Sensitivity of Quantitative Myocardial Dynamic Contrast-Enhanced MRI to Saturation Pulse Efficiency, Noise and T₁ Measurement Error: Comparison of Nonlinearity Correction Methods

David A. Broadbent,1,2,3 John D. Biglands,1,2,3 David P. Ripley,1,3 David M. Higgins,4 John P. Greenwood,1,3 Sven Plein,1,3 and David L. Buckley1,3*

INTRODUCTION

Dynamic contrast enhanced (DCE) cardiac MRI is an established method for visually identifying regional blood flow reduction. Quantitative assessment of DCE-MRI data may also be used to estimate myocardial blood flow (MBF) (1–3) and other physiological parameters (4,5). Data are typically acquired using a saturation recovery (SR) gradient echo sequence (6) with temporal resolution equal to the subject’s heart-rate. Physiological parameters can be determined through deconvolution, using relative concentration-time courses in the myocardium and feeding blood supply (arterial input function (AIF) typically taken from blood in the left ventricle, LV).

Signal enhancement is approximately proportional to contrast agent concentration ([CA]) for low concentrations and/or sequences with low T₁ sensitivity (7), and could be used in quantitative analysis under such conditions. In practice peak concentrations in the AIF are considerably larger than in the myocardium, leading to a challenge for quantitative analysis. Protocols that generate sufficient contrast-to-noise ratio (CNR) in myocardial DCE-MRI impacts on accuracy and precision of estimated parameters, particularly in the presence of nonideal saturation.

Purpose: To compare methods designed to minimize or correct signal nonlinearity in quantitative myocardial dynamic contrast-enhanced (DCE) MRI.

Methods: DCE-MRI studies were simulated and data acquired in eight volunteers. Signal nonlinearity was corrected using either a dual-bolus approach or model-based correction using proton-density weighted imaging (conventional or dual-sequence acquisition) or T₁ data (native or bookend). Scanning of healthy and infarcted myocardium at 3 Tesla was simulated, including noise, saturation imperfection and T₁ measurement error. Data were analyzed using model-based deconvolution with a one-compartment (mono-exponential) model.

Results: Substantial variation between methods was demonstrated in volunteers. In simulations the dual-bolus method proved stable for realistic levels of saturation efficiency but demonstrated bias due to residual nonlinearity. Model-based methods performed ideally in the absence of confounding error sources and were generally robust to noise or saturation imperfection, except for native T₁ based correction which was highly sensitive to the latter. All methods demonstrated large variation in accuracy above an over-saturation level where baseline signal was nulled. For the dual-sequence approach this caused substantial bias at the saturation efficiencies observed in volunteers.

Conclusion: The choice of nonlinearity correction method in myocardial DCE-MRI impacts on accuracy and precision of physiological parameters, particularly in the presence of nonideal saturation.
in physiological parameters has not previously been assessed.

In this work, a novel application of bookend (native and postcontrast) T₁ data to estimate and account for imperfect saturation is introduced and assessed along-side established methods. Bookend T₁ measurements have been used to correct errors arising from various sources in breast DCE-MRI using nonmagnetization prepared sequences (19,20), but have not been applied to sources in myocardial DCE-MRI. Bookend T₁ measurements were simulated with a range of SE values based on Eq. [1] (Larsson et al (11), modified to allow arbitrary magnetization preparation) and the parameters in Table 1 [based on local practice and published values (27)].

\[
SI(t) = S₀ \cdot f(T₁, SE) \quad \text{where } f(T₁, SE) = \left(1 - SE \cdot e^{-T₁R₁(t)}\right) \cdot a^{̂̂\text{pa}} + b \cdot \frac{1 - a^{̂̂\text{pa}} - 1}{1 - a^{̂̂\text{pa}}}. \quad [1]
\]

Here \(a\) is the readout pulse flip angle and \(b\) is the number of RF pulses before the acquisition of the central k-space data. SE of 1 corresponds to perfect saturation while 0 represents no preparation and 2 perfect inversion. Magnitude signal was recorded, reflecting standard practice, and Rician noise added where required. R₁ is determined entirely by the center of k-space (incorporating T₂* decay, receiver gain and proton density), \(\alpha\) is the readout pulse flip angle and \(\text{R}_0\) is the longitudinal relaxation rate (1/T₂). \(S₀\) is the SI that would be acquired from a single readout pulse applied at equilibrium (incorporating T₂* decay, receiver gain and proton density).

\[
R₁ = R₁_{\text{nat}} + |CA| \cdot R₁. \quad [2]
\]

Deconvolution of resulting data with a one-compartment model was performed to estimate MBF and vₖ using the nonlinearity correction methods described below, and results were compared with ground truth. Figure 1 summarizes the process.

To assess errors introduced directly through deconvolution (due to factors including optimizer termination tolerances and discrete temporal sampling) noise-free concentration curves were analyzed. Additionally deconvolution was performed using signal enhancement data to assess errors incurred without nonlinearity correction.

Model-Based Nonlinearity Correction Methods

Model-based approaches involve the use of additional data and imaging parameters to constrain a signal model for the acquired data. This model is used to convert SI data into ΔR₁ throughout the DCE-MRI acquisition before deconvolution. These techniques can be sensitive to factors that lead to the signal not being fully described by the model, including imperfections in SE, B₀ homogeneity, readout flip angle accuracy and slice profile.

Native T₁ Based

SI can be converted to ΔR₁ using measured or assumed baseline T₁ (8), a method that has also been used in...
the native T_1 based method.

$$T_{1,\text{baseline}} = \arg\min_{T_1(t)>0} \left(\frac{f(T_{1,\text{baseline}}, SE = 1)}{f(T_{1,\text{baseline}}, SE = 0)} \frac{S_{DCE,\text{baseline}}}{S_{PDw,\text{baseline}}} \right)^2. \quad [5]$$

For this study, the read-out flip angle was maintained at 15° for the PDw image. However, it is common to reduce the read-out flip angle in the PDw sequence (9,10) to reduce T_1 weighting, in which case f must be modified in the denominator of Eq. [5].

Bookend T_1 Based

The model-based methods described above sample SI only at native T_1 to define the signal model, under the assumption of ideal saturation efficiency. By sampling SI at two T_1 values, the relationship can be defined without this assumption by estimating both SE (Eq. [6]) and S_0 (Eq. [7]). $T_1(t)$ is then estimated as before, but using a study specific SE estimate (Eq. [8]).

$$SE = \arg\min_{0<SE<2} \left(\frac{f(T_{1,\text{baseline}}, SE)}{f(T_{1,\text{post-contrast}}, SE)} - \frac{S_{DCE,\text{baseline}}}{S_{DCE,\text{post-contrast}}} \right)^2 \quad [6]$$

$$S_0 = \frac{S_{DCE,\text{baseline}}}{f(T_{1,\text{baseline}}, SE)} \text{ or, equivalently,} \quad [7]$$

$$S_0 = \frac{S_{DCE,\text{post-contrast}}}{f(T_{1,\text{post-contrast}}, SE)}$$

$$T_{1}(t) = \arg\min_{T_{1}(t)>0} \left((S_0 \cdot f(T_{1}(t), SE = 1) - SI(t))^2 \right). \quad [8]$$

To perform this method a T_1 measurement and DCE-MRI sequence are acquired at a delayed postcontrast time, as well as before contrast administration. Ideally the postcontrast data would be acquired while T_1 is stable, but this is not achievable in practice as T_1 will vary due to distribution and clearance of the contrast agent. However, steps can be taken to approximate this including sampling postcontrast T_1 and SI as close together (temporally) as possible at a time where T_1 varies slowly (once equilibrium has been reached between blood and interstitium and variation is driven predominantly by renal clearance). Measuring SI both sides of T_1 (or vice-versa) and interpolating to account for temporal variation could further reduce the impact of [CA] variation.

Dual Sampling Methods

The following methods allow independent measurement of an AIF that is minimally affected by nonlinearity. These can be used in isolation or in combination with model-based correction.

Dual-Bolus

The dual-bolus approach (13–15) exploits the approximately linear response of SI to [CA] at the relatively low concentrations encountered in the myocardium from a standard dose, and in the AIF from a smaller “prebolus” dose administered before the main bolus. Signal
enhancement data from the prebolus AIF is scaled by the bolus:prebolus dose ratio and analyzed with the tissue response from the main bolus. As linearity of SI response is assumed, no conversion to [CA] is required.

This method was simulated by prepending the concentration curves in the first stage of the simulation with prebolus data of equal duration with concentrations scaled by one-tenth. In practice, residual contrast agent from the prebolus will affect the tissue curve. The details of this depend on physiological parameters and the delay between administrations. Additionally, changes in AIF shape may occur between contrast agent administrations due to factors such as altered contrast agent volume or viscosity (depending on whether the prebolus is administered as a smaller or diluted dose) or cardiac output variation (30). For simplicity, it is assumed in these simulations that the prebolus is cleared entirely before main bolus administration, and that the shape of the prebolus and bolus AIF and myocardial concentration curves are identical except for scaling.

Dual-Sequence

The model-based methods described above can be combined with a dual-sequence acquisition in which the AIF is acquired using a sequence with reduced T_1 sensitivity interleaved with the higher sensitivity sequences for myocardial curve acquisition (12). This allows both the curves to be acquired with a more linear signal response to [CA], while not introducing the additional procedural steps or concerns regarding bolus shape differences of the dual-bolus approach. For this study, myocardial SI curves were generated using the same pulse sequence parameters used for the other methods. SI curves for the AIF were generated using the parameters described in the “Low T_1 sensitivity sequence parameters” section of Table 1. The latter is designed to result in a linear relationship between SI and T_1 over a wider range of concentrations, although yields reduced CNR and resolution.

The initial application of the dual-sequence approach (12) was for estimation of relative blood flow (myocardial perfusion reserve), for which differences in T_1 sensitivity between the sequences cancel out allowing use of signal enhancement data. For quantification of absolute parameters, the differences must be accounted for and so signal enhancement cannot be used. For this simulation, PDw model-based conversion is employed using appropriate signal models for each sequence. Calculated ΔR_1 is used in the deconvolution as for the other model-based approaches. Additionally, spatial resolution of the low T_1 sensitivity sequence is typically lower, which results in greater signal-to-noise ratio (SNR). In the simulations, the noise standard deviation was halved for the low T_1 sensitivity sequence compared with the standard sequence, based on the approximate SNR difference expected for the protocol on which these simulations were based.

Simulations Performed

Using each of the methods described above, MBF and v_d were estimated and compared with ground truth for a range of conditions (healthy myocardium at rest and under pharmacologically induced stress and chronically infarcted myocardium). In general, MBF will be lower for infarcted myocardium at rest (one study reported regional blood flow in chronic infarct regions as being 16% lower than for remote myocardium) (31). For simplicity, and to allow comparison of results following alteration of individual parameters, the value of MBF used for infarct simulation was equal to that used for healthy myocardium. Similarly v_d was not altered between rest and stress. Parameter values used are presented in Table 1.

Simulations were performed in the absence of and including Rician noise with standard deviation equal to 0.5% of S_I. For healthy resting myocardium, this corresponds to peak myocardial SNR of 14 which is similar to the data acquired in the volunteer study and that reported elsewhere (32). Simulations with noise were repeated 1000 times and mean and standard deviation of fitted parameters recorded. SE was varied in increments of 0.005 from 0.9–1.1, and at finer increments (0.0025) in the central part of this range (0.97–1.03). SE is defined such that residual longitudinal magnetization after saturation equals $(1-SE)M_0$ where M_0 is equilibrium magnetization with positive values being aligned with the equilibrium state and negative values representing inverted magnetization. Methods which use T_1 values were repeated assuming measurement errors of 5% (both under- and overestimation).

Volunteer Study

DCE-MRI data were acquired in eight healthy volunteers using a clinical 3.0 Tesla (T) whole-body scanner (Philips Achieva TX, Philips Healthcare, Best, the Netherlands) with a dedicated 32-channel cardiac phased array receiver coil with dual-source radiofrequency-field shimming. All volunteers gave written informed consent and the study was approved by the local research ethics committee. Stress DCE imaging was undertaken during maximal hyperemia (achieved by 140–210 μg/kg/min adenosine infusion) (33) with an intravenous dual-bolus (0.005/0.05 mmol/kg with the main bolus administered approximately 30 s after the prebolus) of gadobutrol (Gadovist, Bayer Schering Pharma, Berlin, Germany) administered at 4 mL/s followed by a 20-mL saline flush. Rest DCE imaging was undertaken at least 15 min after stress imaging with the same contrast agent administration protocol. A dual-sequence with parameters as in the simulation study (and echo time, TE, of 1.14 ms, full details in Supporting Table S1) was acquired over 210 cardiac cycles; implemented using the Philips interleaved scanning capability which allows instantaneous switching between multiple scans. A composite WET saturation pulse was used (34). Before the first DCE series, a native T_1 map [5-3 scheme Modified Look locker Inversion Recovery (MOLLI)] with 3 beats recovery before each inversion) (35) and proton density weighted series (10 cardiac cycles, identical sequence to the DCE series except without saturation preparation) was acquired. A further DCE series was acquired (10 cardiac cycles) 15 min after the final contrast agent
administration followed by a contrast enhanced T\textsubscript{1} map (4-3-2 MOLLI with 1 beat recovery period). Myocardial and LV blood-pool contours were drawn (QMass, Medis, the Netherlands), the former covering the full circumferential extent (excluding papillary muscles), on a mid-ventricular slice to extract signal-time data which were analyzed in the same way as the simulated data.

RESULTS

Simulation Study

Simulated signal-time curves are presented in Supporting Figures S2 and S3 and the AIF and myocardial data used for deconvolution in each method in Supporting Figures S4–S9. Deconvolving noise-free concentration curves directly yielded negligible errors (<0.0002%). Analyzing signal enhancement data without nonlinearity correction (Fig. 2) yielded 30–50% overestimation of MBF and errors in v\textsubscript{d} between −5% and +10% (for ideal saturation and in the absence of noise). Errors in all parameters were generally insensitive to SE up to a threshold SE of 1.06 above which errors varied substantially.

Effect of Saturation Efficiency

Simulations performed without noise demonstrated variation in behavior of different nonlinearity correction methods (Figures 3–7, dashed lines). With perfect saturation, model-based approaches yielded errors <0.001% throughout. The dual-bolus method demonstrated systematic underestimation of MBF and v\textsubscript{d} of up to 16 and 10%, respectively.

As SE errors are introduced further differences in behavior between methods are revealed. Model-based and dual-bolus acquisition based methods both show low sensitivity to small levels of over or undersaturation, except for the model-based approach using native T\textsubscript{1} and baseline SI alone. The latter demonstrates a very strong dependence on SE with substantial errors being introduced for levels of over- or under-saturation within the reported performance of optimized RF pulses (16–18). In this method, the estimated value of S\textsubscript{0} is

FIG. 2. Errors in estimated parameters for healthy myocardium at rest (A = MBF and B = v\textsubscript{d}) and under stress (C = MBF and D = v\textsubscript{d}) and for infarcted myocardium at rest (E = MBF and F = v\textsubscript{d}) for deconvolution using signal-enhancement data without correction for nonlinearity. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.

FIG. 3. Errors in estimated parameters for healthy myocardium at rest (A = MBF and B = v\textsubscript{d}) and under stress (C = MBF and D = v\textsubscript{d}) and for infarcted myocardium at rest (E = MBF and F = v\textsubscript{d}) for deconvolution using native T\textsubscript{1} based correction. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.

FIG. 4. Errors in estimated parameters for healthy myocardium at rest (A = MBF and B = v\textsubscript{d}) and under stress (C = MBF and D = v\textsubscript{d}) and for infarcted myocardium at rest (E = MBF and F = v\textsubscript{d}) for deconvolution using proton density weighted image based correction. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.
proportional to baseline SI, which decreases approximately linearly with increasing SE. A degree of oversaturation is reached whereupon this method breaks down as the estimated S_0 decreases below the peak SI. As this level is approached, the estimated physiological parameters decrease rapidly to zero.

The methods that are more robust to small SE errors (model-based corrections using PDw, including dual-sequence, or bookend T_1 data) are also robust across the range of under-saturation levels tested. However, as increasing levels of over-saturation are introduced into the simulations threshold points are encountered where errors in derived physiological parameters change substantially. These thresholds are identified as the SE at which baseline signal is nulled due to the partial inversion of longitudinal magnetization by the saturation pulse. For most methods, this occurs around SE of 1.06. An earlier threshold, $SE = 1.015$, is encountered for the dual-sequence approach as the low T_1 sensitivity sequence used to derive the AIF encounters baseline signal nulling at a lower SE. The dual-sequence method also demonstrates some SE dependency below this threshold value (increasing underestimation of parameters with under-saturation) which is present but negligible (except native T_1 based correction) in other methods.

Effect of Image Noise

Simulations including noise (solid lines and shading in Figures 2–7) showed similar overall patterns to the noise-free simulations. However, the variation in bias around the threshold SE values described above is less sharp. This is due to the asymmetric nature of the Rician noise distribution at low SNR leading to noise induced bias as the threshold value is approached. Inclusion of noise also allows assessment of relative precision of the methods (the vertical extent of the shaded areas in Figures 2–7 is equal to twice the co-efficient of variation), with precision being poorest for dual-bolus due to the reduced CNR in the low-dose AIF. This technique also demonstrates the largest noise induced bias (identifiable where the solid lines deviate from the dashed lines in the figures). Results for resting MBF from all methods with ideal saturation and realistic levels of saturation imperfection ($SE = 0.975$ and 1.025) are compared in Figure 8.

FIG. 5. Errors in estimated parameters for healthy myocardium at rest ($A = MBF$ and $B = v_d$) and under stress ($C = MBF$ and $D = v_d$) and for infarcted myocardium at rest ($E = MBF$ and $F = v_d$) for deconvolution using bookend T_1 based correction. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.

FIG. 6. Errors in estimated parameters for healthy myocardium at rest ($A = MBF$ and $B = v_d$) and under stress ($C = MBF$ and $D = v_d$) and for infarcted myocardium at rest ($E = MBF$ and $F = v_d$) for deconvolution using the dual-bolus method. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.

FIG. 7. Errors in estimated parameters for healthy myocardium at rest ($A = MBF$ and $B = v_d$) and under stress ($C = MBF$ and $D = v_d$) and for infarcted myocardium at rest ($E = MBF$ and $F = v_d$) for deconvolution using the dual-sequence method. Solid lines show results in the absence of noise. Dashed lines and shading show mean results ± one standard deviation for data with simulated noise.
Effect of Errors in Measured T1

In simulations of T1 measurement dependent model-based methods, errors in T1 were found to introduce systematic errors in estimated physiological parameters. For model-based correction using native T1 alone, underestimation of T1 led to a decrease in estimated S0 for a given SE and consequently lower estimates of physiological parameters.

For the bookend method, the direction of bias on physiological results depended on the T1 measurement in error. Underestimation of native T1 led to a slight overestimation of S0 and SE. This resulted in small (<1%) increases in estimated physiological parameters. For overestimation of native T1, the converse was true. Physiological parameter estimates were more sensitive to the same (relative) error in post contrast T1 (errors <4%) with the direction of bias reversed compared with errors in native T1. Some SE dependence was observed with the underestimation of SE being more severe at lower values of SE. The effects of errors in measured native and postcontrast T1 were combined when errors in both were introduced in the same direction as, but smaller in magnitude to, those introduced by errors in postcontrast T1 alone.

Volunteer Study

For the volunteer study, no gold standard data were acquired so only relative results can only be compared with each other. Example signal data are available in Supporting Figure S10 and all T1 values in Supporting Table S2. Oversaturation was consistently measured using the bookend T1 based method (SE = 1.005–1.0375). Nonlinearity correction was successful except for native T1 based correction for which peak signal exceeded estimated S0 values for 10/16 cases (including all cases with SE > 1.02). Tracer kinetic model fitting was successful in all but four dual-bolus datasets (all rest) in which MBF estimates were stable but estimates of v_d were unstable due to low SNR in the prebolus AIF. Systematic differences in mean MBF and v_d were observed between methods (Fig. 9) with all nonlinearity correction methods yielding lower estimates of both parameters than deconvolution of signal enhancement data. Dual-bolus and dual-sequence methods yielded lower MBF estimates than the bookend T1 and native PDw based methods, while estimates of v_d were lower for the dual-bolus approach compared with the other three methods.

DISCUSSION

Use of signal enhancement data without model-based correction led to overestimation of MBF as expected (13,36) as well as systematic errors in v_d. A similar pattern was observed in volunteer data, with elevated parameter estimates in vivo compared with estimates obtained with nonlinearity correction. Errors arising from the direct use of signal enhancement data are well-understood (1) and quantitative analysis using normal clinical contrast agent doses without nonlinearity correction would not normally be performed. The dual-bolus scheme simulations have shown this technique to be partially effective in reducing these errors in comparison to a single bolus method, although systematic errors still arise (due to residual nonlinearity) and precision is reduced due to low SNR in the prebolus AIF. In the

![FIG. 8. Box-and-whisker plots comparing nonlinearity correction methods for realistic levels of saturation efficiency and SNR (note difference in y-axis range for methods with high (left) and low (right) bias). Outliers (shown as individual points) are identified as data more than two times the inter-quartile range above/below the upper/lower quartiles. Results from methods where median errors exceed 5% are shown in plot A and those from methods where with smaller errors are shown in plot B. The native T1 based method failed for approximately a quarter (223/1000) of the simulated experiments at SE = 1.025, as the peak AIF SI exceed the estimated S0.](image)

![FIG. 9. Mean parameter estimates for volunteers (error bars show one standard deviation) showing systematic differences in results dependent on analysis method used. Data for the native T1 based method is not presented as this conversion failed in the majority of cases due to peak AIF signal exceeding estimated S0. Data for resting v_d are based on four of the volunteers, because in the other four the parameter estimate was unstable due to low SNR in the AIF.](image)
volunteer dual-bolus data resting MBF measurements were lower than expected from the simulation results, potentially due to residual contrast agent (which was not simulated) affecting the low dose AIF. Other work has suggested that model-based correction alongside dual-bolus acquisition may improve accuracy by accounting for nonlinearity in the myocardial data (10).

In a typical myocardial DCE-MRI sequence, baseline signal is generated from longitudinal magnetization which has only recovered to a small fraction of the equilibrium value. For example, assuming ideal saturation and the parameters used these simulations, baseline signal will be approximately 5% and 10% of S₀ for blood and myocardium, respectively. Consequently, a small amount of residual magnetization after saturation has a substantial impact on baseline SI, as has been previously identified (17). Results from this study have shown that such biases influence the results of model-based nonlinearity correction methods, and consequently the accuracy of quantitative DCE-MRI analysis.

For native T₁ based correction, 1% saturation imperfection in the simulation leads to approximately 17% change in baseline blood SI compared with ideal saturation. This leads to equal errors in estimated S₀, which propagate into large errors in estimated physiological parameters. Conversion failure caused by the peak AIF SI exceeding calculated S₀ has been observed in previous in vivo work using the native T₁ approach (5) as well as in this volunteer study.

The use of PDw images resulted in only very slight SE dependence for SE < 1.06. The observed SE dependence was greater when used in conjunction with the dual-sequence technique, although still substantially lower than for the native T₁-based approach. The initial estimation of baseline T₁ in the PDw based method is extremely sensitive to noise or imperfect saturation induced bias in baseline SI (SE of 1.02 led to 52% error in estimated baseline T₁). However, to a first-order approximation (ignoring the effect of the readout RF pulses) this bias would be completely reversed when calculating S₀. The effects of the readout train introduce only a slight bias in S₀, so the technique is largely robust to moderate saturation imperfections.

Similarly the use of the bookend T₁ method to estimate SE on a per-study basis can largely remove the gross errors observed in the presence of small levels of over- or undersaturation using the native T₁ approach, by accounting for the saturation imperfection. As for the simulation studies, comparable results between bookend T₁ and PDw-based correction methods (for conventional acquisition) were observed in the volunteer data.

Any T₁ based method is, however, susceptible to errors in the values of T₁ used. Variation in results of quantitative analysis of DCE-MRI data (using a nonsaturation prepared sequence for imaging the female pelvis) as a result of variations in assumed or measured T₁ has been reported previously (37). The results of the simulation study show that the bookend T₁ technique is more susceptible to errors in postcontrast T₁ than native T₁ measurement. It is known that many myocardial T₁ mapping techniques exhibit some systematic bias (for example underestimation in MOLLI based techniques) (38). In practice, correction of known biases in T₁ estimation before use in signal nonlinearity correction may improve quantification accuracy.

Image noise can have a biasing effect on baseline SI when the SNR is sufficiently low that the distribution of SI values is asymmetrical. In the presence of noise, low SI values are, on average, higher than expected from the simulation results, with 9mM peak concentration. In the volunteer data, both dual-sampling methods resulted in better or comparable coefficient of variation than bookend T₁ or PDw based conversion for MBF estimation but poorer or comparable coefficient of variation for v₄. As MBF estimation is dominated by the early phases of the data and v₄ estimation by the later phases, these observations may be explainable by the observations above. Noise sensitivity during conversion of the early, high concentration, phases of the AIF in single-sampling techniques may limit precision of MBF estimation, while for v₄ estimation the inherently low SNR in the latter phases of the AIF in dual-sampling methods may dominate.

In addition to the errors discussed above, all methods break down above a threshold SE value. For the native T₁ based method, this occurs when the value of S₀ calculated assuming ideal saturation is lower than the peak SI encountered in the AIF. In this scenario, no positive T₁ can thus describe these peak SI values for the defined model. For other model-based methods, the threshold is reached at a point where the baseline SI, which is partly inverted in the case of oversaturation, is nullled at the time of image readout. Above this threshold value, negative baseline SI values are reconstructed as positive values, leading to substantial errors in the determined signal model parameters. In the case of the PDw based methods, precision also worsens substantially at and around this threshold value (Figures 4 and 7).

For conventional techniques, this threshold exists at a SE of 1.06 for the parameters used in this simulation. Consequently, this threshold is unlikely to be reached
when modern saturation pulses designed for cardiac applications (with efficiencies around 0.97–1.03) are used. However, for the dual-sequence method the reduced T$_1$ sensitivity of the sequence used to measure the AIF also leads to a reduced threshold value, 1.015 in this simulation. Such levels of oversaturation are possible, even with optimized saturation pulses such as BIR-4 or the hybrid adiabatic-rectangular pulse train (16,17). The mean SE observed in the volunteers in this study exceeded this threshold which could explain the relatively low MBF estimates by the dual-sequence method in comparison to the other model-based approaches. At SE of 1.03, errors in MBF for the standard dose dual-sequence simulation in the absence of noise were less than 9%, but errors in v$_d$ were more substantial (up to 44%). The threshold SE value at which bias arises will depend on multiple parameters, primarily TS and native T$_1$. For absolute quantification using the dual-sequence approach, caution should be adopted when choosing an optimal TS for the low T$_1$ sensitivity sequence. While shorter values (potentially achieved through alternative k-space trajectories) will reduce sensitivity, they may also lead to bias due to corruption of the baseline data as described above.

The discussion has been limited so far to considerations of errors introduced by image noise and imperfect saturation. For model-based approaches using independent T$_1$ data (native or bookend), inaccuracy of those data could also introduce errors. Physiological parameter estimates were observed to show some sensitivity to simulated T$_1$ errors although the biases introduced into the parameter estimates was small.

Limitations

Several limitations apply to this study. Only a single set of imaging parameters were evaluated whereas sensitivities to various factors will vary between differing implementations of the techniques. The analysis was limited to assessing variation of errors with SE and T$_1$ measurement accuracy although additional sources of error that were not simulated (e.g., ineffective spoiling, inflow artefact (40), nonuniform sensitivity, slice profile, B$_1$ inhomogeneity and variations in bolus shape) could influence results. For correction of myocardial data, it was assumed that SI differences compared with blood arise solely through differences in T$_1$. Variations in factors contributing to S$_0$ (including T$_2^*$, proton density and coil sensitivity) were not included. Similarly, the T$_2^*$ shortening effects of contrast agent were not modelled, although this has been shown to be negligible at the short TE values used in DCE sequences (41). Contrast agent relaxivity was assumed to be identical in blood and myocardium and protons in both intra- and extracellular spaces were assumed to experience the effects of the contrast agent equally (i.e., fast water exchange was assumed) (42). While water exchange effects may lead to bias in absolute quantification of DCE-MRI data, this would be due to distortion of the tissue response curve. As all methods investigated in this study use the same tissue data, we would thus expect any bias due to water exchange to be consistent across the methods. The simulations were limited to a single AIF shape, a single set of native T$_1$ values, SNR and three sets of physiological parameters using a basic one-compartment model that is a simplified representation of the myocardium (which can be more fully described by two-region models) (5,43). Nonlinearity effects may be expected to vary with field strength and peak concentrations occurring in the LV blood pool and myocardium and noise induced bias may be more severe at lower SNR, particularly a lower field strengths.

In view of these limitations, the exact behavior of each method may exhibit substantial dependence on the protocol implemented, equipment used and characteristics of the subject. However, the results presented demonstrate fundamental patterns of behavior that should be considered when performing quantitative myocardial DCE-MRI.

Finally, while sequence parameters were matched as far as possible between the simulation and volunteer study some protocol differences did exist. Notably the simulation study assumed each DCE sequence was commenced with no contrast agent present, whereas in the volunteer protocol with multiple dual-bolus perfusion series this is not generally true.

CONCLUSIONS

Performance characteristics of nonlinearity correction methods for myocardial DCE-MRI, including a novel application of bookend T$_1$ data, have been assessed. The potential for substantial systematic errors to be introduced through application of nonlinear correction techniques at SNR values and SE values consistent with optimized saturation pulses and current technology, which yield good image quality for visual analysis, have been shown. Consequently caution should be adopted when comparing quantitative DCE-MRI results from studies using different nonlinearity correction methods, protocols or hardware.

The use of native T$_1$ based corrections has been shown to be very sensitive to imperfect saturation so should be avoided. The possibility that over-saturation consistent with the expected performance of RF saturation pulse trains optimized for cardiac MRI could lead to systematic errors in the dual-sequence approach has also been demonstrated and so this approach should be implemented with caution. Model-based methods using bookend T$_1$ measurement or proton density weighted images were most robust to moderate levels of imperfection in SE, and may be preferable to approaches using independent sampling of the AIF.

ACKNOWLEDGMENTS

This report is independent research supported by the National Institute for Health Research (D.A.B. funded by Doctoral Research Fellowship). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health. D.P.R. is funded by Heart Research UK and S.P. is funded by a British Heart Foundation Senior Fellowship. We are grateful to Dr. John Ridgway for critically reviewing an early draft.
of this manuscript. The authors declare that they have no competing interests.
Sensitivity of Quantitative Myocardial DCE-MRI

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

SUP. FIG. S1. Ground truth concentration-time curves used in the simulations.

SUP. FIG. S2. AIF signal-time curves generated in the simulations assuming ideal saturation efficiency. The red line shows the standard AIF (normal acquisition, full dose), blue shows the reduced dose pre-bolus for the dual-bolus method and magenta shows the AIF from the full dose acquired using the lower sensitivity sequence for the dual-sequence method. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S3. Myocardial signal-time curves generated in the simulations assuming ideal saturation efficiency. The same myocardial signal data (full dose, standard acquisition sequence) is used for each method. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S4. Signal enhancement-time curves used for deconvolution without nonlinearity correction (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S5. Estimated concentration-time curves used for deconvolution converted using native signal and T1 (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S6. Estimated concentration-time curves used for deconvolution converted using native signal from the saturation recovery sequence and the proton density weighted sequence (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S7. Signal enhancement-time curves used for deconvolution for the dual-bolus method (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF (scaled by the bolus:pre-bolus ratio). Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S8. Estimated concentration-time curves used for deconvolution estimated using the dual-sequence method and converted using native signal from the saturation recovery sequence and the proton density weighted sequence (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF. Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S9. Signal enhancement-time curves used for deconvolution for the dual-bolus method (assuming ideal saturation efficiency). Each coloured line shows a different tissue status and the black line shows the AIF (scaled by the bolus:pre-bolus ratio). Shading indicates one standard deviation of signal values at each time point.

SUP. FIG. S10. Example signal-time data from one volunteer.

Supporting Table S1 - Imaging parameters for the volunteer study.

Supporting Table S2 - T1 measurements from the 8 volunteers.
[AQ1] Please confirm that (1) this article contains Supporting Information and (2) the items are cited in the correct locations. Thank you.

[AQ2] Please provide highest academic degree(s) for the corresponding author. Thank you.

[AQ3] If desired, please provide the Corresponding Author’s Twitter handle (@handle).

AQ4: Please confirm that given names (red) and surnames/family names (green) have been identified correctly.