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Abstract. User’s volitional control of lower limb prostheses is still challenging
task despite technological advancements. There is still a neadhfartees to
impose their will upon the prosthesis to drive in an accurate and imerac
fashion. This study represents a brief reviawcontrol strategies using diffe
ent sensor modalities for the purpose of phases/events detectic@actaity
recognition. The preliminary work that is associated with middle-lemetrol
shows a simple and reliable method for event detection in real-timg aisim-
gle inertial measurement unit. The outcome shows promising results.

Keywords: intent recognition- lower limb prostheses pattern recognitior
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1 Introduction

One of the most physically and mentally devastating events that cant@ecperson
is limb loss. There are more than 32 million amputees all aroundadhe iw which
75% accounts for lower limb amputees. [t England the number of amputees and
limb deficient people reach about 45,000 [2]

The use of prosthetic devices after amputation is one of the intemgmdidn-
prove theamputees’ quality oflife. The commercially available prostheses related to
lower limb extremity is divided into three types: mechanically passiveroprocs-
sor-controlled passive and powered devidése mechanically passive and micropr
cessor devices perform relatively well during simple activities (e.g. lgnaind
walking). However, their inability to produce positive energy, whemededed in
many activities (e.g. during stair ascent), is a serious limitation. Powpeostheses
use active actuators to generate joint torque which result in poweringhéleeakd
ankle joints. Therefore, improved performance has been perceived itegoaefivi-
ties, such as stair ascent, compared to passive devic&af®irn recognition (PR) is
the most commonly used control strategy for powered prosthésesg et al. used
supervised PR algorithms infer the user’s intent in real-time [4]. High classification
accuracies can be achieved by this approach, howievequires an extensive catle
tion of data for training the classifier [4]. The main challenge in theepdevices
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is the lack of direct control by amputees. [bherefore, the neetd control the pre-
theses intuitively has brought the ideas of using surface eleaigvaphy (SEMG)
mechanical sensors or a fusion-based control. One of the majoes®f biological
signals in neural control is electromyographic signal (EM&tirface EMG (SEMG)
electrodes have been used to record muscle activities signals frorreamparing
passive prostheses and powered prostheseSd@gral studies investigated EMG PR
to identify the user intent in different activities [5,7,8] for smodathyitive and nat-
ral control of prostheseg\ number of studies have repedtthe use of mechanical
sensors (inertial measurement units (IMUs)), load sensors asdupe-sensitiveni
soles) for lower limb activity recognition [6,9,10]. All these technicheege achieved
reasonable recognition accuracies in steady-state, while the accuracy is mercim low
transition between activities [6]. Sensor fusion-based PR for identifgifigrent
activities to improve the accuracy and responsiveness have beenetisougs11].
Researchers have segmented the gait cycle in various ways to impose ngntrolli
strategy over the prosthesis. Many control algorithms have been impézingsing
machine learning techniques and simple rule-based approaches [3tb2Adeijtify
gait phases/events. However, none of the previous studies have dealt with
transfemoral amputees (TFA). The aim of this study twwasarry out a preliminary
work for detecting events including initial contact (IC) and toe(d®) in real-time
using a single IMU. The idea of using ritdensory system for further improvement
in control of lower limb prostheses will remain to be investigated.

2 Control architecture for lower limb prostheses

The generalized control scheme for the lower limb prostheses consibte@idvel
hierarchy as shown in Figure 1 adapted from [14]. The high levéd déth the pe-
ception of user’s intent based on the signals from prosthesis, environment and the
user. The middle level controller translates the perceived user’s intent to the desired
output state (e.g. desired torque) after implementing detected phasesatsd Eke

low level control scheme deals with the feedback control of actuatandgs for the
desired movements (e.g. torque) related to the prosthesis.

Three Level Hierarchy
A

Higﬁ Level Middle Level Low Level

Perception Layer: . Translation Layer: ! ] | Execution Layer:
Intent Recognition Intent-to-state conversion J Device related control
e — * ¢t
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Prosthesis signals

Lower imb
prosthesis

Control commands

Fig. 1. Generalized control scheme for lower limb prosthesis



2.1  High level Control

In the high level control, several machine learning techniques were usacctoate
identification of locomotive modes. These machine learning techniques require
series of steps including signal processing (filtration and segmenidtamjre &-
traction (time domain, frequency domain and time-frequency donfeature sele

tion (filter, wrapper method) and classifiers based on unsupervised padrisad
learning methodgL0].

2.2 Middle level Control

Middle level control converts the estimated intent from a high level controller to a
desired device state by dividing the gait into phases/events. A combin&tiem-
poral information, user or device states which are used to identify the hgsit p
edevents, is the main difference between middle level and high level cdhdiol
The gait cycle (GC) is generally divided into two main phases: startes\wsing
phases. Some of the sub-phases include mid-stance (MSt), terminal Stat)cere-
swing (PSw) and terminal swing (TSw). Furthermore, GC can alsotégocized in
terms of events such &€ ard TO. IC and TO mark the beginning of stance and
swing phases, respectively. They are considered important evertfetbively a-
sess the gait progressccurate identification of gait phases or events is important for
controlling lower limb prostheses. The C-leg for instance, is equipjtbaddifferent
sensors (strain gauges, angle sensor) for measuring bending imélexéon angle
and angular velocity of the knee joint. All these measurements deteghithghas-
es/events and provide necessary damping resistanaesifarambulation.

3 Preliminary work

3.1 Subjects and Experimental Protocol

One TFA (age: 52 years old; height: 166.1 cm; weight: 66.7 Kg) withdifferent
types of prosthesis A: Ottobock 3R80 (knee) with College Park Ye(ifoot) and B:
C-Leg (knee) with Ottobock 1E56 Axtion (foot) participated in thigdgt A & B
refers to type of prosthesis in Table 1. The amputee had no aheslagical or
pathological problem apart from his amputation due to trauma leading toicchron
infection of the kneeA written consent was obtained from the subject befoee pr
ceeding for the experiment and the study was approved by the Ulyivadréeeds
Ethics Committee. A 6-DOF inertial measurement unit (IMU) consistingcod-
erometer and gyroscope (MPU 6050, GY-521) was placed at the integoofside
shank. A foot pressure insole with incorporated four piezoresistive based-6tee
sensors (Tekscan Inc., Boston, MA, US), was placed inside shaefdietection of
gait events and comparison with gyroscope data. The placement of IMibain
switches can be seen in Figuredhce the subject was equipped with the suit, he was
asked to perform level ground walking for about 10 m at diffeneeeds (slownor-



mal, fast) and walk up and down along a 5.5 m on ramp with inclinafihat self-
selected speed. 10 minutes break was provided in between these activities.

Wireless
Transmission

Fig. 2. Experimental Setup: Placement of Sensors; A: IMU, B: Base unit and Fobtssvitc
1: Heel, 2: ¥ Metatarsal, 3: S metatarsal, 4: Toe

3.2 Real-time Gait Event Detection Algorithm Description and Validation

Preliminary trials of two healthy subjects were conducted to develop dgtattion
algorithm based on using signals from a gyroscope attached on the Bha shank
angular velocity signal shows distinct characteristic of positive peak (makiha)
lowed by two negative peaks (minima). Positive peak is known asSwidg (MSw)
and two negative peaks on either side of positive peak are know@ asd IC. The
proposed algorithm is based on simple heuristic rules and evaluatesapgalh -
guentially, hence facilitates in real-time implementation. The data was ed@tua
sampling rate of 100 Hz and then filtered out usifiyc2der Butterworth low-pass
filter at cut-off frequency of 10 Hz. In the start, the algorithm seartfeemaximum
positive value and marks it as MSw after a threshold value greater tBadei0
gree/sec. Once MSw is marked, it searches for the immediate negative peak and
marks it as IC. After IC detection, it waits for 300 ms, then seattie second min
ma and marks this as TO, provided that the angular velocity is smaller2Dak-
gree/sec. The threshold values were selected empirically based on thenarglimi
data. A sample of real-time event detection is shown in Figure 3.

Real-time Event Detection during Normal Walk (Prosthetic Side)
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Fig. 3. Sample of real-time gait event detection using signals of (a) IMU (bphde
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3.3 Data Analysis and Results

The difference in timings from the gyroscope signal and tab $witches (heal and
toe) was evaluated in terms of differened; — Tr.s,, , WhereT; andTy,s,, indicate
the timings of the detected events (IC or TO) from gyroscope artdwfiiches e-
spectively. Table 1 shows the mean differences (MD) for different tesiand con-
paring them with [15]. Positive and negative values indicate the dathgarly dete
tion respectively, when compared against footswitch approach. No othkrhas
been carried out with TF&o direct comparison cannot be made with prosthetic side.
However; this work is compared with healthy subjects reportetish The MD and
percentage increase/decrease (% I/D) of IC for prosthetic side was foumdlighibly
higher for level ground and ramp ascending whereas for TO it wadicagtly re-
duced for all activities when compared with [15] shown in Table 1Tatde 2. The
significant improvements were obtained for intact side in terms of MDVai'D.

Table 1. Mean Difference + Standard Deviation, all expressed in millisecomitsgdietection
of IC and TO between gyroscope and foot switches

Level Ground Walk Ramp Ascending Ramp Descending
L Prosthesis | IC TO IC TO IC TO0
E © A 13+34 13+10 37+28 23+7.7 -13+15 17 +11
E :/2) B 34.5+30 -11.7+13| 18+£12 -34+£10 10+ 25 -122 +44
Total 24.8 £33 -0.8+17 | 28+23 -55+31 -1.2+24 | 5377
5 A 11+13 -446+12| 13+£13 -40.6 +6 115+12 | -41.5+7
E % B 2.5+30 -32+15 15+7.7 -20+£11 5614 -325+14
? Total 6.4 +24 -38+15 14 +£11 -304+13 | 85+13 -37+£12
[15] 89 -50+14 | 21+15 | -43+10 920 73+ 12

Table 2.% I/D of average mean error between this study and previous whjrk [1

Level Ground Walk Ramp Ascending Ramp Descending
a IC TO IC TO IC TO
z Prosthetic | 67.7% (I) | 98.4 %(D) | 25 % (I) 87.2% (D) | 86.6 % (D) | 27.4 (D)
Intact 20%(D) | 24%([D) | 33.3% (D) | 29.3% (D) | 5% (D) 49.3 % (D)
4 Conclusion and Future Works

In this study, a brief background was conducted on control of lbmbrprostheses.
The preliminary work showed overall low latency of the gait events detdotidnoth
prosthetic & intact side in real-time using single IMU at shank. Eurttork will
include detection of phases/events with higher number of subjectstardarono-
tive modes. In addition, implementation of different classifiers to recogrideus
activities and user intent based on multi-sensor fusion for applicatitmwef limb
prostheses will be investigated.
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