville JH Miller, EC Gaston, Gorgas, US Steel, Greene County</td>
<td>urban</td>
</tr>
<tr>
<td>7/03</td>
<td>Wednesday</td>
<td>New Madrid, White Bluff agricultural fire</td>
<td>power plants</td>
</tr>
</tbody>
</table>

Table 4: Fight descriptions for the NOAA WP-3D flights in shale gas regions

<table>
<thead>
<tr>
<th>Flight Date in 2013</th>
<th>Day of the week</th>
<th>Shale Play</th>
<th>Additional Investigated Emission Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/10</td>
<td>Monday</td>
<td>Haynesville</td>
<td></td>
</tr>
<tr>
<td>6/25</td>
<td>Tuesday</td>
<td>Haynesville</td>
<td></td>
</tr>
<tr>
<td>6/26</td>
<td>Wednesday</td>
<td>Fayetteville</td>
<td>Biogenics in Ozarks Independence power plant</td>
</tr>
<tr>
<td>7/06</td>
<td>Saturday</td>
<td>Marcellus</td>
<td></td>
</tr>
<tr>
<td>7/08</td>
<td>Monday</td>
<td>Fayetteville</td>
<td>New Madrid power plant</td>
</tr>
</tbody>
</table>
Table 5: Aerosol instrumentation on the NOAA WP-3D during SENEX

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Name/Technique</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Sample Interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low turbulence inlet</td>
<td>LTI: decelerating inlet to provide sample air to aerosol instruments in fuselage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>(Wilson et al., 2004)</td>
</tr>
<tr>
<td>Size distributions fine (0.004-1μm) and coarse (1-8.3μm)</td>
<td>parallel CPCs, and white and laser light scattering</td>
<td></td>
<td></td>
<td>1s</td>
<td>(Brock et al., 2011; Brock et al., 2000)</td>
</tr>
<tr>
<td>Cloud condensation nuclei (CCN) and supersaturation</td>
<td>CCN: Continuous-flow streamwise thermal-gradient CCN counter with scanning flow CCN analysis</td>
<td>10%</td>
<td>0.04% supersaturation</td>
<td>10 CCN cm⁻³</td>
<td>30-60s</td>
</tr>
<tr>
<td>8 cell optical extinction (dry 405, 532, 662nm, 70% and 90% RH 532nm, thermodenuded 405 and 662nm)</td>
<td>CRD: Cavity ringdown aerosol extinction spectrometer</td>
<td><2%</td>
<td>10% 0.1 Mm⁻¹</td>
<td>1s</td>
<td>(Langridge et al., 2011)</td>
</tr>
<tr>
<td>5 cell optical absorption (dry 405, 532, 662nm, thermodenuded 405nm and 662nm)</td>
<td>PAS: Photoacoustic Absorption Spectrometer</td>
<td>10 %</td>
<td>1 Mm⁻¹</td>
<td>1s</td>
<td>(Lack et al., 2012)</td>
</tr>
<tr>
<td>Refractory BC mass content of individual particles</td>
<td>SP2: Single-Particle Soot Photometer with laser-induced incandescence</td>
<td>30%</td>
<td>0.5 fg (0.08 μm mass-equiv. diameter with 2 g/cc density)</td>
<td>1s</td>
<td>(Schwarz et al., 2008; Schwarz et al., 2010)</td>
</tr>
<tr>
<td>Non-refractory, submicron sulfate, nitrate, ammonium, organic and chloride mass concentrations</td>
<td>AMS: Aerosol Mass Spectrometer</td>
<td>50%</td>
<td>0.05, 0.07, 0.24, 0.36, and 0.05 μg sm⁻³ (study average)</td>
<td>10s</td>
<td>(Bahreini et al., 2009)</td>
</tr>
<tr>
<td>Cloud particle size distribution (0.6-50μm) (3-50μm) (50-6000μm)</td>
<td>Cloud probes: Laser light forward and back scattering Laser light forward scattering Droplet imaging probe</td>
<td></td>
<td></td>
<td>1s</td>
<td>(Lance et al., 2010)</td>
</tr>
</tbody>
</table>
Table 6: Gas-phase instrumentation on the NOAA WP-3D during SENEX

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Technique</th>
<th>Accuracy</th>
<th>Precision or Detec. Limit</th>
<th>Sample Interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄, CO₂</td>
<td>wavelength-scanned cavity ring-down absorption spectroscopy</td>
<td>0.07 ppm 1 ppb</td>
<td>0.11 ppm 0.4 ppb</td>
<td>1s</td>
<td>(Peischl et al., 2012)</td>
</tr>
<tr>
<td>CO</td>
<td>vacuum UV resonance fluorescence</td>
<td>5%</td>
<td>0.5ppb</td>
<td>1s</td>
<td>(Holloway et al., 2000)</td>
</tr>
<tr>
<td>SO₂</td>
<td>pulsed UV fluorescence</td>
<td>20%</td>
<td>250ppt</td>
<td>1s</td>
<td>(Ryerson et al., 1998)</td>
</tr>
<tr>
<td>NO, NO₂, NO₃, O₃</td>
<td>Gas phase chemiluminescence</td>
<td>3%</td>
<td>10ppt</td>
<td>1s</td>
<td>(Pollack et al., 2010; Ryerson et al., 1998; Ryerson et al., 1999)</td>
</tr>
<tr>
<td>various VOCs</td>
<td>PTR-MS: proton transfer reaction mass spectrometer using H₂O⁺ as reagent ion</td>
<td>25%</td>
<td>depending on signal and species</td>
<td>1s every 17s</td>
<td>(de Gouw and Warneke, 2007)</td>
</tr>
<tr>
<td>hydrocarbons, oxygenated VOCs</td>
<td>iWAS: whole air sampler with immediate GC-MS analysis</td>
<td>12-20% %</td>
<td>4-7ppt ppt ppt</td>
<td>72/flight (3-8s)</td>
<td>(Gilman et al., 2009; Lerner et al., 2015)</td>
</tr>
<tr>
<td>HNO₃, HCOOH, HONO</td>
<td>HNO₃-CIMS: chemical ionization mass spectrometer with I⁻ as reagent ion</td>
<td>20%+50ppt 20%+120ppt 40%+30 ppt</td>
<td>25 ppt 40 ppt 25 ppt</td>
<td>1s</td>
<td>(Neuman et al., 2002; Neuman et al., 2003)</td>
</tr>
<tr>
<td>NH₃</td>
<td>NH₃-CIMS: chemical ionization mass spectrometer with protonated aceton dimer as reagent ion</td>
<td>25%+(0.02-0.5) ppb (depending on flight)</td>
<td>0.02-0.07 ppb (depending on flight)</td>
<td>1s</td>
<td>(Neuman et al., 2003; Nowak et al., 2007)</td>
</tr>
<tr>
<td>PAN, PPN, APAN, CINO₂</td>
<td>PAN-CIMS: chemical ionization mass spectrometer with I⁻ as reagent ion</td>
<td>0.04-0.05ppb 0.04-0.1ppb 0.01-0.02ppb 0.01-0.02ppb</td>
<td>0.01ppb 0.003ppb 0.006ppb 0.02ppb</td>
<td>2s</td>
<td>(Osthoff et al., 2008; Slusher et al., 2004; Zheng et al., 2011)</td>
</tr>
<tr>
<td>various oxygenated VOCs, CINO₂, N₂O₅, alkyl nitrates</td>
<td>UW HR-ToF-CIMS: chemical ionization mass spectrometer with I⁻ as reagent ion</td>
<td>50%</td>
<td>depending on signal and species</td>
<td>1s</td>
<td>(Lee et al., 2014)</td>
</tr>
<tr>
<td>glyoxal, NO₂</td>
<td>ACES: cavity enhanced absorption spectroscopy</td>
<td>5.8% 5%</td>
<td>34 pptv 80 ppt</td>
<td>10s 5s</td>
<td>(Min et al., 2015; Washenfelder et al., 2011)</td>
</tr>
<tr>
<td>NO, NO₂, O₃, NO₃, N₂O₅</td>
<td>CRDS: cavity ring-down absorption spectrometer</td>
<td>5% 5% 10% 20% 12%</td>
<td>1 ppbv 0.2 ppbv 0.2 ppbv 3 pptv 3 pptv</td>
<td>1s</td>
<td>(Dube et al., 2006; Wagner et al., 2011)</td>
</tr>
<tr>
<td>HCHO</td>
<td>In Situ Airborne Formaldehyde (ISAF): laser induced fluorescence</td>
<td>10%</td>
<td>36pppt</td>
<td>1s</td>
<td>(Cazorla et al., 2015; DiGangi et al., 2011; Hottle et al., 2009)</td>
</tr>
</tbody>
</table>

j₉₀₂ and j₉₁₀D: j-heads: filter radiometers 10% 1s
Figures:

Figure 1: NOAA WP-3D aircraft picture, payload and layout. The photo was taken during the inter-comparison flight with the NCAR C-130 by Lynne Gratz.
Figure 2: NOAA WP-3D flight tracks for daytime, nighttime and shale gas flights during SENEX. The marker size for the power plants is the annual gross load, for the paper mills the capacity, for the bio refineries the biofuel production, for the coal mines the methane emissions, and for the landfills the methane emissions.
Figure 3: NO$_2$ inter-comparison between P-CL, CRDS and ACES instruments and ozone inter-comparison between P-CL and CRDS.
Figure 4: Inter-comparison between PTR-MS and iWAS/GCMS.
Figure 5: HCOOH inter-comparison between the HNO$_3$-CIMS and the UW HR-ToF-CIMS as a time series for a selected flight and a scatter plot. The color code in the scatter plot indicates all the individual flights. The black line is a fit using all the data the grey lines fits for individual flights with the highest or lowest slope, respectively.
Figure 6: Inter-comparison between the UW HR-ToF-CIMS of N$_2$O$_5$ with CRDS and ClNO$_2$ with the PAN-CIMS as time series and scatter plots for the nighttime flight on 3 July 2013.
Figure 7: NO$_y$ and NO$_x$ (=NO$_y$-NO$_x$) budgets for the NOAA WP-3D flight on 16 June 2013 with and without aerosol nitrate.
Figure 8: The aerosol volume derived from the chemical composition data (AMS and SP2) was compared to the volume from the size distribution data (NM ASS and UHSAS). (a) The correlation for the flight on 16 June 2013 color-coded by the density. (b) The slopes for all the flights color-coded by the respective correlation coefficient determined as shown in (a).
Figure 9: The flight track of the NOAA WP-3D on June 16, 2013 over Atlanta, GA color coded with NOy in the top panel and with isoprene on the bottom panel. The underlying maps show the point source emissions (power plants, paper mills and land fills) in the top panel and the isoprene emissions potential in the bottom panel.
Figure 10: Time series of two transects during the 16 June 2013 flight downwind of a landfill and two paper mills.
Figure 11: The track of a flight on 6 July 1999 over Atlanta during the SOS99 campaign color-coded with the NO$_y$ mixing ratio. Time series of the 16 June 2013 and the 6 July 1999 flights for NO$_y$ and CO show that the mixing ratios over Atlanta have decreased significantly over the past 14 years.
Figure 12: The track of a flight on 6 July 1999 over Atlanta during the SOS99 campaign color-coded with the NO\textsubscript{x} mixing ratio. Time series of the 16 June 2013 and the 6 July 1999 flights for NO\textsubscript{x} and CO show that the mixing ratios over Atlanta have decreased significantly over the past 14 years.
Figure 13: FLEXPART model results: time series of NO$_y$ with 48 hours of accumulation time, the flight track color-coded by modeled NO$_y$ and the surface residence time for a point on the last transect downwind of the Harllee Branch power plant.
References:

