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Abstract: Driver braking behavior was analyzed using time-series recordings from naturaehstend
conflicts (116 crashes and 241 near-crashes), including events with and without visual distrastgpn am
drivers of cars, heavy trucks, and buses. A simple piecewise linear model could be successfulbefitt
event, to the observed driver decelerations, allowidetailed elucidation of when drivers initiated

braking and how they controlled it. Most notably, it was found that, across vehicle types, driver braking
behavior was strongly dependent on the urgency of the given reateaado’s kinematics, quantified in
terms of visual looming of the lead vehiolethe driver’s retina. In contrast with previous suggestions of
brake reaction times (BRTs) of 1.5 s or more after onset of an unexpected hazard (e.g., bi@kselight

it was found here that braking could be described as typically starting less than a secdmel after t
kinematic urgency reached certain threshold levels, with even faster reattiggiser urgencies. The

rate at which drivers then increased their deceleratiwvads a maximum) was also highly dependent

on urgency. Probability distributions are provided that quantitatively capturevidméses patterns of
kinematics-dependent behavioral response. Possible underlying mechanisms are suggested, including
looming response thresholds and neural evidence accumulation. These accounts agatuttadistic
braking response should not be thought of as a slow reaction to some single, researchéthdefingd
onset, but instead as a relatively fast response to the visual looming cues that build up iat&eon i
evolving traffic scenario.

Keywords: Rear-end crashes, reaction time, kinematics, visual looming, deceleration
1 Introduction

When the driver of a vehicle is suddenly faced with an unexpected, critical risk of collision, how
does he or she respond? If evasive maneuvering is applied, when does it begin? How is it carried out?
Conclusive answers to these questions have been a long-standing objective of traffic safety
research, and have a range of implications: In the design of roads, vehicles, or vehicle support systems for
safety and automation, quantitative models of driver behavior can be very directly applee@mple in
system algorithms or in computer simulations of crashes (e.g., Perel FE®82ro et al. 2000a
MacAdam, 2001; Brannstrom et al., 2010; Markkula, 2015). In the broader study of traffic safety, the way
one thinks about drivers’ emergency responses can also be important in more subtle ways, for example by
shaping design of experiments and subsequent interpretations of results, or by guiding one’s analysis of
actual crashes to understand their causation (e.g., Naing et al. EP@R&6m et al., 2013b), sometimes
for purposes of litigation (e.g., Maddox and Kiefer, 2012).
The driver’s reaction time (RT) is a concept that traffic safety researchers have dipesdede
use of in models, when designing studies, and when analyzing driver behavior close to crashes. The RT
usually represents the time duration from the appearance of a potential hazard, such as a lead vehicle’s
brake lights activating, until the driver under study initiates some form of evasiveseqSmciety of
Automotive Engineers, 2015). Especially for braking responses, there is a considerahleeliterat
measuring brake reaction times (BRTs) and how they are influenced by factors suchragdriv
gender, cognitive load, situation urgency, number of stimuli for the driver to consider, warnings, and so



G. Markkula et al. / Accident Analysis and Prevention (author postyeision)

on (see for example the studies by Barrett et al., 1968; Olson and Sivak, 1986; Fambro et al., 1998;
McGehee et al., 1999; Lee et al., 2002; Jurecki and Stanczyk, 2009, 2014; Fitch et al., 2010; Ljung Aust
et al., 2013; and the reviews by Olson, 1989; Green, 2000; Muttart, 2003, 2005

Greeris much-cited review (2000) aimed to determine typical RT values for different driving
conditions. Expectancy was identified as the major factor determining BRT, with estiraktes of
0.70-0.75 s for fully anticipated events, 1.25 s for unexpected but common events such as brake light
onsets, and 1.5 s for surprise events such as sudden path intrusions. These canonical, situation-
independent, BRT values drew criticism from Summala (2000), who pointed to evidence that BRTs for
highly unexpected events can, if the traffic scenarios in question are sufficiently urgesdisddo 1 s or
lower. Similar dependencies between situation kinematics (the relative motnwoletd road users, in
terms of distances, speeds, ednd BRT have been reviewed by Muttart (2003, 2005) and have also been
demonstrated in more recent test track and driving simulator studies (Jurecki & StanczyR02@09
Engstrom, 2010; Ljung Aust et al., 2013). However, a detailed, large-scale analysi®igstihding,
especially for naturalistic (i.e. real-traffic) emergencies.

As for what happens beyond the point of brake onset, it has been reported from both controlled
and naturalistic studies that drivers will often, but not always, show maximum deceleratisrclese to
their vehicle’s limits on the given road (McGehee et al., 199%ambro et al., 2000b; Lee et al., 2R07
From some controlled studies, there are also reports of progressive or step-wise rampingdspghesar
maximum levels (Prynne and Martin, 19%ambro et al., 2000b; Lee et al., 2002). Again, a detailed,
guantitative account of emergency braking control is lacking, especially for natcicditi

This paper presents time-series analyses of situation kinematics and driver brakingrbehav
observed in naturalistic rear-end crashes and near-crashes, continuing from the work by aictor et
(2015, pp. 76-84). They showed, for one set of naturalistic passenger car data, that when visually
distracted drivers looked back to the road to find a rear-end collision threat, the time deleyttesf
exhibited any discernible physical reaction to the situation was strongly &lilcsrdependent. Here,
these results are extended by including (1) not only driver physical reaction but atdaorsszsured
deceleration behavior, (2) events without any off-road eye glances, and (3) an additional data set of
recorded events that includes truck and bus drivers in addition to car drivers.

It will be described here hodtivers’ deceleration behavior in the studied events varied markedly
with situation kinematics, in certain rather specific manners, across data sets and yedscl8tatistical-
level descriptions of this variability, potentially useful in quantitative appesmto traffic safety, will be
provided. Possible psychological mechanisms behind the observed behaviors will be discussed| and it wi
also be argued that the findings malkeconcept of a “brake reaction time” seem inadequate as a means
for describing and understanding driver behavior in surprise emergencies.

2 Method
2.1 Data sets

The naturalistic events analyzed here came from two different sources: passenger caoavents fr
the Second Strategic Highway Research Program (SHRP 2), and passenger car, heavy truck, and bus
events from the Analysis of Naturalistic External Datasets (ANNEXT) project. Tabtevitigs an
overview of the number of events per data set and vehicle type. In the remainder of this paper, the truck
and bus events will be combined and treated together.
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Table 1. Number of naturalistic rear-end events by data set and subject vehicle type.

SHRP 2 ANNEXT

Passenger car Passenger car Heavy truck Bus Total
Crashes 46 26 28 16 116
Near-crashes 211 11 11 8 241

Within SHRP 2the world’s largest naturalistic driving study to date was carried out, collecting
over 80 million kilometers of driving data from instrumented cars driven by 3147 drivers agrsi$sssi
in the US. As noted above, the present paper describes analyses building on those by Vi(26118) al.
comprising 46 crashes and 211 near-crashes; more specifically all of the critical events inRi2 SHR
database that were categorized as being of rear-end type (Scenarios 22-26 in the taxonomy by Najm and
Smith, 2007) at the time of data extraction (spring of 2014).

ANNEXT was a pilot project between Lytx, Chalmers University of Technology and éBoy
which selected and annotated naturalistic crashes and near-crashes, originally recorded kpakiyof as
a behavior-based safety program for commercial fleets. The present paper uses the 100 reasend event
collected by the ANNEXT projec?7 events from the US and 23 events from Africa (South Africa,
Nigeria, Zambia, and Zimbabwe). These events were selected using the following ¢tiérflee speed
of the subject vehicle should be higher than 15 km/h at the start of the evasive maneuver or the moment of
crash impact (thus excluding minor low-speed crashes), (2) the driver of the subjdetskedidéd not be
wearing sunglasses, and (3) the lead vehicle should remain in the same lane from the beginning of the
event until the crash (thus excluding cut-in events).

For both SHRP 2 and ANNEXT, candidate events were identified using various triggers, such as
acceleration thresholds. In SHRP 2, candidate events were also identified by Automatic Crash
Notification algorithms running in the vehicles, incident button presses by the particidieig, and
reports by the organizations that performed the data collection. In both projects, human videsrsevi
made the final judgment on whether the captured event was a tru¢ @emaglecontacf...] with an object
[...] at any speed in which kinetic energy is measurably transferred or dissigat€ittor et al., 2015, p.

20), a near-crasffany circumstance that requires a rapid, evasive maneuMdghfit approaches the
limits of the vehicle capabilities. As a general guideline, subject vehicle brakirtgrgresn 0.5 g or
steering input that results in a lateral acceleration greater than 0.4 g to avoid a crashesoastpid
maneuver; ibid.), or neither.

For further details on the SHRP 2 and ANNEXT data sets, including driver demographics and
other descriptive variablesee(Victor et al. 2015, pp. 31-40) and (Engstrom et al., 2Dp13b

The data variables used in the present analyses were:

¢ Manually annotated time point of first discernible physical reaction of the subject
vehicle’s driver to the collision threat (“including body movement, posture, a change in
facial expression, a movement of the leg toward the brake”, Victor et al., 2015, p. 27; see
also McGehee and Carsten, 2010, for further insight into these types of physical reactions
to critical traffic events

¢ Manually annotated time-series of the eye glance behatfiibe subject vehicle’s driver,
detailing whether gaze was directed toward the road ahead @isin@tthe “Eyes on
Path” definition on p. 26 of Victor et al., 2015), as well as whether eyes were closed or
open. For the SHRP 2 dataset these annotations were made by two annotators separately
to increase reliability; see (Klauer et al., 2010; p. 18) for more details on the adopted
procedure.

e Manual annotation of the evasive maneuver applied by the subjecicietiriver, here
reduced to the following categories: braking; steering; braking and steering; no sraneuv

o Digitally recorded time-series of subject vehicle longitudinal speed and eati@te
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¢ Manually annotated time-series of the forward-facing video, especially the width of the
lead vehicle in the video images. These width annotations were used to estimate optical
quantities relating to the visual looming of the lead vehicle (Lee, 1976; see atsw furt
below), as well as lead vehicle speed and distance between subject vehicle and lead
vehicle. For details on the data extraction and processing procedures to derive these
measures, see (Bargman et al., 2013) and (Victor et al, 2015, pp).21-29
The SHRP 2 data were available at 10 Hz, and the ANNEXT data at 4 Hz. However, in all
ANNEXT events and some SHRP 2 events the longitudinal speed data were in practice updated only
the 1 Hz provided by the on-board GPS receiver.

2.2 Event time-series data extraction

For the purpose of the present analyses, whigh dapecific focus on the longitudinal
acceleration signal, the start and end points of individual events were defined as follows:

The event start point was set to 6 s before collision (crashes) or 6 s before themimienofmn
time+to-collision (TTC, near-crashes), for events with no off-road glances during this 6 s infenval
events with at least one off-road glance in the same interval, the event start point was saft¢o jhst
last off-road glance before collision/minimum TTC, disregarding any glandeséha judged to be part
of the emergency response itself: Specifically, in 17 events, the last annotated diarece be
collision/minimum TTC occurred after an annotated physical reaction or a cldambyfinble defensive
deceleration these glances were interpreted as being in response to the critical situation (e.g. to check for
escape routes or to brace for impact) rather than being part of causing the situatisesd-events, the
start point was set to just after the next to last off-road glance, or to 6 s lmfisiergminimum TTC if
there were no other off-road glances in that time interval.

For crashes, the event end point, after which no data were included, was set to 0.3 s before
collision in order to exclude any part of the sharp acceleration pulse at impact; forexXANrashes
with 4 Hz data, this meant in practice that the final included data point was 0.5 s befo@ncitisi
near-crashes, the event end point was set to 0.5 s after minimum TTC, since it wakdbdriders
generally maintained their maximum deceleration for at least this long.

A number of events were excluded from analysis altogether, for not matching the scope of the
present analyses: In 11 events, the drivers still had their eyes off the road at collision or niifi@um
sothere was no event start point as defined above, and thus no longitudinal acceleration dataeto analyz
In 13 events, the last instance of the driver not looking at the road ahead was an eye closure rather than an
off-road glance, possibly signaling driver drowsiness, and these were excluded since the aim here was to
address only events with either a clear visual distraction or where the driver’s eyes were on the road for
the full 6 s before collision/min TTC. In one event, the subject vehicle was the struck rather than the
striking vehicle. Nine additional events were excluded due to various problems with the recorded data;
see Appendix A for full details.

These exclusions left a data set of 323 events, with 99 crashes (62 passenger car, 37 truck/bus)
and 224 near-crashes (210 passenger car, 14 truck/bus). Note, however, that many of the various analyses
performed on the data imposed even further requirements on availability of specific recorded signals, etc.
These requirements will be described as the analyses in question are introduced below; ithpamntact
of the various inclusion criteria are detailed in Appendix A.

2.3 Acceleration model fitting

For each event where driver braking had been coded by the annotator, and where there were at
least 0.5 s of data between the event start and end points as defined above, a fitting was made of the
piecewise linear model of acceleration shore 1, to the acceleration data recorded foedhe subj
vehicle. Tke model assumes an initial constant level of acceleration time of brake onsets at which

! Throughout this paper, “brake onset” refers to themodel parameterite. the time at which the subject
vehicle’s driver is estimated to have begun braking. If the brake onset of the lead vehicle is intended, this is instead
referred to as “lead vehicle brake light onset” or similar.
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acceleration starts decreasing linearly with a gafthg jerk), and a final constant level of acceleratipn a
Parameter-fitting was conducted by exhaustively searching a uniformly spaceg g2, -0.195,
..,02 g jse{7,-6.75,...,0 m/s?, & € {-1, -0.95, ..., 0} g, and tg in 0.1 s steps between the start
and end points of the event as defined above. For each event, the model parameterization with the least
total square deviation between model and observation was identified. By definition, this is also the model
parameterization with the largest coefficient of determinatfofiFields, 2009), used here as a measure of
goodness of model fit, again per event:
=1 (Ey — x)?
D=1 (X — x)%’
wherex;, is the observed longitudinal acceleration at time ktéut of a total ok samples in the event),
Xy is the piecewise linear model acceleration at the same time stepjsatiee average observed
acceleration in the event.

If a range of differentsjvalues yielded the samé fr an event, because full deceleration ramp-
up? occurred between two consecutive samplesas chosen as the maximum value in the range (but
these events were not used for studyinitsglf; see Sectidn 3.4). For the 4 Hz ANNEX' (1)
possible that a range ¢f fitted at 10 Hz, all yielded the samé& R these cases was chc
middle point of the intervalsgeethe ANNEXT crash example to the leffin Figule 3).

R?=1-

+++

Acceleration

+++

Time
Figure 1. The piecewise linear model of acceleration (the red line), fitted to some example data points
(the plus signs).

2.4 Analyses of kinematics-dependence

The metric adopted for quantifying situation kinematics was inversetau; 6/ 6, the ratio
between the lead vehicle’s optical expansion raté (“theta-dot™) on the driver’s retina, and its optical size
0 (Lee, 1976). Inverse tau is a visually available estimate of inverse TTC (Lee, 1976), and thus increases
as the potential collision draws nearer. Furthermore, it has often been suggested thatinescse t
similar quantities play an importantle in determining drivers’ responses to obstacles and collision
threats (Lee, 1976iefer et al., 2003, 2005; Fajen, 2005, 2008; Kondoh et al., 2008; 20xtki &
Stanczyk, 2009, 2014

A number of analyses were carried out to test for dependencies between situation kinematics, in
terms ofrl, and various measures of driver behavior. Since the involved data were typically
heteroscedastic (the variance in the driver behavior measure changing)wétlandard linear correlation
and regression methods, maximizirgg Would not allow for statistical testintnstead, Spearman’s non-
parametric rank correlation test was used throughout. For illustration purposes, the apereojnest
and intercepts of the dependencies were also calculatedsositatied robust linear regression, with
reduced sensitivity to outliers, using the MATLAB function robustfit with defaulinggst (The
MathWorks MATLAB Release 2012b).

2 Throughat this paper, the term “deceleration ramp-up” is used to describe the gradual increase of
deceleration towards a positive maximum, whereas the figures show acceldeztieasing to a negative
minimum. The alternative term “acceleration ramp-down” is avoided, since it could be taken to signify a decreasing
positive acceleration.
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For six of the ANNEXT crash events, there was a manual effort to restore missalges in the
last moments before crash, where the needed annotations had not been made because the lead vehicle was
partly outside the forward camera’s field of view. In these events, a cubic spline was fitted to the last five
samples (1.25 s) of availahtg, and extrapolated either one sample ahead (0.25 s, two events), two
samples ahead (0.5 s, three events), or three samples ahead (0.75 s, one event), to obtain antéstimate of
at the end of the driver’s last off-road glance. In practice, these six extrapolations affected only the results
on physical reaction timing (Sectfon B.1 below); for all other analyses the events in ques&on
excluded because they were either less than 0.5 s long, or were not sufficientlyeddiyfithe
acceleration model (see Secfion|3.2).

In addition, exploratory analyses were carried out to test in what ways the results would thange i
instead of using™ to quantify situation kinematics, one used (1) the optical expansioé tafeLamble
et al., 1999; Maddox and Kiefer, 2012), or (2) the quamtity; with v being the longitudinal speed of the
own vehicle (cf. Kiefer et al., 2003, 2005; Fajen, 2005, 2T6&ber and Kesting, 2013; Kusano et al.,
2015).

2.5 Describing the observed behavior with probability distributions

To provide a more detailed description of the observed driver deceleration behpatametric
probability distributions were fitted for the model parameters of the piecewisedieegleration model,
in some cases after appropriate transformatibhese probability distributions can be highly useful in
guantitative approaches to traffic safety, but are not central to the main argumeistpapén.
Therefore, the full method description, and some intermediate results and notes on usage have been
placed in Appendix B.

3 Results

Below, the results reported in Victor et al. (2015) on physical reaction timing in the SHRP 2 da
set will first be reiterated and extended with the ANNEXT data. Next, it will be described textait
the piecewise linear model was able to describe the naturalistic deceleration behavior. Finally, the
obtained model fits will be analyzed with respect to deceleration onset tiglindedeleration ramp-up
(is), and maximum deceleratiomaand summarized by means of probability distributions. When full
details on number of excluded events per inclusion criteria for a figure are not given in tedaex
they are available in Appendix A.

3.1 Timing of drivers’ physical reactions

shows that the general patterns of behavior observed by Victor et al. (2015) in the SHRP
2 data set were also present in the ANNEXT data. In the figgtg denotes the kinematical urgency of
the situation, in terms of the magnitude of visual looming, confronting the drivers when theg ik
to the road after the end of the last off-road glance (ELG). In other fords, Fjgure 2 shows only events in
which there was at least one off-road glance in the last six seconds before collisioniminii@uNote
the rather sharp demarcation at approximatgl = 0.2 <!, separating events into what Victor et al.
(2015) referred to amsyeson-threat and eyes-off-threat events. In the eyes-off-threat events, the lead
vehicle looming had reacheg; = 0.2 st or more by the time drivers looked back to the rdmthese
events, visually discernible physical reactions (such as changes in posture or facialoex@essi
Section 2.} occurred quickly, almost always less than 1 s after ELG, with further decreases with
increasing kinematical urgency. This correlation was statistically signifioabbth car and truck/bus
crash events. In contrast, in eyes-on-threat events {jiith< 0.2 ), physical reactions were much
slower, almost always occurring later than 1 s after ELG, and scattering more or lesslynioioward
6 s (the maximum possible value given how these data were extracted).
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Figure 2. Time from the end of the last off-road glance (Elt&the first observable physical reaction of
the driver to the collision threat, as a functionbft ELG. Black crosses and blue circles in the left
panels show car events from the SHRP 2 and ANNEXT data sets, respectively. Blue squares and
diamonds in the right panels show truck and bus events, respectively. The black dashed limg&show
0.2 s!, separating events defined as eyes-on-threa¢ysbff-threat, respectively. The and p values
were obtained using the Spearman rank correlation method, for the data poinfgiyith0.2 s*. The
red lines are for illustration purposes only, showing the outcome of robust linear myrsskd for
Spearman rank correlations with p < .05, dashed otherwise.

3.2 Acceleration model fits

Driver braking, either alone or in combination with steering, was the annotated evasive maneuver
in 309 of the 323 extracted events (96 %). Steering alone was annotated in four cases (1 %) and ten cases
(3 %) were annotated as complete non-reactions, all of them crashes.

shows that for most events with annotated braking, the observed deceleration data were
closely approximated by the piecewise linear model. ObtaiminglRes of .90 or above for the shortest
fitted data durations of 0.5 s, with very few data points (as mentioned above, events with shorter durations
than 0.5 s were excluded from fitting), is not that impressive, but the scatter plots mFigdicate that
similarly good fits were also obtained when the durations of fitted data were longer, up to the maximum
of 6.5 s. From qualitative inspection of example fits such as those shown in Bigure 3, it was deemed that
when R > .70, which was the case for 282 of the 301 model-fitted events (94 %), all of the fitted model
parametersst jg, and a said something meaningful about the observed driver behavior. Consequently,
only these events were included in the analyses described below (again, see Appendix A for a complete
overview of the inclusion/exclusion process). The exact value of ttuistRff is not crucial; a sensitivity
analysis showed that changing it to e.§>RR0 did not alter any of the conclusions of this paper.
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Figure 3. Outcome of fitting the acceleration model to the naturalistic data, in events where driver
braking had been annotated. The two panels in the middle illustrate the variation in the duratien bet
event start and end points (as defined in the text) as well as the goodness2pbfit{® model when

fitted to each event separately. Symbols fs in Figure 2. The dashed line ko ® Three events

with model R < -0.1 are not visible (1 SHRP 2 event, 1 truck event, 1 bus event; note that nefjative R
values can occur here if the best-fitting model is a constant that, because of the gridtiagrotethod,
does not quite match the observed average deceleration in the event). The surrounding plots show
example events, with time in seconds on the x axis, acceleration’iomtfee y axis, black plus signs for
the observed data, and red lines for the fitted models.

For those events which the model did not fit so well, this generally seemed to be due to one of the
following reasons: (1) the driver letting go of the brakes before the minimum TT@aasd in a near-
crash (bottom left example[in Figurk 3)) &2ypical acceleration patterns due to rapid pedal movements
or possible sensor limitations (bottom center examplgg)dhe acceleration signal showed no signs of
driver braking, despite its having been coded by the annotator (bottom right example).

In a number of events, on both sides of thewR-off, there were signs of step-wise deceleration
ramp-up (bottom center, top left, and top right examples).

3.3 Deceleration onset timing

shows an analysis very similar to that shofvn in Fidure 2, but instead of time from ELG
to physical reaction, it shows time from ELG to actual brake onset, as estimatedgyydtanteter in the
fitted acceleration models. In addition to the events excluded by the/®criterion mentioned above,
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13 events in whichstwas fitted to the very first sample in the event were also excluded here, since it was
not clear from such a fit whether deceleration ramp-up really started at that point,areaelg ongoing
since previously.

Car crashes Truck/bus crashes
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Figure 4. Time from the end of the last affad glance (ELG) until brake onset, as a function of t* at
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Interestingly, except for the correlation for truck/bus crashesagith > 0.2 s* becoming non-
significant due to the lower number of included events, and the opposite occurring for the car near-
crashes, all of the general patterns of behavior s¢en in Figure 2 pérsist in Figure #nilEitysi
suggests a close correspondence between the drivers’ physical reactions and their actual brake
applications. Indeed, as showfi in Figufe 5, out of the 192 events for which both physical reaction and
brake onset could be analyzed (all of the evelfits in Fidure 4 except three events where no gamtiical r
had been annotated), brake onset occurred within = 0.5 s of the physical reaction in 176 (92 %) of cases.
Given that the correlation betweegy; and time to response for car near-crashes was significant for
brake onset (Figure 4) but only marginally significant for physical reactions (Rgutecould be
suspected that the relationship between physical reactions and brake onset might be fesshesar
events. However, the distribution shown in Figure 5 stays virtually identical if including only car nea
crashes.
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n =192; median = 0.00 s; mean = -0.08 s
70 M

i
0 =] r OMe rem M

-3 -2 -1 0 1 2

Timing of brake onset relative to physical reaction (s)
Figure5. Time of brake onset relative to the time of driver physical reaction, with positiwesval
indicating that brake onset occurred after the physical reaction.

shows the same data 4s in Figlire 4, but with time of reaction on the y axis now
measured relative to the point in tingg when the driver first saw looming of magnitude t> 0.2 s’.
Note that for eyes-off-threat events, this point in time coincides exactly with the dralaét glance, so
for these evenls Figuré 4 4nd Figufe 6 are identical. Also agure 6 are the events witifbut any
road glances, which can be sensibly graphed here, but could not in Biglire 2 or Figure 4 sinesothe tim
reaction in those figures is relative to the last glance. Of the 142 eyes-off-treet igvFigure |6, brake
onset came within one second afterih 141 cases (99 %), and the average was 0.42 seaftEot the
122 eyes-on-threat events, brake onset came within one seconghaft@&0t cases (66 %); brake onset
came beforepk in 20 cases (16 %), and more than one second after it in the remaining 22 cases (18 %).
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Figure 6. Brake onset timing relative to situation kinematics. The dfta in Figure 4 is repeated here, but
offset so that time is counted fropy,tthe first time the driver saw 11> 0.2 s!, i.e., the y axis shows the

time from b, to brake onset (which can be negata@the term “reaction time” does not work well here).

Also included here are the events without any off-road glance (with slight random scatter alongghe x axi
for legibility). The red traces indicate the duration of the kehicle’s last brake light activation, for

events where there was at least one brake light onset while the driver had the eyes on the road. The gray
dots show estimated times of non-reaction collisions, i.e. when collision would have occurred had the
driver not braked at all, for those events where such an estimation was feasible.

also shows the estimated times at which collision would have occurred had the subject
vehicle driver not applied emergency braking, instead maintaining the constant accedgtientime
ts. Note that these times of non-reaction collision could not be estimated in some cases where lead
vehicle annotations were lacking toward the end of the event (see Appendix B.1 for further details).

Of the 264 events the lead vehicle’s brake lights were active throughout the entire
event in 155 cases (59 %). For the 90 events (34 %) where there was at least one brake light onset during
the event, a red, vertical trace has been added, extending down to the point in time when the last brake
light onset occurrefl. Figurg 7 provides another view of these 90 events, in the form of distritiutions o
brake onset timing relative to brake light onset and situation kinematics, respectivieéyrémaining 19
events (7 %), the lead vehicle brake lights were off throughout.

11
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Std. dev. 1.10 s
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Figure 7. Distributions of brake onset timing relative to lead vehicle brake light onsetdtopyelative

to to., the first time the driver sawrdof at least 0.2°5(bottom). Note that in both panels the x axes have
the same scale, so the variability can be compared visually even though the points from which time is
counted (the zeros on the x axes) differ between the panels.

3.4 Deceleration ramp-up

shows that deceleration ramp-up was faster when the situation at brake onset was more
urgent, i.e.the fittedsjvalues were more negative at higher values;6f the inverse tau at brake onset
(i.e., at timed). This correlation was statistically significant in all four data subsets excepefor
truck/bus near-crashes. The included events are the sanfe as in Figure 6, but with the added requirement
(see Appendix A) of having at least one intermediate sample of data between the last sample with
acceleration @and the first one with;aotherwise jerk fitting is not reliable since a rangezofglues will
all fit the data equally well.

12
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Figure 8. Brake jerk as a function of ! at the timewhen the subject vehicle’s driver started braking.
Symbols and regression lines as in previous figures. Three data points are not visible in the plats: one ¢
crash withrg! =-0.02 s' (js = -0.25 m/$), and one truck/bus crash and one car near-crash withrigtge
values of 2.49-5and 7.26§, respectively § values of -4.25 mfsand -3.50 mA.

3.5 Maximum deceleration

shows that if there were any correlations between situation kinematics at the time when
the driver started ramping up deceleratigf'}, and the subsequent maximum deceleratipthan for
crashes these were weakdliose to zero) and not statistically significant. For near-crashes, these
correlations were stronger, reaching statistical significance for the car data. Again,utiedretents
here are the same events 4s in Figlire 6, but now with the added requirement itlateawawas fitted
as starting at least one sample before the end of the extracted event, to exclude cases wherendecelerat
ramp-up might not have been completed (again, see Appendix A).
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Figure 9. Maximum deceleradn as a function of t* at the timewhen the subject vehicle’s driver started
braking. Symbols and regression lines as in previous figures. Two data points are not visépgatst
one car crash withg* =-0.02 s* (a1 = -5.40 m/$), and one car near-crash with! = 7.26 s (a; = -7.36
m/s?).

3.6  Probability distributions describing the observed deceleration behavior

Above, various patterns of behavioral variability across kinematical situations have been
described. Figure 10 provides a quantitative description of this variability, in the formbaibiity
distributions for deceleration onset timing, deceleration ramp-up, and maximum deceleraiione
cases using transformed quantities, introduced below.

Deceleration onset timing is describefl in Figurk 10 in terms of the dimensionless/quantit
defined as follows:

e = tg — lo.2
B—5 .,
tc — toz

wheretg is the time of deceleration onsgg; is the time at which the driver first sees v ) |
exceeding ! = 0.2 s™! as mentioned above, angdthe time at which a non-braking dr . ve
collided. In other wordsz — t, is the time to brake ons@tther than a “brake reaction time”) from

to2, andag = 0 for a brake onset exactly @t,, andag = 1 for a brake onset exactly at collision. The
motivation behind this mathematical transformation is that brake onset timing wri@duth averages

and standard deviations) scales roughly with time left to collis@sthe gray dots 6

spread higher up above the x axjg,{, so do the black crossasg)— makingag largely kinematics-
independent. In Appendix B, the interested reader can verify that the transformation in Eqdiation (2
indeed does cause most traces of kinematics-depentbetisappear. The only major dependence left to
consider is that among eye-threat events the deceleration onsets always occurtgftesuch that

ag > 0, and not before it, whereas in eyes-on-threat events negatean also occur. Therefore, as

shown i Figurel0] separate probability distributions were fitted for these two classes of event; a normal
distribution for eyes-on-threat, and a log-normal one for eyes-off-threat. It should behadteddould

only be estimated for a small number of truck/bus events (11 and 6, for eyes-on-threat axfiictleress-

14
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events, respectively), so the truck/lysdistributions are shown here mainly for completeness, rather
than for them to necessarily be used in applications.
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Figure 10. Observed distributions (blue bars) of brake onset timindorake jerk gairkg, and maximum
deceleratiora,, as well as maximume-likelihood fits of probability distributions for the same igieant
(black lines) Events where drivers were annotated as non-braking are also included, graphed at
1.25 but fitted asxg > 1. For full details, see Appendix B.

Deceleration ramp-up variability is captured by introducing the very simplest tyipeaf |

dependency that one might suggest basgd on Figure 8:
Jg = ksTg",

wherekg is thus a linear gain which translates inverse tau at brake onset into the trakeAeain.
refer to Appendix B to see that this géinis only weakly kinematics-dependent, ifata [ (3) Jre
it can be seen that its distribution is well describesl@g-normal one, mirrored to the . le
of the number line.

The quantity adopted for describing maximum deceleration is thesaused above in the text,
fitted to crash events only. Again, see Appendix B for details.

3.7 Aternative measures of kinematical urgency

During the approach up to a potential rear-end colligioh, v/z, andd all behave similarly; all
increase faster as the impact draws nearer (assuming constant speeds; *, and while there is still
some time left to the collision* ~ 1/TTC andd o« 1/TTC?), and all three measures become bounded
close to the impact (siné&cannot grow arbitrarily large). Indeed, the results presented above in this
paper were all found to be largely unaffected by the choice of kinematical measure, however with some
caveats fow/z.

The clear cut-off between eyes-on-threat and eyes-off-threat type reasts@es in Figures 2
and 4 (forr™! =~ 0.2 s71), was observable also @t~ 0.02 rad s~! andv/T ~ 2 m/s?, with most eyes-
on-threat reactions again occurring within a second after these thresholdseHdamy/t this cut-off
was somewhat less clear (more fast reactions below the threshold and slow reactions albovieit)ie
other measures, and the spread in time of reactions around the threshold was also[widerdd}; the
standard deviation of 0.77 s in the lower panel changes to 0.83 &, witll to 0.98 s witlr/7). The
pattern of decreasing times to reactions for increasing severity in eyes-offeWeats (Figure 4) was
also present for all measures, but was not statistically significanyfoiT he results on deceleration
control (Figures 8 and 9) were similar across all three measures, althodghdgg regression line had
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amore pronounced non-zero intercept of about £ (algygesting a constant term in theounterpart to
Equation 3), and for /7 this intercept seemed to differ somewhat between event types.

4  Discussion

The present analyses have provided several novel insights into driver braking behavior in
emergency situations. One important finding is that drivers who returned their ey glae forward
direction at some point before the crash almost always applied their brakes in responsallisidime ¢
threat (96 % of all events, 90 % if considering only crashes). Previously, based onatistitsdtom
police reports, it has been proposed that it is fairly common for crash-involved drivers tempt any
evasive maneuver at all (Wiacek and Najm, 1999; Kusano and Gabler, 2012). The present results suggest
that, at least for rear-end conflicts, these reports of non-maneuvering might beahtgibot so much to
drivers being highly unresponsive to collision threats, but rather to inopportune off-roagsdksting
all the way up to the collision itself, and possibly also to methodological difficulties ectigrr
identifying some late or moderate braking attempts after the fact, without the typelletidetee-series
data records that have been used here.

The most important new finding in this paper is that deceleration behavior was highhakasem
dependent. The observed rich diversity of behavior across different kinematical situatieadysot at
all captured by the type of situation-independent probability distributions for BRT ajedt maximum
deceleration frequently assumed in previous work, including by the present authors thenmsehes (s
literature review by Markkula et al. 2012, as well as more recent examples by Van Auken et al., 2011
Kusano and Gabler, 2012; Markkula, 2013; Bargman et al., 2015; van Noort et al., 2015) kssimgter
to consider what psycho-motor mechanisms might produce these behavioral phenomena. Before doing so,
however, a more methodologically oriented discussion is needed.

4.1 Can selection bias explain the observed patterns of brake timing?

One concern that can be raised regarding the data sets used here is that they only included crashes
and near-crashes, and not any less severe events. Especially with respect to the eyesventisieate
might ask whether the observed driver reactions, generally occurring only after visuimgdad
reached levels of about® = 0.2 s™1, and at higherz?! values than are typical for routine drigin
(Kiefer et al., 2003, 2005; Kusano et al., 2015), might not be due to a type of selection bias: Perhaps,
there were many drivers who reacted earlier in similar situations, but who were, becauséasighe
reactions, able to avoid the collision with sufficiently non-severe maneuvering that thdidw&niven
register as a near-crash, thus excluding themselves from the present analyses?

It should be acknowledged that this type of phenomenon may well to some extent be biasing the
distributions of driver behavior observed here, putting more emphasis on behaviors that are maoe likel
result in near-crashes and crashes. However, at least two arguments can be made itypbyotibias
is not likely to be the main generator behind the observed kinematics-dependencies.

First, it should be noted that while selection bias could conceivably account for theysifarcit
reactions below! = 0.2 &\, it is less clear how it could explain that most reactions seem to happen
shortly after this threshold. If the reactions observed here are merely the tail end of some more
conventional BRT distribution, then why do these tail end reactions fall off so sharply soart af@@

s* in[Figure ?

Second, the reaction timing patterns observed here can actually be used to predict the BRT results
from previous controlled studies, where the discussed type of selection bias is guaranteed ta.be absen
shows, on the x axis, the observed average BRT in four different driving simulator afiudies,
using the same general type of rear-end scenario (a passenger car overtakes, then brakes unexpectedly
while the driver has his/her eyes on the road ahead), but with different parameter setitimgs of
speeds, time headways, and lead vehicle decelerations; see Appendix C for‘l’diret
shows the corresponding BRT predictions using the eyes-on+fardatribution|(Figure 1P). As can
be seen, tis reaction timing model, derived to capture the kinematics-dependencies in the naturalist
data, explains 73 % of the variability in average BRT from the controlled studies. This fndigests

16



G. Markkula et al. / Accident Analysis and Prevention (author postyeision)

that BRTs are affected similarly by kinematics in the naturalistic and controlledetigtavkich, in turn,
provides a strong argument that the kinematics-dependencies observed in the naturalstoata
merely artifacts arising from selection bias. These re-analyses of previous @irstudy data are
pursued in more detail in (Engstrom and Markkula, in prep.).

w

Ljung Aust et al. (2013)
Markkula et al. (2013) X

X %

Engstrém et al. (2010)

N

X

| Nilsson etal. (in prep.)

Predicted average BRT (s)

R?=0.73

0O 1 2 3 4

Observed average BRT (s)
Figure 11. Comparisons of average brake reaction time (BétEerved in four different simulator
studiesto the average BRTs that one would predict based on the naturalistic kinematics-dependencies
presented in this paper.

4.2 Possible mechanisms underlying the observed behavior

4.2.1 Deceleration timing from reactions to lead vehicle brake lights?

If the observed patterns of deceleration timing are not artifacts, what causes them? One common
assumption in the driver behavior literature is that drivers will generalty,rafter some BRT, to the
sight of lead vehicle brake lights (Liebermann et al., 1995; Shinar et al., 1997; Smith et alS£00&C
and Beltowska, 2008; Ratcliff and Strayer, 2013). However, such an account is not very helpful for
explaining the present observations.

To begin with, brake lights clearly cannot help explain the patterns of variabilitake bnset
timing for that majority of events in which the lead vehicle brake lights were eittige throughout the
entirety of the subject vehicle driver’s last forward glance (59 %), or not active at all (7 %). Furthermore,
as illustrated in Figures 6 and 7, among the remaining minority of events (34 %) in whiatnoore o
brake light onsets occurred during the last forward glance, the subject dehiet&s own brake onset
more often than not occurred more than a second later than the last brake light onset, and even up to five
or six seconds later. With time differences of, say, three seconds or longer, it seems quedtitaiklue t
the drivers’ braking as being in reaction to the brake lights. For intermediate time differences, of one to
two seconds, the situation is more ambiguous, and we will return to this type of situatien hetow.

4.2.2 Deceleration timing from looming thresholds?

Overall, a much more powerful explanation for the present observations can be obtained from
response threshold models of brake timing, which postulate that drivers initiate braking oncessame v
cue, for example ™1, reaches a certain threshold value (Lee, 1976; Kiefer et al, 2003,R2a0B8 et al.,

2004; Fajen, 2005, 2008; Wada et al., 2009; Treiber et al., 2013). Previously, such models have mainly
been studied in the context of routine driving, but the results presented here, for expnuplecig Fi
suggest that a threshold-based model also works very well for describing behavior in seapesel
emergencies: In eyes-on-threat events, few drivers responded before visual loomingrehehed
0.2s~* (orf = 0.02 rad/s, orv/T = 2 m/s?), and most drivers responded within a second after
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reaching this thresholdin eyes-off-threat events, where the driver looked back to the road with this
threshold already being surpassed, the times to response were even shorter, averaging at 0.42 s.

It is interesting to note that the speed-dependent quarftitgeemed less useful for predicting
time of brake onset tharr® or 6. It is well established that something like a threshola anmight be
determining brake onset timing in routine driving (Kiefer et al., 2003, 2005; Treiber et al. K2&H3i0
et al., 2015), which makes sense given that, at least for stationary obstacles, be used to estimate
the deceleration required to avoid collision (Fajen, 2005). However, the present results testajyety
that in critical situations, drivers do not factor in their own speed into their brakiisjotec

In addition to response thresholds, a related but different type of threshold often disttiseed i
literature is the looming detection threshold, the minimum threshold at which a driveratizshetect
visual looming, most often measured in term$.dfinder controlled circumstances, with expected
looming stimuli, one typically finds this threshold to be around 0.003 rad/s (Lamble et al., 1999), but
has been suggested that, for unexpected collision threats in naturalistic conditiornts, iismigs high as
0.02 or 0.03 rad/s (Maddox and Kiefer, 2012), similar to the 0.02 #atlisoff observed here. Whether
one prefers to think of this cut-off as a detection threshold, at which drivers startipgrites threat, or
a response threshold, at which they start responding to it, comes down to how one thinks about the
underlying psychological and biological mechanisms.

Indeed, the lack of any underlying theory can be seen as a general limitation of thesedthreshol
models. Thresholds can roughly fit the average brake onsets observed here, but why at these specific
levels? If what is at play here is a detection threshold, why is it higher in these rnatsalfgise
situations than in the laboratory? Similarly, if what is being observeddre effect of a response
threshold, why do the responses occur at high&lower TTC), on average, in these surprise
emergencies than typical values for routine driving behavior? (Kiefer et al., 2003 K2@@50 et al.,
2015 Furthermore, beyond average behavior, the threshold models neither capture nor explain the
observed variability in behavior: Why do eyes-on-threat brake onsets differ so bhatelyen events?
And why do eyes-off-threat responses occur faster with increasing kinematical urg&heiesxt
section introduces a type of model which provides tentative answers to all of these questions.

4.2.3 Deceleration timing from accumulation of looming evidence?

From laboratory experiments in psychology and neuroscience, there is wide support for the
hypothesis that stimulus-driven action timing is determined by noisy accumulation of sensargesvide
up to a threshold at which the action occurs (Gold and Shadlen, 2007; Purcell et al., 2010; Ratcliff and
Van Dongen, 2011). Markkula (2014) adopted this general idea in a framework for driver control
modeling, angroposed that drivers’ decisions to apply deceleration are based on the accumulation of
various types of stimuli, includingbut not limited to- visual looming. As schematically illustrated in
[Figure 12, there can also be other, anticipatory perceptual cues providing evidence dhleeudssible
need for deceleration (such as lead vehicle brake lights or an upcoming intersectionpstitgaeed
for decelerationsfich as a lead vehicle’s turn indicator signaling a lane change, or an upcoming traffic

light shifting from red to greer). Figure]12 provides a schematic illustration.

3 Furthermore, and interestingly, even better fits for the simulator datalysiarin Figurell|can be
obtained with @ threshold model, somewhat modified compared to what is predicted by thalistitudata
studied here (Engstrom and Markkula, in prep.).
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Figure 12. An evidence accumulation account of brake timing. The rate of change of a quantity A
depends on various sources of evidence for or against the need of braking, and braking is initiated once A
exceeds a threshold. (Adapted from Markkula, 2014.)

First of all, note that according to this type of account, something like a lead vehladight
certainly can trigger a driver braking response. If there are other anticipatorhauesriverge to signal
a probable need for deceleratiesuch as may often be the case in routine driviadgrake light onset
could be precisely what pushes the accumulator above its threshold. However, as discussed above, in the
near-crashes and crashes studied here, this seems not to have been the case in general.
[Figure 13 illustrates how the evidence accumulation model proposed by Markkula (2014)
describes the response process in a rear-end situation, in which a brake light onsetiggenadt &n
immediate braking response. First, consider panel (a), and note how visual looming grenes fitnst
collision draws nearer. The time axis in the figure has been divided into three appretagateof
approach.
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Figure 13. A visualization of the process of responding to a braking lead vehicle, as suggested by the
evidence accumulation account of Markkula (2014). In the depicted hypothetical situations, lead vehicle
brake light onset in itself was not enough to trigger a driver response. Compared to panel (&) panel (
shows a situation where the potential collision comes sooner after brake light onset, due, for &xample,
shorter initial headway, or a stronger lead vehicle deceleration.

A driver who looks back toward the road in the first stage, or does not look away from the road at
all, will nevertheless not react at all during this stage, because looming cuel ta@ wtak to trigger
any evidence accumulation. Instead, the driver may react during the second stage, but if so with a larg
variability between drivers and events since the sigmabise ratio, of the still weak looming sensory
input versus natural fluctuations in neural activity, is still rather low.SHmee is true for a driver who
looks back toward the road ahead during the second stage itself. However, if the driver does not react
during the second stage, or looks back toward the road only in the third and final stage of approach, where
the large looming cues accumulate quickly, reactions will occur without much further delay, and even
faster when the collision is more imminent.

In other words, this type of account provides a coherent explanation for the patterns of reaction
timing shown in Figures 2, 4, and 6 of this paper, both in terms of the roughly threshold-like average
onsets and the kinematics-dependent variability, larger for longer tifh&s dellision.

Note that thelriver’s effective responsiveness to looming, illustratefl in Figurk 13 by the color
gradient in the y direction, is assumed to depend on a number of factors. These factors inclualecgxpect
(i.e., anticipatory cues, €f. Figure]|12), driver states such as drowsiness (seédRatdliéin Dongen,
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2011), driving style (such as aggressiveness), and visibility conditions. #gpensiveness gradient is
moved vertically (for example, upwards to signify reduced responsiveness, perhaps beealigzdf
expectancy), the transitions between the three stages of approach will move horizontallyafimethe s
example, rightwards to yield later reactions). Specifically, the results presenteddggstshat in many
of the recorded events, the driver- and situation-dependent responsiveness to looming thas thach
approximate transition between slow and fast accumulation, and thus between the second and third stages
of approach, occurred at arouridt = 0.2 s~ (or, roughly equivalentlyd = 0.02 rad/s; cf. Section
Error! Reference source not found.). Furthermore, note that with different kinematics, for example in a
higher-urgency situation such as depicted in panel [b) of Figlire 13, the progression of approach stages
will be different, with associated effects on response timing. Thus, the evidence accumotation ean
explain the dependencies of reaction timing both on expectancy, as stressed by Gre&ra(Do0)
situation urgency, as stressed by Summala (2000).

Beyond evidence accumulatiampother mechanism that could be invoked to help explain the
very fast brake responses in eyes-off-threat situations, is the perception of ldothiegisual periphery
(Lamble et al., 1999). Such looming perception could allow drivers to initiate evidence aatiomahd
foot movements even before shifting eye gaze to the road ahead. To fully enable this typesisf anal
more exact data on gaze targets than the present manual annotations would be desirable (something which
would of course also strengthen the overall analyses presented here).

4.2.4 Deceleration ramp-up from repeated expectation violations?
The modeling framework by Markkula (2014) might also provide some insight regarding the

present results on emergency deceleration control. Notably, a braking model simul@dankikula,
2014) predicted the same type of roughly linear ramp-up to a constant maximum that has been observed
here. According to that model, this behavior arises because drivers apply intermittergdutak
adjustments, with magnitudes that scale with how much the visual looming deviatesdrmmning the
driver is expecting to see. Such a strategy can be well adapted to routine driving withouatrihecess
generalizing well to more severe situations, in which visual looming will ngbiésa in response to
braking. This violation of the driver’s expectations leads, in the model, to further brake pedal depressions,
and the roughly linear type of ramp-up observed here, with larger jerks for more sexsiensit(cf.

[Figure §).

4.2.5 Maximum decelerations from threat being averted and driver/vehidtedim

With regards to the maximum attained deceleration levels, many closed-loop models of driver
braking (see e.g. the review by Markkula et al., 20@®uld predict the type of maximum deceleration
plateas that have been observed here. According to these models, in a near-crash this plateau would
occur because the collision threat had been averted, and naturalgrg@r maximum decelerations in
more urgent situations. This type of model can therefore explain the observed increases in maximum
deceleration with increased kinematical urgency in near—crgure 9, bottom parie’: 0.3,
statistically significant for the car data). The lack of a similar correlatiothe crash dat (Figurg 9, top
panels; £~ 0— 0.1, non-significant) could be explained by the possibility that the maximum deceleration
plateau occugd for another reason in these events: the reaching of some maximum allowable
deceleration, dictated either by the driver or by the vehicle on the given road surface.

4 Interestingly, but so far only anecdotally: For those eyethreat events where brake onset occurred very
late, i.e., a long time after* = 0.2 s™1, the video recordings often show situations where normal traffic
expectations are severely violated, for example a slower lead vehicle signd¢iagetthe motorway but then
instead staying in lane and stopgior a lead vehicle stopped on a ramp from which the subject vehicleidriver
trying to merge onto a motorway. In the terms of the evidence accumuwdationnt, the turn indicator and the
context of being in a merging situation, respectively, provide strongmsgdagainst the decision to brake, making
the following driver highly nonesponsive to the lead vehicle’s looming.
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4.3 The brake reaction time concept

The presented empirical data, as well as the possible underlying mechanisms proposed to explain
them, all suggest that it is inadequate to think in terms of BRTs when consideringesarpergencies.
Traditionally, BRT has been thought of as mainly a property of the driver, relating to ¢hi¢ tékes for
the brain to process perceptual information and trigger a motor response producing a pedarlepyessi
contrast, the present results point to the need to consider emergency braking reactions as strongly
determined by the environmental context, more specifically the evolving situation kineamatiesual
looming. This finding indicates that in the general case, there may not be any well-defined; disamet
which the driver can be said to be reacting to.

In effect, what has been said here suggests a new type of interpretation of the typical BRT values
reported in the literature for surprise emergencies, such as Green’s (2000) 1.5 seconds: Raher than driver
braking in these events being slow reactions to some researcher-dafined onset”, such as brake
lights coming on, these reactions may be better thought of as rather fast responsesual ttreming
cues that build up later on. Under this interpretation, BRT values observed undesesemprgency
conditions mainly measure how quickly the critical traffic scenario under study develope aftimthe
“hazard onset”. This point is nicely illustrated by the driving simulator results sho{figure 13(to be
further elaborated in Engstrom and Markkula, in prigp)vhich the average BRTs for the same basic
scenario vary between 1 and 3 seconds depending only on how kinematically urgent the scenario is tuned
to be.

Also Green (2009) has pointed out, with reference to Fajen and Devaney (2006), that it is not
always clear at what point an upcoming potential obstacle becomes a hazard that the drivesfascto re
to. The results presented here suggest that this ambiguity is present not just in some ahoaspscbut
rather that it is an inherent property of any rear-end conflict.

In sum, it is generally not clear when to set the BRT stopwatch runrongake matters worse,
the kinematics-dependency in deceleration ramp-up observefl here (Figure 8) also makes it somewhat
unclear exactly when to stop the BRT measurement. Much of the literature on BRT focuseiypoin
the timing of brake onset, and disregards the subsequent braking control (perhaps because of a taci
assumption that ramp-up is always fast). However, if a maximum decelerationeactotd until after
two seconds or more, when should one judge braking to have really started? This ambiguity may be more
of a practical concern than a conceptual one, but it can nevertheless hamper the irdarpretatioss-
study comparison of BRT values.

Note that the problem of undefined start and end points for the BRT inteesecially
pronounced in the eyes-on-threat type of rear-end conflicts, where the driver looksl fehitarvisual
looming starts increasing. In the eyes-off-threat events studied here, especiallyithaggwvell
above 0.23 it seems more sensible to speak of a BRT, from the end of the last glance until the start of
deceleration ramp-up (which also tends to be rather sharp at the correspondieglyfarHowever,
these BRTs, typically well below 1 s in duration, were nevertheless kinematics-datshdeter for
more urgent situations), and again, the closer one gefgdc= 0.2 <!, the more ambiguous the BRT
measurement starts to seem.

4.4 Passenger cars versus trucks and buses

Interestingly, the general patterns of braking behavior were very similar betweers dx
passenger cars and heavier, commercial vehicles. The main difference was that heavy vehiclwdsaking
slower in ramp-up, and reached lower final magnitudes (see, for example, Figure 10).Mhiiwith
existing data on braking performance (Heusser, 1991, Dunn et al), E®&8 though modern trucks and
buses can, in theory and under optimal circumstances, be capable of braking magnitudeo#wht appr
those of passenger caastual heavy vehicle braking capability depends markedly on brake maintenance
(Radlinski, 1982) as well as on the type of heavy vehicle (Dunn et al., 2012). Anotherdaciositler is
that heavy vehicle drivers may wish to avoid large accelerations, due to passengers who majgele unbel
trailers risking jack-knifing, fragile goods, etc.
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It should also be noted that while passenger car data were available both at 4 Hz and 10 Hz, heavy
vehicle data were available only at the lower sample rate, something which made the inclusion criteria
adopted here leave rather few heavy vehicle events for some analyses.

5 Conclusions

The model-based analyses of naturalistic rear-end near-crashes and crashes presented here have
provided a number of novel insights into driver emergency braking: (1) Drivers who looked toward the
collision threat before impact did, with few exceptions, initiate defensive braking. (2) Bnalkt almost
always occurred within £0.5 s of a visually discernible physical reaction by the driver tdligierco
threat. (3) Crucially, brake onset timing defied description in terms of a single valu&ibutdmn of
BRT: Responses were very fast when drivers looked back to the road late in the situation (brake onset on
average 0.42 s after last glance in eyes-off-threat events), but in events where the driverdratheyes
arising threat, times to brake onset from the last off-road glance or lead vehicle braletiigition were
long and highly variablg4) Regardless of eye glance behavior, brake onsets could instead be better
understood as coming in response to the developing situation kinematics, probably mediated by visual
looming: Brake onset most often occurred within a second after the driver first sawodsnialg above
the approximate threshold of 0.2 for =1 (0.02 rad/s fof; 2 m/& for v/, although the latter measure
seemed somewhat less predictive of brake timing), with even faster reactions in more @ si
(5) Theseoverall patterns of brake timing variability could be explained by positing underlying
mechanisms for evidence accumulation. Furthermore, (6) after brake onset, deceleration could be well
described as a linear ramp-up followed by a constant maximum deceleration, whereafé) theamp-
up was faster in more urgent situations. (8) The maximum deceleration did not vary witbrsitua
kinematics in crashes, presumably reflecting vehicle or driver limits on accelebatid§ maximum
deceleration was kinematics-dependent in near-crashes, presumably because the drivers did not continue
to brake harder once the collision threat had been averted.

It has been proposed here that, although highly prevalent in traffic safety research, BRT may not
be a meaningful measure of driver behavior in surprise emergencies. Emergency braking seems to be
determined more by the gradual build-up of kinematical urgency and visual looming, than isgrtte d
onset of some well-defined hazardous event, processed slowly and kinematics-independently in the
driver’s head before triggering a braking response. This distinction is also important from thegtigespe
of trying to understand how crashes happen and how best to prevent them; rather than higsibghting
reactionsasan important causal factor, the present findings reinforce the importanthedtffestion that
late reactions can be due to drivers having failed to react to early, anticipatoryoc@suffiple, brake
lights), forcing them to respond to looming cues instead, as a last resort (Engstrom et gl., 2013a

If one does choose to use the BRT concept to describe behavior in surprise emergencies, great
care should be taken when comparing BRT values reported from different studies using diffexant cr
scenarios. Specifically, a given observed effect of an experimental manipulation on BRT iar@r@®sc
may not generalize well to other scenarios. For example, it has been previously reported tina& cogni
load (Engstrom, 2010) and collision warnings (Lee et al., 2002; Ljung Aust et al., 2013) both witbract
scenario urgency in their effects on measured BRT.

Quantitative models have also been proposed here, capturing the observed variability in
emergency braking behavior without making use of the BRT concept. These models could be applied in a
variety of contexts where BRT-based models have been previously used, such as road design, support
system algorithms, and support system evaluation; it is an interesting open question to what agtent doi
so would change any previous conclusions in these areas. An especially relevant challenge for future
research is to generalize the present results to situations where a driving support system has issued a
collision warning. Current methods for estimating the safety benefits of such systems BRJutype
driver responses to the warningaf Auken et al., 2011; Kusano and Gabler, 2012; Erbsmehl and
Schebdat, 2015; van Noort et al., 2015), whereas, as mentioned above, evidence from simulator studies
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(Lee et al., 2002; Ljung Aust et al., 2013) suggest that driver responses remain kinematics-tiajgenden
in the presence of warnirfgs
The results presented here also seem relevant to current research on self-drivieg, welheck
much effort is being spent on understanding the driver’s response process when suddenly brought back
into the control loop, for example because of a collision risk (Gold et al., 2013; Louw 6tL&l. Z2eb et
al., 2015. What has been presented here points to a possible deeper understanding of how drivers make
use of their perceptual input in critical situations, in terms of various percepuabmsms acting on
visual looming information. Such an understanding merits further pursuit in controlled studies,wddd sho
apply regardless of whether drivers are in, or are just about to resume, control over their vehicl
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Appendix A: Event inclusion

Figure Al illustrates the process of event inclusion, from the initial data set to the varioes figur
in this paper. For those figures that are not represented in Figure A1, inclusion isedeiscdetail in the
main text.
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Figure 2 (Physical reaction relative to ELG)
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Figure 3 (Model fit R?)

95 %

6. Deceleration model fit R2 = 0.7

7. Deceleration onset not from event start 237

8. Eyes-off-road glance in event 176

9. Lead vehicle data available at end of last off-road glance 173
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Figure 4 (Brake onset relative to ELG)

100 %
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10. Lead vehicle data available at end of last off-road glance (if any) 234 32

11. Could estimate time at which ! passed 0.2 s1 232 32

&

Figure 6 (Brake onset relative to kinematics)

12. Lead vehicle data available at brake onset 230

13. Deceleration ramp-up extends across more than one sample 226

&

Figure 8 (Brake jerk as a function of kinematics)

14. Lead vehicle data available at brake onset 239

15. Maximum deceleration starts = 1 sample before event end 217

&

Figure 9 (Max. deceleration as a function of kinematics)

Figure Al. Event inclusion. To understand what inclusion criteria were applied in order to select the
events for a particular figure in the paper, one can for example start where the figure is mentianed abov
and work backwards up along the arrows to the top. ELG = end of last off-road glance.
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Appendix B: The probability distributions

This appendix provides method details and intermediate results for arriving at the probability
distributions provided [n Figure 10 of the main text, as well as brief notes on the possitfi¢hese
distributions.

B.1 Data transformation

Figure B1 repeats the same reaction timing date[as in Fifjure 6, transformed to show the quantity
ag defined in Equation (2), and with the exclusion of 48 events (30 car; 18 truck/bus) where it was not
possible to estimate the timg of non-reaction collision, typically because of missing lead vehicle width
annotations in the later parts of the event. In the full data set of 323 extracted events, complete non-
maneuvering by the driver was annotated in ten cases, and Figure B1 shows five of these; thesfive other

lacked sufficient lead vehicle annotations to estingfg.

Car crashes Truck/bus crashes

(n=44) (n=12)
No o | x No o I a r.=.80
maneuver 9 rs =07 maneuver | p=.33
17 I = 73 1 [
< 4 xsakxy o . T
e R | § L1
o )s £§(X '_x)( X §Ox-x 0 o L-1!
3 0F X | o |
X I o |
I |
L R . -1 1 .
No glance 0 0.5 1 No glance 0 0.5 1

Car near-crashes Truck/bus near-crashes

(n=161) (n=4)
No I No |
maneuver : rg =-.07 maneuver :
171 1
X =.52
- X% o | e x P ° !
S 0O 0 |
X % X X I |
I |
-1 X | -1 |
No glance 0 0.5 1 No glance 0 0.5 1
-1 -1
Vg g (87) Vg g 57)

Figure B1. Brake onset timing, expressed using the kinematics-scaled guant®Bymbols and
regression lines as in similar figures in the main text. Two points are not visitdeca® near-crash

without off-road glance, witeg = —5, and one truck near-crash witl{'; = —0.75s71, ag = 0.34.

Figure B2 repeats the same brake jerk data[as in Fijure 8, but transformed to show the quantity
kg, calculated from the observgglandrg® as suggested by Equation (3), kg.= jg/751.
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Figure B2. Brake jerk, expressed using the kinematics-scaled quagtitgymbols and regression lines

as in previous figures. The same three data points that were not vi itpiie §are also not visible
here, for the same reasons.

B.2 Parameter-fitting

Maximum likelihood probability distributions were fitted for each of the model parasngier

kg, anda,. Thea, and eyes-on-threatz distributions were fitted as normal,
1 _(x=w)?
P(X =x)=py(x) = e 207
PN oV2m
with X = a; or X = ag. The eyes-off-threaty distribution was fitted as log-normal,
1 _(nx-p?

202

P(ag = x) = ppn(x) = xa\/Z_ne )

and thekg distribution as a log-normal distribution mirrored to cover negative values, i.e.
P(kg = x) = pLn(—x).

When fitting thexg andkg distributions, all events shown in Figures B1 and B2 were included,
with the motivation that including behavior from both near-crashes and crashes evidlsgiompletas
possible a view of actual behavior variability in surprise rear-end emergencies. One dyesiocar
near-crash outlier withy = —5 (due to a questionably small — t, ,) was excluded. Also excluded
was one car crash with a small negatigé.

As discussed in Sectipn 4.2.4 of the main text, the near-aagata showed correlations with
situation kinematics that were probably related to drivers aborting their decelerationpampe the
collision threat had been averted. Properly accounting for this phenomenon by including the near-crash
data in the distribution fits would require something like a joint distribution§okg, anda,. Here, the
a, distributions were instead fitted to only the crash ddta in Fidure 9, thus presumablygaheuri
variability of maximum decelerations at all allowable by the driver and the vehicle in thegsesur
emergencies.
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For thekg anda, distributions, parameter-fitting was performed using standard closed form
expressions (e.g. observed mean as maximum likelihood estimate of actual mean of a normal
distribution). For therg distributions, also the ten non-braking events were included in the fittings,
treated asg > 1, so these distributions were instead fitted by calculating the actual model likelihoods, in
a parameter grid search with 0.01 precision for all distribution parameters. The five above-mentioned
non-braking events which were excluded from Figure B1 due to non-estirggplevere found to all
have a very short time (< 0.5 s) from ELG to actual crash, and could therefore confidently be treated as
eyes-off-threat events.

B.3 Usage notes

The first thing to note about tlwg distributions and the way they have been fitted, is that they
are intended to capture not only timing of braking, but also whether or not the driver appliedkéseabr
all (ag < 1 versusaeg > 1). This type of view of nofraking, as “too late braking”, fits well with the
evidence accumulation account presented in S¢ctior] 4.2.3 (see also Markkula et al., 2013; pp. 1273-
1274). In practice, actual non-braking was observed in the present data somewhat more often than what is
predicted by the fitted distributions. For example, for the car eyes-off-threat events, thetidiatr
predictsP(ag > 1) = 0.024 whereas the observed fraction is 6/115 = 0.052. There are two things to note
here: First, the adopted inclusion criteria for the non-reaction events were less strict tharevents
with braking, presumably making non-braking somewhat overrepresehted in Fifjure 10. Second, it is
possible that some very late brake reactions may have been coded by annotators as non-reactions, since
the effects on vehicle accelerations may have been small. Consistent with this idea, it can be noted in
that narg values close to but below one were observed, and for the car eyes-off-threat events
one gets, for exampl®(ag > 0.8) = 0.049.

Another thing to note is that Equation (3) allows arbitrarily large valugg fdio prevent
biologically infeasible deceleration ramp-ups in very critical situations witke lagg, one could
introduce a ceiling, for exampjg < 8 m/s? (cf[Figure §.

Furthermore, it should be noted that even if the collision has already been averted the model
proposed here will continue to ramp up deceleratian tinterpretable as the maximum deceleration
allowed by the vehicle or driver (as discussed above). This type of model behavior is pacbaptable
in most applications. If it is not, the most straightforward model extension would be the addition of
separate mechanism for aborting ramp-up, for example triggered once visual looming falls below some
threshold, preferably empirically identified.

Also note that no probability distributions have been fitted for the initial acdelerameter
ay, since it has been assumed here that in most applications this parameter can either be set to zero, be
defined by the simulated traffic scenario itself, or be known from a specific natumisticin a whaif
simulation (e.g. Bargman et al., 2015

In quantitative approaches to traffic safety, the models and distributions proposed here should
provide a significant step forward compared to prevailing BRT-based approaches. However, asldiscusse
in Sectiofh 4.1L, it should be acknowledged that the lack of less critical events in the studiets datase
that the distributions [n Figure 10 may to some extent be over-representing such watiicrsit(e.g.,
low road friction), driver states (e.g., drowsiness), and driver behaviors (e.g., slow diecetarap-up)
that are more prone to lead to near-crashes and crashes, potentially biasing distributionsattewards |
reactions and weaker deceleration responses. One interesting avenue for future work woryddoe to t
appropriately fill in theeprobability distributions with driver behavior data from less critical scenarios.
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Appendix C: Explaining brakereaction timesin previous simulator studies

The four simulator studies referencefl in Figurp 11 of this paper all used the same basic driving
scenario, originally proposed by Engstrom et al. (2010): A faster vehicle overtalpasittipant’s
vehicle, and then, after reaching a certain time headway, starts decelerating for no appareritakeles
Cllists the specific scenario parameters used in the four studies, as well as the obseaged3&RES
for unexpected exposure. Note that in the case of the (Markkula et al., 2013) study, four conditions (low
and high driving experience, two different experiments) have been averaged across, weighted by number
of participants per condition. In all studies, the participants drove without any secondaryxizeisine
the (Ljung Aust et al., 20} 3tudy, where lead vehicle deceleration begun while drivers were looking at
an invehicle display. In the present analysis, only the “long headway” scenario from that study was
included, which in practice was of the eyestireat type, at least for the majority of drivers: On average,
the participants looked back to the road ahead 1.49 s after lead vehicle deceleration onset; Whereas
0.2 s™! occurred at about 1.95 s. In other words, all four scenarios included here can be considered eyes-
on-threat scenarios.

To obtair Figure 11, these scenarios were recreated in computer simulation, and average brake
onset timings were predicted using the eyes-on-thsgatodel for passenger cars, friom Figuré 10 of this
paper. See (Engstrém and Markkula, in prep.) for extended analyses of this type.

Table C1. Parameters of subject vehicle (SV) and lead vehicle (LV) kinematics in a rear-endbscenar
shared across four previous simulator studies, as well as observed average brake mest{BR1 s).

Original SV SV LV speed before Time headway LV Observed

reference type speed deceleration before LV  deceleration awerage BRT
(km/h) (km/h) deceleration (s) (9) (s)

Engstromet  Car 70 80 15 0.51 2.17

al. (2010)

Ljung Austet Car 90 90 25 0.55 3.10

al. (2013)

Markkula et Truck 80 80 15 0.35 1.82

al. (2013)

Nilsson etal. Car 80 80 1.3 0.6 1.11

(in prep.)
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