This is a repository copy of *Invariant solutions of minimal large-scale structures in turbulent channel flow for Re_τ up to 1000.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102233/

Version: Accepted Version

Article:

https://doi.org/10.1017/jfm.2016.470

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Invariant solutions of minimal large-scale structures in turbulent channel flow for Re_τ up to 1000

Yongyun Hwang1, Ashley P. Willis2, Carlo Cossu3,

1Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
2School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK
3Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS Université de Toulouse, Allée du Pr. Camille Soula, F-31400 Toulouse, France

(Received xx; revised xx; accepted xx)

Understanding the origin of large-scale structures in high Reynolds number wall turbulence has been a central issue over a number of years. Recently, Rawat et al. (J. Fluid Mech., 2015, 782, p515) have computed invariant solutions for the large-scale structures in turbulent Couette flow at $Re_\tau \simeq 128$ using an over-damped LES with the Smagorinsky model to account for the effect of the surrounding small-scale motions. Here, we extend this approach to an order of magnitude higher Reynolds numbers in turbulent channel flow, towards the regime where the large-scale structures in the form of very-large-scale motions (long streaky motions) and large-scale motions (short vortical structures) energetically emerge. We demonstrate that a set of invariant solutions can be computed from simulations of the self-sustaining large-scale structures in the minimal unit (domain of size $L_x = 3.0h$ streamwise and $L_z = 1.5h$ spanwise) with midplane reflection symmetry at least up to $Re_\tau \simeq 1000$. By approximating the surrounding small scales with an artificially elevated Smagorinsky constant, a set of equilibrium states are found, labelled upper- and lower-branch according to their associated drag. It is shown that the upper-branch equilibrium state is a reasonable proxy for the spatial structure and the turbulent statistics of the self-sustaining large-scale structures.

1. Introduction

The discovery of very-large-scale motions (VLSMs) has attracted significant interest in wall-bounded turbulence research over the past decade (e.g. Hutchins & Marusic 2007). The VLSM features as a long streaky motion of streamwise turbulent kinetic energy in the outer region, and it is typically very energetic at sufficiently high Reynolds numbers ($Re_\tau \gtrsim O(10^3)$ where Re_τ is the friction Reynolds number). It was initially proposed that this long streaky structure may be formed by the concatenation of the large-scale vortical structures, known as the large-scale motions (LSMs) (Kovaszny et al. 1970), which themselves were speculated to be formed by merger and/or growth of near-wall hairpin vortices via a ‘bottom-up’ process (for further details, the reader may refer to a recent summary on this proposition by Adrian 2007). However, there has been a growing body of recent evidence that the outer structures are largely independent of the near-wall process: for instance, disruption of the near-wall process with wall roughness affects the outer statistics very little (Flores et al. 2007).

† Email address for correspondence: y.hwang@imperial.ac.uk
We have recently shown that the coherent structures in the outer region sustain themselves, even in the absence of the motions in the near-wall and logarithmic regions (Hwang & Cossu 2010b; Rawat et al. 2015). The self-sustaining outer structure is composed of two structural elements, a long streak and short quasi-streamwise vortices which respectively correspond to the VLSM and the LSMs (Hwang 2015). The self-sustaining process was also found to be almost identical to that in the near-wall region: 1) the streaky structure (VLSM) is amplified by the vortical structures (LSMs) via the lift-up effect (e.g. Cossu et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a; Willis et al. 2010); 2) the amplified streak undergoes rapid streak meandering motion via secondary instability or transient growth (Park et al. 2011); 3) the following nonlinear regeneration of the streamwise vortical structures (Hwang & Bengana 2016).

The existence of a self-sustaining process at large scale in the outer region is of particular theoretical importance, as it indicates that the outer structures are probably organized around invariant solutions of the system, often referred to as ‘exact coherent structures’ (e.g. Nagata 1990; Waleffe 2001; Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Hall & Sherwin 2010; Park & Graham 2016, and many others). The simplest non-trivial exact solutions of the Navier-Stokes equations are typically in the form of a stationary or travelling wave, being equilibria or relative equilibria in phase space. Together with unstable periodic and/or relative periodic orbits (e.g. Kawahara & Kida 2001), these invariant solutions have been shown to form a skeleton for solution trajectories in phase space (Gibson et al. 2008; Willis et al. 2013, 2016), and their understanding from a dynamical systems viewpoint has been at the heart of recent advancement in the understanding of bypass transition and low-Reynolds-number turbulence.

The goal of the present study is to demonstrate that such invariant solutions are also the driving mathematical mechanism of the large-scale outer structures given with the VLSMs and the LSMs in high-Reynolds-number turbulent channel flow. This task has, however, often been understood to be challenging. The principal difficulty lies in the emergence of a huge number of invariant solutions, which significantly hampers identification of which solutions are most relevant to given coherent structures of interest. Furthermore, the computation of the invariant solutions at such a high Reynolds number is often numerically very sensitive and expensive, yielding a substantial technical barrier. To bypass these difficulties, Rawat et al. (2015, 2016) recently computed a set of coherent invariant solutions at Reynolds numbers up to $Re_\tau = 128$ by modelling all the smaller-scale structures around the structure of interest via large-eddy simulations with the Smagorinsky model. In these studies, the Smagorinsky constant C_s was taken as a continuation parameter to replace the surrounding unsteady smaller-scale motions with an elevated eddy viscosity, as in Hwang & Cossu (2010b, 2011). Here, we extend this approach to a different regime of much higher Reynolds numbers up to $Re_\tau \simeq 1000$, at which the VLSMs and the LSMs energetically emerge in the flow domain, and show that the invariant solutions are directly linked with the formation of the large-scale structures.

2. Numerical method

We consider a turbulent channel, with the half height h, in which x, y and z denote the streamwise, wall-normal and spanwise direction respectively. The two walls are located at $y = 0$ and $y = 2h$. We use a Navier–Stokes solver that is well documented in Bewley (2014). In this solver, the streamwise and spanwise directions are discretised using Fourier series with 2/3 dealiasing rule, whereas the wall-normal direction is discretised using second-order central difference. A set of LESs are considered with the static Smagorinsky model, as in previous studies (e.g. Hwang & Cossu 2010b, 2011; Rawat et al. 2015,
Table 1. Simulation parameters in the present study (before dealiassing). Here, $Re_m = 2U_m h/\nu$ where U_m is the bulk velocity. Note that $U_m = 2/3U_l$ where U_l is the centreline velocity of the corresponding laminar flow with the same volume flux. The simulations tagged with ‘F’ indicate full simulations resolving near-wall motions, while those tagged with ‘S’ are simulations with only self-sustaining outer motions by increasing the Smagorinsky constant C_s.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Re_m</th>
<th>Re_s</th>
<th>L_x/h</th>
<th>L_y/h</th>
<th>L_z/h</th>
<th>$N_x \times N_y \times N_z$</th>
<th>U_c/U_m</th>
<th>C_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>F550</td>
<td>20133</td>
<td>539</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>$32 \times 33 \times 32$</td>
<td>1.15</td>
<td>0.05</td>
</tr>
<tr>
<td>S550</td>
<td>20133</td>
<td>584</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>$32 \times 33 \times 32$</td>
<td>1.13</td>
<td>0.20</td>
</tr>
<tr>
<td>F950</td>
<td>38133</td>
<td>958</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>$48 \times 41 \times 48$</td>
<td>1.13</td>
<td>0.05</td>
</tr>
<tr>
<td>S950</td>
<td>38133</td>
<td>1189</td>
<td>3.0</td>
<td>1.0</td>
<td>1.5</td>
<td>$48 \times 41 \times 48$</td>
<td>1.13</td>
<td>0.30</td>
</tr>
</tbody>
</table>

In the present study, computation of the invariant solutions is restricted to the minimal unit for self-sustaining process of the outer structures in Hwang & Cossu (2010b): i.e. $L_x = 3.0h$ and $L_z = 1.5h$ where L_x and L_z are the streamwise and spanwise domain size, respectively. An important benefit of the minimal unit is that it realises a low-dimensional dynamical set of coherent structures in the form of a VLSM (long outer streak) and LSMs (short outer vortices) without significant distortion of turbulent statistics (Hwang & Cossu 2010b; Rawat 2014; Hwang & Bengana 2016). Given the symmetry of turbulent statistics around the channel midplane, we will also focus on seeking invariant solutions with mirror symmetry about $y = h$. For this purpose, only the bottom half of the channel is solved by imposing the symmetric boundary condition at the channel midplane (i.e. $\partial u/\partial y = 0$, $v = 0$ and $\partial w/\partial y = 0$ at $y = h$ where u, v, and w are the streamwise, wall-normal, and spanwise velocities, respectively). Except for this setting, all the simulation parameters, including the number of grid points, at two Reynolds numbers considered, $Re_m = 20133$ and $Re_m = 38133$, are the same as those in Hwang & Cossu (2010b, 2011), as summarised in table 1. The artificially increased C_s values, by which the small-scale structures are replaced with the eddy viscosity, but not the self-sustaining outer motions, are therefore also the same as those in these works (see the parameters of S550 and S950 simulations in table 1). Finally, it should be noted that the two sets of grid points,
Figure 1. (a) Mean velocity and (b) turbulent velocity fluctuations: ———, half channel simulation with $C_s = 0.05$ (F950); - - - - -, full channel simulation with $C_s = 0.05$ (Hwang & Cossu 2011); ————, DNS at $Re_\tau = 934$ by del Álamo et al. (2004).

respectively for $Re_m = 20133$ and $Re_m = 38133$, in the present study are chosen such that the standard LESs of the present study ensure good resolution for the small-scale near-wall motions (Zang 1991, see also figure 1), as in our previous studies (Hwang & Cossu 2010b, 2011). An examination of the energy spectra reveals that these numbers of grid points are also found to provide good spatial resolution for the computed invariant solutions at least for the elevated C_s. We also note that the resolution of the invariant solution for $Re_m = 38133$ is finer than that in Waleffe (2001).

A reference simulation is first performed to check turbulence statistics of the half-channel LES simulation at $Re_\tau \simeq 950$, with the value $C_s = 0.05$ (F950) known to provide the best statistical fit to the full DNS result (Hwang & Cossu 2010b). In figure 1, its first- and second-order turbulence statistics are compared with those of full channel LES with the same streamwise and spanwise computational domain (Hwang & Cossu 2011) as well as those of DNS by del Álamo et al. (2004) at $Re_\tau = 934$. Overall, the half-channel simulation generates fairly good turbulence statistics compared with those from the full channel LES, which itself shows reasonable agreement with the data from full DNS. The only appreciable difference between the half-channel and full-channel simulations appears in the wall-normal velocity fluctuation very near the channel centre, due to the symmetry condition. This indicates that the half-channel simulation does not lose important physical features, except around the very centre of the channel, where mainly dissipation of structures is expected due to the small shear in this region.

3. The invariant structures

3.1. Computation of invariant solutions

Now, we increase C_s such that the simulation contains only the large-scale self-sustaining structures in the given computational domain ($S550$ and $S950$ simulations in table 1). By doing so, all the structures smaller than the large-scale structures are removed, while their roles are modelled with the artificially elevated eddy viscosity. It is very important to note that the removal with an appropriate increase of C_s does not significantly distort the statistics and the self-sustaining dynamics of the large-scale structures themselves, as extensively discussed in the previous studies (Hwang & Cossu 2010b; Hwang 2015; Rawat et al. 2015; Hwang & Bengana 2016). Therefore, the computed invariant solutions at the artificially elevated C_s would conceptually represent
the structures in the ‘presence of the surrounding small scales’, which is modelled by the eddy viscosity, while enabling us to compute the invariant solutions with the relatively low resolutions at high Reynolds numbers considered. The invariant solutions of the system with the elevated C_s are sought in the subspace satisfying the so-called shift-reflect symmetry

\[[u, v, w, p](x, y, z) = [u, v, -w, p](x - L_x/2, y, -z), \]

(3.1)

where p is the pressure, together with the mirror symmetry about $y = 0$. It should be mentioned that this specific symmetry is intentionally posed to find the invariant solutions containing the ‘sinuous’ mode of streak instability (i.e. streak meandering motions along the streamwise direction). The sinuous mode of streak instability has been consistently found as the dominant mechanism of the streak breakdown in our previous theoretical analysis (Park et al. 2011) as well as the minimal channel simulation for the outer structures (Hwang & Bengana 2016). Indeed, in this study, we have also found that imposing the symmetry (3.1) in the present half-channel simulation with the increased C_s ($S550$ and $S950$) does not engender any significant difference from the simulation without this symmetry (see figure 4). It is worth mentioning that Waleffe (2001) also imposed this symmetry for computation of his invariant solutions for the same reason.

To compute the invariant solutions, we have implemented a Newton-Krylov-Hookstep method and applied it to the present LES solver. Details of the method are given in Willis et al. (2013), which is similar to that proposed by Viswanath (2007). This method computes an invariant solution by minimising the relative error between an initial guess for an initial flow field and the same field time-stepped an interval T and shifted in the streamwise direction a distance $-l_x$. For an equilibrium state the choice of T is arbitrary, and the phase speed of the equilibrium is $c = l_x/T$. Throughout this study, the computation of the invariant solutions is carried out with $T = 16.7h/U_m$. All the solutions are computed to a relative-error tolerance of $10^{-7} - 10^{-8}$ between the initial and shifted end state. Since some of the invariant solutions are expected to sit on the so-called ‘edge’ state, which refers to the phase-space boundary manifold between the basic and the chaotic state (e.g. Skufca et al. 2006), we start by computing the edge state for the $S550$ simulation in the given subspace, using the standard bisection technique to obtain a good initial guess for the Newton iteration (e.g. Duguet et al. 2008; Avila et al. 2013). Several instantaneous flow fields on the edge state are given for initial guess of the Newton solver, and we found an invariant solution propagating downstream with a constant speed (i.e. a travelling wave) from $S550$. Numerical continuation in C_s is subsequently performed, as in Rawat (2014) and Rawat et al. (2015).

Figure 2(a) shows the bifurcation of the invariant solutions with C_s by plotting Re_τ of each of the solutions. Here, we note that Re_τ in this case is given as a measure of the friction of each solution, revealing their relevance to high-Reynolds-number flows: i.e. $Re_\tau = 2u_\tau/U_mRe_m$. Therefore, Re_τ given here is different for each invariant solution and represents their friction. Continuation reveals that the invariant solutions experience a saddle-node bifurcation as C_s is gradually lowered from a large value. Two invariant solutions are found to emerge at the critical $C_s(\approx 0.335)$, as often observed in transitional Reynolds numbers: one has a low drag (lower-branch solution) and the other has a high drag (upper-branch solution). The solutions obtained at $Re_m = 20133$ are further continued to a higher Reynolds number, $Re_m = 38133$. Essentially, the same behaviour with C_s is obtained at this Reynolds number, shown in figure 2(b).
The computed invariant solutions are visualised in figure 3. Both of the upper- and lower-branch solutions are characterized by a ‘wavy’ streak (blue iso-surfaces) and streamwise vortices at its flank (red iso-surfaces), clearly reflecting their tight physical link to the self-sustaining process of the outer coherent structures: i.e. the streak generation via the lift-up effect with the vortices, and sinusuous-mode streak instability with nonlinear feeding of the vortices. The upper branch solution exhibits a strongly wavy streak and intense streamwise vortices, while the lower branch solution is composed of a relatively straight streak and weak streamwise vortices (see the levels of the red iso-surfaces in figure 3). This feature is consistent with that of the invariant solutions in e.g. Waleffe (2001). The invariant solutions here, however, are obtained by modelling the surrounding small-scale structures with an eddy viscosity. The eddy viscosity is typically found to be quite strong around the streak where high local shear is expected (the green iso-surfaces in figure 3), as also found by Rawat et al. (2015, 2016). However, here the related turbulent dissipation is found to dominate over the kinematic viscosity due to the high Reynolds numbers considered — the maximum eddy viscosities of the upper- and the lower-branch solutions are respectively found as $\nu_t = 8.48 \nu$ and $\nu_t = 7.6 \nu$, the values being an order of
Invariant solutions of minimal large-scale structures

Table 2. Scaling of the speed of the invariant solutions. Here, \(c\) and \(U_c\) are the propagating speed and the centreline velocity of each of the traveling wave solution, respectively. In the first column, the \(U\) and the \(L\) respectively indicate the upper- and lower-branch solutions.

<table>
<thead>
<tr>
<th>Case</th>
<th>(Re_m)</th>
<th>(Re_\tau)</th>
<th>(U_c/U_m)</th>
<th>(c/U_m)</th>
<th>(c/U_c)</th>
<th>(c^+)</th>
<th>(C_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U550)</td>
<td>20133</td>
<td>597</td>
<td>1.29</td>
<td>0.86</td>
<td>0.66</td>
<td>14.5</td>
<td>0.20</td>
</tr>
<tr>
<td>(U950)</td>
<td>38133</td>
<td>1229</td>
<td>1.29</td>
<td>0.86</td>
<td>0.67</td>
<td>13.4</td>
<td>0.30</td>
</tr>
<tr>
<td>(L550)</td>
<td>20133</td>
<td>420</td>
<td>1.34</td>
<td>0.84</td>
<td>0.63</td>
<td>20.2</td>
<td>0.20</td>
</tr>
<tr>
<td>(L950)</td>
<td>38133</td>
<td>878</td>
<td>1.32</td>
<td>0.82</td>
<td>0.62</td>
<td>18.0</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The propagating speed and the centreline velocity of each of the traveling wave solution, respectively. In the first column, the \(U\) and the \(L\) respectively indicate the upper- and lower-branch solutions.

The propagating speed \(c\) and the centreline velocity \(U_c\) of the computed invariant solutions with their friction velocity and centreline velocity at \(Re_m = 20133\) and \(Re_m = 38133\). The propagating speeds of the upper- and the lower-branch solutions are respectively found to be \(c \approx 0.66U_c\) and \(c \approx 0.62U_c\), and they scale more closely with their centreline velocity \(U_c\) than with their friction velocity \(u_\tau\). Although the centreline velocity \(U_c\) of each of the invariant solutions is not the same as that from full turbulent statistics given in figure 1, this finding supports the observation by del Álamo & Jiménez (2009); Song et al. (2016), who showed that the advection velocity of the outer structures scales with the centreline velocity. This behaviour is quite intriguing, because the single turn-over time scale of self-sustaining process of outer coherent structures has been found to scale well with the friction velocity \(u_\tau\) (Hwang & Bengana 2016). It is currently too early to make any firm conclusion, but this indicates that the propagation velocity scale of an outer structure might not be the same as the turn-over time scale of the self-sustaining process.

The first- and second-order statistics of the two computed invariant solutions are compared with those of simulation \(S950\) in figure 4. Here, the data of \(S950\) with the shift-reflect symmetry (3.1) are plotted together. The good agreement between the statistics of simulations \(S950\) and \(S950\) with (3.1) suggests that the present minimal unit for the large-scale structures in the shift-reflect subspace does not greatly limit in the generation of good statistics. The statistics of the upper-branch solution \(U950\) is found to show reasonably good agreement with that of \(S950\) roughly below \(y \approx 0.4\) ~ 0.5h, despite the fact that the solution itself is a relative equilibrium, not able to fully describe the chaotic, quasi-periodic dynamics of simulation \(S950\) (i.e. bursting Flores & Jiménez 2010; Hwang & Bengana 2016). We also note that the difference in statistics between an upper-branch solution and full simulation is expected. This level of difference also appears in other works that make the analogous comparison at low Reynolds numbers (e.g. Kerswell & Tutty 2007; Schneider et al. 2007; Park & Graham 2016). As these authors indicate, this observation suggests that computation of unstable time periodic orbits would be a more promising way to represent the dynamics of coherent structures in the \(S950\) simulation (Kawahara & Kida 2001; Gibson et al. 2008; Willis et al. 2013). Also as expected, the statistics of the lower-branch solution \(L950\) do not show such a level of agreement — the lower-branch solution sits on the edge state of \(S950\) simulation. These results indicate that only the upper-branch solution is statistically similar to \(S950\) simulation.

Finally, the invariant solutions and the solution trajectories of \(S950\) and the symmetry-constrained \(S950\) simulations are projected onto the \(E_{\text{streak}}-E_{\text{vor}}\) and the \(I-D\) planes, reported in figure 5. Here, \(E_{\text{streak}}\) and \(E_{\text{vor}}\) respectively represent energy of the streak
Figure 4. The wall-normal profile of (a) mean velocity and (b) streamwise, (c) wall-normal, (d) spanwise velocity fluctuations: , S950; - - - -, the symmetry-constrained S950; , U950; , L950.

Figure 5. Phase portrait in (a) \(E_{\text{streak}}-E_{\text{vor}} \) and (b) \(I-D \) planes at \(Re_m = 38133 \), where \(I_t \) and \(D_t \) indicate the corresponding production and dissipation of laminar flow at the same Reynolds number. Here, red, S950; dashed green, the symmetry-constrained S950; blue, U950; orange, L950.

and of the streamwise vortices, and are defined by \(E_{\text{streak}} = 1/(2V) \int_V (u'/U_m)^2 \, dV \) and \(E_{\text{vor}} = 1/(2V) \int_V (v/U_m)^2 + (w/U_m)^2 \, dy \), where \(u' \) is the streamwise velocity fluctuation. The \(I \) and \(D \) are respectively energy input and dissipation of the system, defined by \(I = -1/V \int_V u \cdot \nabla p \, dV \) and \(D = -1/V \int_V u \cdot (\nabla \cdot (\nu_T/2)(\nabla u + \nabla u^T)) \, dV \) with \(u = (u, v, w) \) and \(\nu_T = \nu + \nu_t \). We note that if \(E \equiv 1/2V \int_V u \cdot u \, dV \), then \(\frac{dE}{dt} = I - D \). In the \(E_{\text{streak}}-E_{\text{vor}} \) plane (figure 5a), solution trajectories for both of S950 and the symmetry-constrained S950 simulation reveal that their \(E_{\text{streak}} \) and \(E_{\text{vor}} \) are found to be slightly negatively correlated, indicating the presence of the self-sustaining process given by the
interaction between the streak and the streamwise vortices. The solution trajectories of these simulations are maintained roughly around 20I_I and 20D_I in the I-D plane (figure 5b), the values an order of magnitude larger than those at low Reynolds numbers (e.g. Kawahara & Kida 2001; Gibson et al. 2008; Willis et al. 2013, 2016). This is essentially due to the high Reynolds number considered in the present study, which leads to the energy input to the system, substantially larger than that at low Reynolds numbers. This indicates that the role of the eddy viscosity introduced here differs from that of the molecular one, as it enables us to maintain the large energy input to the system occurring in a high-Reynolds-number flow unlike the molecular viscosity. In both of the E_{streak}-E_{vor} and the I-D planes, the upper-branch solution U950 is found to be placed in the middle of the turbulent trajectories of S950 and the symmetry-constrained S950 simulations. The lower-branch solution L950 is almost completely separated from the trajectories, consistent with the observation on the first- and the second-order statistics made with figure 4.

3.3. Bifurcation with the Reynolds number

Finally, to understand the connection between the invariant states of the Navier-Stokes equation at transitional Reynolds number and those of this study at fairly high Reynolds numbers, numerical continuation is further performed by gradually lowering the Reynolds number using the computed invariant solutions with high resolution at Re_{\tau} \approx 950 (i.e. U950 and L950). Figure 6 reports bifurcation of the invariant solutions with the Reynolds number. The solutions for C_s = 0.30 reveal a saddle-node bifurcation at a fairly low critical Reynolds number around Re_{m,c} \approx 1693 \sim 1707, (Re_{\tau,c} \approx 71). The Smagorinsky constant C_s is subsequently lowered around this low Re_{m}, such that invariant solutions of the Navier-Stokes equation are retrieved. The exact solutions, directly linked to the large-scale structures in the minimal unit, are found to emerge approximately at Re_{m,c} \approx 1120 (Re_{\tau,c} \approx 52) via saddle-node bifurcation. We note that this Re_{m,c} is much lower than Re_{m,c} \approx 1867 (Re_{\tau,c} \approx 68.2) of the invariant solutions found by Park & Graham (2016) with a similar box size, due to the different symmetry imposed in the present study (their solution P4 with L_x \times L_z = \pi h \times \pi/2h).

The exact solutions of the Navier–Stokes equations (C_s = 0.0) are finally continued by increasing the Reynolds number. While the upper branch solution could not be continued for Re_{m} \gtrsim 2223, the lower branch solution is obtained up to Re_{m} = 8889. Interestingly, the lower-branch solution of the Navier-Stokes equation is found to generate smaller skin friction than those with the elevated eddy viscosity (C_s = 0.30) on increasing the Reynolds number. However, it should be noted that the eddy viscosity used here
is designed to model all the surrounding smaller-scale structures, including the near-wall motions generating an appreciable amount of turbulent skin friction. The difference between the solutions with $C_s = 0.0$ and $C_s = 0.30$ probably originates from this nature of the eddy viscosity.

4. Concluding remarks

Invariant solutions corresponding to large-scale turbulent motions at high Reynolds numbers have been obtained following the approach of Rawat (2014) and Rawat et al. (2015, 2016), where surrounding small-scale structures are modelled with an eddy viscosity (i.e. Smagorinsky model with the artificially elevated C_s as a continuation parameter). Here, we show that these solutions, and in particular the upper branch solution, can be obtained at much higher Reynolds numbers (up to $Re_	au \approx 1000$), a different regime where the large-scale structures in the form of long streaks (VLSMs) and quasi-streamwise vortical structures (LSMs) emerge energetically in turbulent channel flow. This finding suggests that the large-scale structures are probably organised around these invariant solutions, providing direct evidence of their significance at sufficiently high Reynolds numbers. This finding also tightly establishes their relation to the self-sustaining process of the large-scale structures (Hwang & Cossu 2010b; Rawat et al. 2015; Hwang & Bengana 2016), while implying that the dynamical systems approach, plus visualization of the relevant phase space, could be used to enlighten at least some aspects of the given coherent structures at fairly high Reynolds numbers. However, the invariant solutions found here do not fully represent the dynamics occurring in real flows (i.e. bursting, Flores & Jiménez 2010; Hwang & Bengana 2016). In this respect, extending the present approach to computation of the relative periodic orbits would be a fruitful path to follow towards more accurate modelling of the large-scale dynamics (Kawahara & Kida 2001; Willis et al. 2013, 2016). Finally, it should be mentioned that the self-sustaining energy-containing motions in wall-bounded turbulent flows at high Reynolds numbers appear in a self-similar form throughout the entire logarithmic region (Hwang & Cossu 2011; Hwang 2015), as originally hypothesized by Townsend (1976) (i.e. attached eddy hypothesis). Each of the energy-containing motions is typically characterized by its spanwise length scale (Hwang & Cossu 2011; Hwang 2015; Hwang & Bengana 2016), suggesting that the invariant solutions with different spanwise length scales may be linked to these self-similar motions. This also implies that a thorough investigation of the invariant solutions with different sets of the length scales needs to be carried out in order to clarify the relation between the ‘real’ and ‘exact’ coherent structures using a numerical experiment given in the present study. Exploring such a link between the invariant solutions and the concept of the attached eddies might unveil the nature of the self-sustaining coherent structures. This would be an important step towards a consistent theoretical description of wall-bounded shear flows in a wide range of Reynolds numbers, as the attached eddy hypothesis has provided an important theoretical basis for a consistent statistical description of high-Reynolds-number wall turbulence (e.g. Townsend 1976; Perry & Chong 1982).

Acknowledgements

Y.H. was supported by the Engineering and Physical Science Research Council (EPSRC) in the UK (EP/N019342/1).
REFERENCES

PARK, J. S. & GRAHAM, M. D. 2016 Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech. 782, 430–454.

