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Translationally diffusive behavior arising from the combination of orientational diffusion and pow-
ered motion at microscopic scales is a known phenomenon, but the peculiarities of the evolution of
expected position conditioned on initial position and orientation have been neglected. A theory is
given of the spiral motion of the mean trajectory depending upon propulsion speed, angular velocity,
orientational diffusion and rate of random chirality reversal. We demonstrate the experimental ac-
cessibility of this effect using both tadpole-like and Janus sphere dimer rotating motors. Sensitivity
of the mean trajectory to the kinematic parameters suggest that it may be a useful way to determine
those parameters.

Active colloids such as microswimmers and nanomo-
tors are a class of non-equilibrium systems which has
been the subject of intense research in recent years [1–
3]. At the sub-micron length scale, stochastic effects sig-
nificantly perturb a self-propeller’s deterministic motion,
and the coupling of such noise to a steady motion can lead
to unexpected emergent phenomena such as motility-
induced phase separation [4], chiral diffusion [5], and phe-
nomena with biological relevance [6] which can now be
modelled by artificial active colloids. In the absence of
noise a circle swimmer, confined to a plane with a strong
rotational component to its powered motion, travels on
a fixed circle with a steady clockwise or counterclockwise
chirality [7]. Artificial swimmers of this sort have been
fabricated in a variety of forms such as tadpoles [8, 9],
Janus sphere dimers [10, 11], nanorods [12, 13], and
acoustically-activated swimmers [14]. Stochastic pertur-
bations in the form of unbiased orientational diffusion or
random chirality-reversal resulting from flipping about
the direction of motion have significant effects on the
long term motion: an effective translational diffusion is
generated [15–17], the infinite-time limit of the mean po-
sition conditioned on the initial position and velocity is
non-zero and chirality-dependent [5], and the mean ap-
proach to the limit is a logarithmic spiral [17, 18].

In this Letter, we experimentally and theoretically
demonstrate “spiral diffusion” as a general finite-time
behavior of the conditional mean position in circle swim-
mers. First, we expose the phenomenon in experimental
data for both tadpole-like [9] and Janus-sphere dimer [10]
rotary microswimmers (see Fig. 1), and present fits to the
model. Then, we explain the theory for spiral diffusion of
circle swimmers subjected to both orientational diffusion
and flipping (change of chirality). The expected posi-
tion of the swimmer, conditioned on its initial position,
velocity direction and chirality, evolves along a converg-
ing spiral. The theory serves as a sensitive and accu-
rate utility for determining kinematic parameters such
as angular velocity and orientational diffusivity. Supple-

mentary Material contains the details of fabrication and
experimental protocols, as well as movies of simulated
ensembles of swimmers for a variety of noise parameters.

Experiments were performed on two different rotor de-
signs, tadpole-like microswimmers [9] and Janus sphere
dimers [10]. The motors are denser than the aqueous
solution of hydrogen peroxide, thus they move near the
substrate and effectively confined to a horizontal plane.
Even within a batch of nominally identical motors, there
is usually a significant range of kinematic parameters.
The analyzed experimental data consisted of two videos
for each type of swimmer. From a single video of N
frames, an ensemble of Ntraj trajectories, each of length
N − Ntraj frames is synthesized. For 1 ≤ n ≤ Ntraj,
the n-th member of the ensemble is obtained by taking
frames n through N −Ntraj + n− 1 of the original video
and rotating them so that the initial velocities are always
in the same (v̂0) direction. Average positions of these
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FIG. 1. (color online) Traces of mean trajectories (solid
blue) of synthetic ensembles constructed from video of a sin-
gle motor trajectory, along with fits to the theory (dashed
red). Two trajectories for each of the motor types, tadpoles
and Janus sphere dimers were selected for this investigation.
The fit parameters (ω [rad/s], Do [rad2/s]) to trajectories for
dimers are left: (0.86, 0.176) and right: (1.07, 0.037), and for
tadpole-like swimmers are left: (4.26, 0.446) and right: (6.15,
0.321).
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FIG. 2. (color online) Traces of the mean position 〈r(t)〉 of
clockwise rotary self-propellers conditioned on initial position
at the origin and initial velocity directed along êy, for dimen-
sionless orientational diffusivity Do/ω = 0.01, 0.05 and 0.1
and dimensionless flipping rate f/ω = 0, 0.2, 0.5, 0.7, 1 and
1.2. According to Eqs. (3), (4), and (6), 〈r(t)〉 spirals in
to its asymptotic value when f < ω, but the approach is
non-oscillatory for f > ω. Watch the supplementary video
“vid-fig2.m4v” for a combination of theory and simulation.

synthesized ensembles are shown as solid blue spirals in
Fig. 1. Fits to the theory, as explained below, are shown
as dashed red curves, and are obtained by adjusting the
angular speed ω, linear speed v = Rω, and orientational
diffusion coefficient Do. With this method, we find a
much more sensitive fit to these kinematic parameters
than from working directly with the orientation time se-
ries and mean square displacement; a small change in the
ratio Do/ω can change the shape of the spiral.

To develop the theory, we begin with the deterministic
part of a circle swimmer’s motion. The particle moves
with constant linear v = vv̂ and angular ω = ωω̂ (ω ≥ 0)
velocities; The instantaneous orbit of motion has radius
R = v/ω and the vector p = R p̂ = Rv̂ × ω̂ connects
the center of instantaneous orbit to the self-propeller.
Assuming the particles start from the same initial posi-
tion and velocity, the time-dependent right-handed body
frame E(t) = [p̂, v̂, ω̂]T (t) is related to the fixed labora-
tory frame by E(0) = [p̂0, v̂0, ω̂0]T = [x̂, ŷ, ẑ]T for counter-
clockwise rotation, (E(0) = [−x̂, ŷ,−ẑ]T for clockwise).
To study the dynamics of these particles we use the kine-
matrix theory [19, 20], that we recently developed as an
alternative to Langevin and Fokker-Planck formalisms.
In the limit of short noise correlation and momentum
relaxation times, the self-propeller’s kinematic proper-
ties such as orientational diffusion, angular speed and
flipping rate can be packaged into a 3 × 3 kinematrix
K. The dynamics of the body frame is governed by
d
dt 〈E(t)〉 = −K〈E(t)〉 where 〈·〉 is the ensemble average
operator over all realization of noises. This model is
appropriate to nanomotors and microswimmers at low
Reynolds number, since the relaxation time due to vis-
cous damping is very short (for a micron-sized object,

of order 1 µs), and correlation times of environmental
stochastic forces are even shorter.

The self-propeller moves near a plane in 2D (v̂ ⊥ ω̂),
undergoing orientational diffusion with diffusivity Do

about ω̂ while, simultaneously and independently, it flips
about its direction of motion v̂ with frequency f and
thereby reversing chirality. Although the motors in our
experimental study had stable chirality, some artificial
motors may experience flipping [12]. The kinematrix for
this model is [19]

K =

Do+2f ω 0
−ω Do 0
0 0 2f

 . (1)

The stochastic motion of the body frame generates an
effective (long-time) translational diffusivity

Deff =
v2

2

[
K−1

]
22

=
ωR2

2

ω(Do + 2f)

(Do + f)2 + (ω2 − f2)
. (2)

Passive translational diffusion with diffusivity Dt con-
tributes an independent diffusion, so that the net diffu-
sion coefficient is Deff + Dt. Passive translational diffu-
sion is not coupled to the powered motion, but orienta-
tional diffusion is. It is for this reason that the latter can
dominate the total diffusion. Random flipping instanta-
neously creates a large qualitative change in the motion
and is alone sufficient to generate long-term diffusion.

The effective diffusivity Deff tells us about the asymp-
totic behavior of the mean-squared displacement. At fi-
nite times, there are corrections which we will discuss
later. But, more significant for the subject of this Letter
is the mean displacement vector, given by

〈∆r( t )〉 = v
[
K−1

(
I − e−Kt

)
E(0)

]
· v̂0

= 〈∆r〉∞ − 2
Deff

R
G(t)e−(Do+f)t, (3)

where the asymptotic value is

〈∆r〉∞ = 2
Deff

R

(
v̂0

ω
− p̂0

Do + 2f

)
. (4)

The special case of this result for no flipping has been
derived previously [18]. Translational diffusion does not
affect 〈∆r( t )〉. Instead, it reflects the interaction of ori-
entational diffusion, chirality reversal, and powered rota-
tion. The second term in the final expression of Eq. (3),
which represents a transient, will be considered momen-
tarily. To understand the expression (4) for the asymp-
totic mean displacement, it’s helpful to unpack it a little
in the low-noise limit. Expanding to first order in Do

and f , we find

〈∆r〉∞
R

≈ −p̂0 + ω−1(Do + 2f)v̂0. (5)
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FIG. 3. (color online) Left: The visibility ratio vis(t) = |〈r(t)〉|2/var(r(t)) measures the ease of discerning the mean behavior of
r(t) against the background of its statistical spread. It drops to near zero more quickly the larger f and Do. Inset: mean square

displacement reaches the diffusive regime faster as (f+Do)/ω increases. Middle: |〈∆r〉∞|/R = 2(Deff/R
2)
√
ω−2 + (Do + 2f)−2

as function of Do/ω and f/ω. Right: |φ∞| = tan−1[ω/(Do+2f)], the magnitude of the angle between 〈∆r〉∞ and v̂0, as function
of Do/ω and f/ω.

In the limit of vanishing noise, 〈∆r〉∞ tends to the time-
average position for the deterministic motion on a circle.
In the presence of noise, there is a deviation, but in the
direction of the initial velocity.

Turning to the second (transient) term in Eq. (3), with

the abbreviation α =
√
ω2 − f2, the vector G(t) is

G(t) =

[
cosαt+

(
f − ω2

Do + 2f

)
sinαt

α

]
v̂0

ω

−
[
cosαt+ (Do + f)

sinαt

α

]
p̂0

Do + 2f
. (6)

The asymptote 〈∆r〉∞ has a more-or-less uniform quali-
tative behavior upon varying Do and f , but the approach
to the asymptote is different (see Fig. 2). Specifically,
there are two distinct regimes for f/ω. If 0 ≤ f < ω, G
is purely oscillatory. Thus, the norm of 〈∆r(t)〉−〈∆r〉∞
is bounded by a constant multiple of the decaying ex-
ponential exp[−(Do + f)t]. Within that bound it os-
cillates, but the oscillation frequency α depends on f
and goes to zero as f increases to ω. This is a little
surprising; one might have expected that ω itself was
the only possible oscillation frequency. If ω < f , then
G grows exponentially with rate (f2 − ω2)1/2. Thus,
|〈∆r(t)〉 − 〈∆r〉∞| ∼ exp{−[Do + f − (f2 − ω2)1/2]t}
and the approach is non-oscillatory. At fixed Do, the ap-
proach rate has a cusp at f = ω, and tends to Do for
both f = 0 and f ≈ ∞.

Figure 1 depicts traces of the clockwise rotors’ mean
trajectory conditioned on E(0) = [−x̂, ŷ,−ẑ]T for a range
of values of Do/ω and f/ω, according to the theory
just developed. Although the temporal aspect is lost,
many of the features we have discussed can be seen
there. If Do = f = 0, then the time average of ∆r(t)
is simply −p̂0. A small amount of noise should cause
〈∆r〉∞ to deviate by only a small amount from that limit.

More precisely, according to a formula derived earlier,
〈∆r〉∞ should move up from the initial orbit center by
R(Do+2f)/ω; Fig. 2 bears this out up to values of f ≈ ω.
The number of visible oscillations decreases very rapidly
with increasing noise. This is partly due to the increased
damping and partly due to the decreased oscillation fre-
quency [α in Eq. (6)]. For f >∼ ω, oscillations no longer
occur. Movies contained in Supplementary Information
show simulated particle ensembles, along with their em-
pirical mean positions; thereby, the temporal aspects can
be better appreciated.

The orderly and revealing behavior of the mean dis-
placement is very difficult to discern in a single trajec-
tory without the sort of special processing we have used.
This difficulty can be quantified, using the visibility of
the mean displacement 〈∆r(t)〉, defined as

vis(t) =
|〈r(t)〉|2
var(r(t))

, (7)

where var(r(t)) = 〈|r(t)|2〉 − |〈r(t)〉|2 is the variance of
the position at time t. If vis(t) is very small, we cannot
expect to directly discern the mean behavior even in a
small ensemble. The left panel of Fig. 3 shows plots of
visibility at a range of f/ω values for Do = 0.01ω. For
Do + f ∼ 10−2ω, the mean displacement is comparable
to the spreading width, and vis(t) takes several periods
to degrade. At larger values, Do + f >∼ 10−1ω, the effect
is much weaker and visibility drops to near zero in less
than one period.

Now we turn to a closer look at the long-time asymp-
tote 〈∆r〉∞ of the mean displacement. Although, as f
increases, 〈∆r〉∞ moves away from the ideal orbit center
in the direction of v̂0, it does not do so indefinitely; the
f → ∞ limit is ωRv̂0/Do [= v(0)/Do]. The center and
right panels of Fig. 3 show details of the behavior of both
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the norm |〈∆r〉∞| = 2(Deff/R)
√
ω−2 + (Do + 2f)−2 and

the absolute value |φ∞| = tan−1[ω/(Do+2f)] of the angle
〈∆r〉∞ makes with v̂0 (“chiral angle”). As the flipping
rate f or orientational diffusivity Do increases, |φ∞| de-
creases. Since 〈∆r〉∞ depends on f and Do only through
their ratio with ω, this limit can equivalently be thought
of as ω → 0. From that perspective, the behavior is un-
derstandable as the circular (noise-free) trajectory degen-
erates to a straight line. However, in the experimentally
relevant range, Do/ω ∼ 10−2 − 10−1, we always find a
non-negligible chiral angle. In the limit of weak noise,
|〈∆r〉∞| is of the order of the radius of the determinis-
tic trajectory. At high orientational diffusion, the parti-
cle changes its direction rapidly and therefore |〈∆r〉∞| is
smaller than the radius of the orbit. For Do � ω and
f � ω the motor effectively acts more like a rectilinear
motor than a rotor, thus the magnitude of displacement
is much larger than the radius of the orbit.

The asymptotic chiral angle is different. At low noise it
is natural to preserve the chiral nature; the flipping rate
is low and the deviation from circular trajectory is small.
|φ∞| is very small both when Do � ω and when f � ω,
but for different reasons. Large Do implies that trajec-
tories strongly deviate from the the chiral deterministic
rotation; although chirality is preserved, its expression is
very weak. With large f , on the other hand, the chirality
itself is alternating rapidly. The asymptotic chiral angle
reflects only the early memory of the initial chirality. Af-
ter that, the rotor averages out to a linear motion.

In conclusion, we have shown that, in the presence of
orientational diffusion and flipping, the expected posi-
tion as a function of time of a rotary self-propeller, rela-
tive to its time-zero position and velocity, has significant
structure related to the kinematic parameters. Using en-
sembles synthesized from single experimental trajecto-
ries, this structure is accessible and can be used to deter-
mine the kinematic parameters. The tell-tale spiral can
be clearly seen over much shorter time scales than those
required for the long-time effective diffusion to manifest
itself.
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G. Volpe, and G. Volpe, arXiv:1602.00081 (2016).

[3] C. O. Reichhardt and C. Reichhardt, arXiv:1604.01072
(2016).

[4] J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103
(2008).

[5] A. Nourhani, P. E. Lammert, A. Borhan, and V. H.
Crespi, Phys. Rev. E 87, 050301(R) (2013).
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TADPOLES

The “tadpole” microswimmer particles are fabricated the following way: a monolayer of 2µm diameter SiO2 mi-
crospheres (Bangs Laboratories, Inc., Fishers, IN) was first deposited onto a clean silicon wafer (Si(100)) using
Langmuir-Blodgett technique. The substrate was then placed into a physical vapor deposition (PVD) system and
subsequent thin films of 5 nm titanium (Ti) adhesion layer followed by a 10 nm platinum (Pt) catalyst were deposited
onto the microbeads forming half-coated Janus spheres. The substrate was then tilted by an in-vacuum motor to an
oblique angle of 85◦ measuring the angle between the surface normal and the incident vapor direction. A thick layer
of titania (TiO2) was then deposited to a thickness of ∼8µm leading to rod-like formations on each microbead. The
high-incidence angle deposition is known as Glancing Angle Deposition (GLAD). The substrate was then removed
from the chamber, and the tadpole structures were gently removed from the substrate by bath sonication suspending
them in 18 MΩ H2O. The colloidal suspension was mixed with varying concentrations (%v/v) of hydrogen peroxide,
H2O2, then pipetted onto silicon wafers previously cleaned by oxygen (O2) plasma (Harrick Plasma Ithaca, NY). The
motion of the tadpoles was observed by brightfield microscopy using a Zeiss Axiophot microscope in reflection mode
with a 40× or 60× dry objective coupled to a Mikrotron EoSens GE MC 1364 camera (Unterschleissheim, Germany).
Videos were recorded at 30 frames per second (fps). Particle tracking was achieved with the software ImageJ with
translational motion and orientation performed by the plugins MTrack2 and OrientationJ, respectively.

DIMER

First, Janus catalytic beads were made by using a spin coater (Laurell Technologies Corp.) to deposit polystyrene
colloids (0.1 % wt suspension in ethanol of 2 m diameter beads, Duke Scientific) onto a clean glass slide. Spin coating
conditions were chosen to generate a separate non-touching distribution of colloids (typical conditions: 30 second spin,
2000 rpm, 100 L dispensed onto spinning substrate). These glass slides were then subject to directional platinum
metal (Agar scientific, 99.9%) evaporation using a Moorfield Minilab 80 e-beam evaporator (5 nm coating thickness,
monitored using a quartz-crystal oscillator). Damp lens tissue (Whatman) was then used to transfer the metallised
colloids from the glass slide into a solution containing hydrogen peroxide (20 % w/v). The colloids were incubated for
a few days in this solution, during which time agglomerates were observed to form, including the two body swimmers
that were investigated in this paper.

In order to explore chiral diffusion phenomena, the suspension of agglomerated swimmers prepared above was
diluted to give a 10% w/v hydrogen peroxide concentration, and then placed into a low volume rectangular glass
cuvette (Hellma). A Nikon Eclipse ME600 microscope operating in transmission mode was used to directly observe
the movement of the colloids. Focus was arranged to ensure that only colloids remaining in close proximity to one
of the planar surfaces of the cuvette were investigated. A camera attached to the microscope (Pixelink PL-742) was
used to record videos of the two body agglomerates motion (duration up to 1 hour, frame rate 3-15 Hz). These videos
were subject to automated image analysis using a threshold algorithm to determine the centre of mass for each colloid
in each frame with sub-pixel accuracy, output as time-stamped x,y trajectory?s (custom software developed using
the National Instruments Labview platform). Estimates of angular and propulsive velocities for each trajectory were
obtained as described in reference 1. Briefly, MSD versus time plots were generated from the trajectory data, and
then the first 1-5 seconds of these were fitted to an analytical expression determine all the relevant motion parameters.
Additionally, the long-axis orientation of the two body swimmer was determined using image analysis, which allowed
a second estimated for angular velocity via MSD analysis of the orientation changes as a function of time.

VIDEOS

1. vid-fig2.m4v: theoretical trajectories and simulation of an ensemble of nanorotors with identical initial position,
velocity and chirality. The movie corresponds to Do/ω = 0.1 and f/ω = 0.0, 0, 2, 0.5, 0.7, 1, 1.2 as in Fig. 1 of
the main text.

2. vid-NumPtcl.m4v: theoretical trajectories and simulated ensembles and means for ensemble sizes from 10 to
1000 for Do/ω = 0.1 and f/ω = 0.01.

3. vid-trans.m4v: video demonstrating that passive translational diffusivity does not affect the shape of the spiral.
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