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Drought is considered to be a major threat to soybean production worldwide and yet
our current understanding of the effects of drought on soybean productively is largely
based on studies on above-ground traits. Although the roots and root nodules are
important sensors of drought, the responses of these crucial organs and their drought
tolerance features remain poorly characterized. The symbiotic interaction between
soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides
essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation
is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils
and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made
in our understanding of the drought impact on soybean root architecture and nodule
traits, as well as underpinning transcriptome, proteome and also emerging metabolome
information, with a view to improve the selection of more drought-tolerant soybean
cultivars and rhizobia in the future. We conclude that the direct screening of root and
nodule traits in the field as well as identification of genes, proteins and also metabolites
involved in such traits will be essential in order to gain a better understanding of the
regulation of root architecture, bacteroid development and lifespan in relation to drought
tolerance in soybean.
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INTRODUCTION

The world-wide soybean production in 2015/2016 will be 320.15 million metric tons (Global
soybean production.com, 2016). Sustainability of soybean yields is, however, threatened by
predicted climatic changes with persistent droughts over many parts of the world (Dai, 2013; Foyer
et al., 2016). Selection of more drought-tolerant soybean cultivars is therefore required to address
this imminent threat to food and protein security (Ku et al., 2013).

Recent advances in current understanding of the effects of drought on soybean growth have
predominantly been based on evaluation of above-ground (shoot) traits, with flowering and seed
stages particularly sensitive to drought stress. In contrast, drought effects on soybean roots, and
specifically root nodules, has been less studied. Moreover, relatively little information is available
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concerning how drought affects the symbiotic relationship
between nitrogen fixing soil rhizobia and the host plant
(Ferguson et al., 2010). This unique symbiotic relationship
is initiated by the plant through release of root flavonoids
into the rhizosphere, recognized by compatible Rhizobium sp.
Flavonoid signaling results in bacterial production of specific
lipochito-oligosaccharides (Nod factors) secreted by rhizobia
(Kondorosi et al., 2013). Nod factors are in turn recognized by
specific LysM receptor-like kinases located on root epidermal
cells. Nod factor binding results in genetic and metabolic
signaling cascades that are mediated, at least in part, by cell
specific nuclear Ca2+ oscillations (Charpentier and Oldroyd,
2013). The signaling cascade results in increased division of
cortical cells within the root infection area with formation
of composite structures derived from the two symbiotic
partners (Gage, 2004). This bacterial infection thread allows
rhizobia penetrating deep into the dividing cellular profile
resulting in a new organ, the N-fixing ‘nodule,’ housing
infected rhizobia replicating within nodule cells (Oldroyd
et al., 2011; Oldroyd, 2013). Inside infected cells, rhizobia
are encapsulated with a plant-derived membrane forming the
facultative organelle, the symbiosome (Oldroyd, 2013). The
symbiosome provides strict plant control on movement of
nutrients from bacteria and regulates rhizobial activity and
persistence. The symbiosis is facultative and initiated by nitrogen
starvation of the host plant (Maróti and Kondorosi, 2014). Within
the symbiosome, bacteria differentiate into an endosymbiotic
form (bacteroids) for fixing N2 into ammonium. This energy-
requiring process is dependent on photosynthate supplied by
the shoots. Fixation is catalyzed by the bacterial enzyme
nitrogenase requiring a low, but stable, oxygen environment
achieved in part through activity of a nodule localized oxygen
diffusion barrier. Continual oxygen flux to support bacteroid
respiration is finally ensured by the nodule expressed protein
leghaemoglobin.

The purpose of this mini-review is to provide an update on
the recent developments that have enhanced our understanding
of how drought influences soybean roots/nodules, with a
particular focus on root and nodule phenome and symbiotic
nitrogen fixation. Effects of drought on the soybean root/nodule
transcriptome, proteome and metabolome are also outlined as
illustrated in Figures 1 and 2.

DROUGHT-INDUCED CHANGES TO THE
ROOT PHENOME

Soybean has an allorhizic root system consisting of a primary
root (tap root) and lateral (basal) roots (Ao et al., 2010;
Fenta et al., 2014). Decreased root lengths and dry biomass
accumulation have been reported in many soybean accessions
under drought conditions (Thu et al., 2014). Drought not only
changes root architecture (root depth, root branching density,
and root angle) but also partitioning of root to shoot biomass
with an increase in root mass (Franco et al., 2011; Fenta et al.,
2014). Several studies have provided strong evidence that root
types either penetrating deep into the soil and attaining greater

FIGURE 1 | Below-ground plant organs affected by drought that can
be analyzed using omics technologies, including the rhizobia that
form symbiotic relationships with soybean roots.

FIGURE 2 | Effects of drought on the soybean root and nodule
phenome, transcriptome (TR), proteome (PR) and metabolome (ME).

“root mass at depth” (Lopes et al., 2011; Ali et al., 2016) or
roots with large xylem diameters and/or larger lateral root
systems with more root hairs are advantageous under drought
conditions (Tanaka et al., 2014; Vadez, 2014). Such roots tend
to have a greater total surface area, which facilitate maximal
moisture and nutrient extraction to maintain photosynthesis
(Blum, 2011; Lopes et al., 2011; Comas et al., 2013). The
soybean cultivar Jackson is an excellent example possessing this
type of root system with long roots growing deep into the
soil allowing better water uptake than other more drought-
sensitive cultivars (Serraj et al., 1997; Fenta et al., 2014).
However, identification of soybean cultivars with improved root
architecture characteristics still remains challenging. Classic root
phenotyping approaches including analysis of soil cores and
applying standard excavation techniques to determine root traits
are still the methods of choice (Fenta et al., 2014). Future
more accurate non-destructive methods under development
are transparent tubes (mini-rhizotrons), to measure with a
camera various root characteristics around the outside walls
of the tubes, or in situ tomographic measurements of the
root system with X-rays (Mooney et al., 2012; Eberbach et al.,
2013).
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CHANGES IN THE ROOT
TRANSCRIPTOME AND PROTEOME

Transcriptome analysis and Next-Generation Sequencing (NGS)
are current strategies to particularly study plant responses
to abiotic stress (Fan et al., 2013). Identification of genes
underpinning root traits and related drought responses have
recently received intensive interest (Manavalan et al., 2009;
Libault et al., 2010; Comas et al., 2013; Thao et al., 2013;
Satbhai et al., 2015). Among 3,000 genes strongly up-regulated
in roots by drought were several transcription factors, receptor-
like kinases, calcium signaling components as well as jasmonate
and abscisic acid biosynthetic genes (Tripathi et al., 2016).
Transcriptome responses to drought are also highly dependent
on stress intensity and duration as well as species and organs
investigated. In the case of soybean roots, 145 root genes were
for example differentially expressed due to drought. Identified
gene functions demonstrated a complex drought response with
genes involved in different multiple biochemical pathways related
to drought adaptation (Stolf-Moreira et al., 2011). Applying
the deep SuperSAGE method, increased expression of 1,127
unitags in a stress-tolerant soybean accession were associated
with responses to hormone stimuli, water stress, as well as
oxidative stresses (Neto et al., 2013). Other transcriptome studies
were carried out with soybean cultivars W82 and DT2008.
The genome of W82, often used as a model cultivar, was
sequenced several years ago (Schmutz et al., 2010). DT2008,
an economically important soybean cultivar and widely grown
in Vietnam (Vinh et al., 2010; Sulieman et al., 2015), has
high drought tolerance (Ha et al., 2013; Sulieman et al.,
2015) and better nodule development under drought when
compared to W82 (Sulieman et al., 2015). By comparing the
root transcriptomes of DT2008 and W82, seedlings under
normal and dehydration conditions (2 and 10 h treatment),
38172 soybean genes, which changed in expression, could
be annotated with high confidence (Ha et al., 2015). Data
suggested that higher drought tolerability of DT2008 roots, when
compared to W82, might be attributed to a higher number of
root genes induced by early dehydration than by prolonged
dehydration. The higher drought tolerability of DT2008 vs.
W82 might be further attributed to differential expression of
genes associated in osmo-protectant biosynthesis, detoxification,
cell wall-related proteins, kinases, transcription factors as well
as phosphatase 2C proteins (Ha et al., 2015). In particular,
the levels of transcripts encoding the auxin responsive factors
(ARFs) GmARF33 and GmARF50 were greatly increased in
shoots and roots. For example, GmARF50 transcripts were
rapidly increased by 15- and 30-fold after 2 and 10 h of
dehydration, respectively (Ha et al., 2013). Further, subjecting
Williams 82 to increasing drought conditions caused the total
differential expression of 6609 transcripts including many
genes involved in hormone (auxin/ethylene), carbohydrate, cell
wall-related secondary metabolism as well as transcription
factors controlling root growth (Song et al., 2016). However,
a more in-depth functional characterization is still required to
determine how these transcripts will lead to better drought
tolerance.

Several proteomics study have also been carried out to unravel
the abiotic stress response mechanism in soybean (Hossain et al.,
2013) and root proteins, changed in abundance due to drought,
were involved in osmotic-stress responses (Toorchi et al., 2009).
These proteomics studies also highlighted again the key role of
root genes involved in osmo-protection and encoding kinases
and transcription factors in the drought response. Interestingly,
decreased amounts of methionine synthase were also found
as a response to drought (Mohammadi et al., 2012; Oh and
Komatsu, 2015). This enzyme catalyzes the conversion of cysteine
into methionine in sulfur metabolism. This protein, of central
importance in sulfur metabolism, might therefore be a drought
responsive protein underpinning possible epigenetic controls
that are triggered in drought response. Lower methionine
synthase activity under drought might further negatively affect
soybean growth due to less available methionine for protein
biosynthesis. Furthermore, a great number of root metabolites,
such as coumestrol, also change during drought (Tripathi et al.,
2016). Coumestrol possibly stimulates mycorrhizal colonization
and there is emerging evidence that mycorrhizal plants have
improved drought tolerance (Armada et al., 2016).

EXPLORING THE NODULE PHENOME

Soybean has determinate nodules formed by the symbiotic
interaction of a soybean plant with Bradyrhizobium (Herridge
et al., 2008). Despite symbiotic N2 fixation is adequate to meet
the nitrogen needs of the soybean crop, high-yielding soybeans
benefit from supplemental N applications, since N2 fixation
capacities are not always sufficient to produce high yields.
However, nodule numbers are only decreased when soybean
plants are subjected to severe drought conditions (Fernandez-
Luquen et al., 2008; Márquez-García et al., 2015). Nodule drought
tolerance has been linked to the ability to sustain a supply of
photosynthate to the nodules during drought and to greater
nodule biomass (King and Purcell, 2001). The relationships
between the frequency and intensity of nodulation and root
growth and architecture are, however, still poorly understood,
particularly the factors that control nodule density per unit
root length in the absence and presence of stress. Furthermore,
although nitrate is required for root development, it has a
negative impact on nodulation (Ferguson et al., 2010). Therefore,
improving root and nodule development under drought requires
in the future a better understanding of the consequences of the
signaling of nitrate and related nutrients, such as phosphate, on
root development together with the impact of drought-induced
changes on nutrient availability on symbiotic nitrogen fixation.

Exposure to severe drought also impairs nitrogenase activity.
This may be caused by several factors including impairment of
the supply of photosynthate to the nodules to drive symbiotic
nitrogen fixation and breakdown of the oxygen diffusion barrier
or loss of leghemoglobin (King and Purcell, 2006; Arrese-Igor
et al., 2011). In exchange for photosynthate, soybean nodules
deliver reduced nitrogen in form of ureides (allantoin and
allantonic acid), mediated by UPS1 transporter proteins (Collier
and Tegeder, 2012), to the plant, providing the nitrogen that
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is required for biomass production and finally seed protein
production. However, the molecular mechanisms that support
ureide export to the plant via the xylem have so far not been fully
characterized.

EXPLORING THE NODULE
TRANSCRIPTOME AND PROTEOME

Studies on nodule transcriptome profiles have largely focused
on the early stages of nodule development. The release of
the complete soybean genome (Schmutz et al., 2010) and the
RNAseq atlas of genes expressed in fourteen different soybean
tissues, including nodules, (Severin et al., 2010) provide currently
a useful genetic resource to also study single nodule genes,
or gene networks, after drought exposure with automated
bioinformatics methods predicting also gene regulatory networks
(Zhu et al., 2013). A recently predicted soybean nodulation-
related regulatory gene network, consisting of 10 regulatory
modules, might be also applicable to investigate drought effects
on nodule gene expression. Transcriptome studies have been
generally limited by poor genome annotation, but the situation
is gradually improving with the growing annotated soybean
genome database (Severin et al., 2010). The previous application
of Suppression Subtractive Hybridisation (SSH) technology on
soybean nodules, in the absence and presence of drought, largely
identified sequences with unknown functions. Only relatively few
drought-responsive transcripts had known functions applying
this technology including ferritins and metallothionins involved
in metal detoxification, particularly in response to oxidative stress
(Clement et al., 2008). We recently also explored the nodule
cysteine protease transcriptome during developmental nodule
senescence. Several papain-like and legumain-like cysteine
proteases, also called vacuolar processing enzymes (VPEs), were
identified to be strongly expressed during nodule senescence (Van
Wyk et al., 2014). In nodules, papain-like cysteine proteases have
known functions in the regulation of bacterial symbiosis and
nitrogen fixation, they target for example leghemoglobin (Van de
Velde et al., 2006; Li et al., 2008). We have recently also found that
inhibition of papain-like cysteine protease activity can improve
soybean tolerance to drought and favors increased nodulation
(Quain et al., 2014, 2015). VPEs are involved in developmental
senescence and activation of pre-proteases. With their caspase-
like activity, they further play an important role in programmed
cell death (PCD) (Hara-Nishimura et al., 2005; Roberts et al.,
2012). Other such identified cysteine proteases with caspase-1
like activity include the 20S proteasome beta subunit 1 (PBA1;
casapase-3 like activity), DEVDase (Hatsugai et al., 2009; Gu
et al., 2010; Han et al., 2012), YVADase (Hara-Nishimura et al.,
2005), VKMDase (Bonneau et al., 2008), VEIDase, and TATDase
(Chichkova et al., 2010). Cathepsin B, also with caspase-3 activity
and responsible for PCD, is normally bound to an endogenous
cysteine protease inhibitor but is released upon perception of
PCD triggers (Ge et al., 2016). An interesting aspect would be
therefore to investigate in the future if exposure to drought may
compromise such protease-inhibitor interactions and hence lead
to PCD.

Proteome analyses on legume nodules have not only been
carried out to better understand the soybean symbiosome
(Clarke et al., 2015), but also to find drought-induced proteome
changes. The nodule proteomes of Medicago truncatula and
Glycine max were recently compared under drought and drought
caused the down-regulation of the entire nodule proteome.
Particular proteins down-regulated were lipoxygenases and
proteins involved in carbon, nitrogen and sulfur metabolism,
similar to the root proteome, and proteins involved in protein
turnover (Gil-Quintana et al., 2015). The study also highlighted
a high degree of similarity between both legume proteomes.
Research carried out on M. truncatula might be, therefore,
also directly applicable to other economically important
legume crops, such as soybean. Applicable findings include
that drought induces a major change in the metabolic profile
of M. truncatula nodules with accumulation of amino acids
(Pro, His, and Trp) and carbohydrates (sucrose, galactinol,
raffinose, and trehalose) associated with a decline of bacteroid
proteins involved in C-metabolism (Larrainzar et al., 2009).
Further applicable findings are that in M. truncatula nodules
methionine biosynthesis is particularly affected by drought
and that, despite sufficient S-availability, the nitrogen
fixation rate in response to drought declines. Such decline
is associated with a down-regulation of proteins involved in
biosynthesis of methionine and S-adenosyl-L-methionine
(SAM), a precursor in ethylene biosynthesis, as well as
ethylene biosynthesis (Larrainzar et al., 2014). These results
provide strong evidence for a central importance of sulfur
metabolism in the drought response. Also, the recent finding
of significant delay in drought-induced leaf senescence in
nodulated M. truncatula plants with nodulated plants recovering
more effectively from drought, relative to non-nodulated
plants, might also be applicable to soybean (Staudinger et al.,
2016).

FOCUS AREAS FOR INTENSIVE
EXPLORATION

Technology development is key to future progress. In particular,
a major focus must be more accurate, non-invasive monitoring
of root architecture and nodulation in the field. Extraction of
the entire root system from field-grown plants (“shovelomics”)
to determine drought-induced changes in root architecture is
often laborious and requires destructive root excavation (Fenta
et al., 2014). Scientists are often reluctant to work in the
field with such system. High throughput root and nodule
phenotyping under field conditions by direct screening of
root and nodule systems in the soil, without the need for
excavation, is therefore very likely crucial for any future soybean
improvement.

An exciting future task will also be the development of root
and nodule transcriptome, proteome as well as metabolome
maps in relation to drought (Nguyen, 2016). However, this
should also include more in-depth functional characterization
of transcripts/proteins/metabolites and how they lead to better
drought tolerance. Transcriptomic and proteomics studies
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already indicate that up-regulation of genes involved in osmo-
protection and coding for kinases and transcription factors
are playing a key role in the drought response in addition
to down-regulation of genes coding for proteins involved
in nitrogen and sulfur metabolism. Deeper understanding of
drought-induced changes in gene/protein/metabolite expression
patterns will provide information on gene/protein/metabolite
networks underpinning phenotypic traits relevant to stress
tolerance and also how they ultimately link to phenome
changes allowing new insights into changes required for drought
recovery.

Improving the soybean-rhizobia symbiosis might also
contribute to better drought tolerance. More robust rhizobia
with better osmo-tolerance of rhizobia to persist for longer
in droughted soils might thereby be a contributor (Mhadhbi
et al., 2013). Recent research has also provided evidence that
plant growth-promoting rhizobacterium (PGPR) improve plant
adaptation to drought by stimulating lateral root formation and
increasing shoot growth (Rolli et al., 2015) with stimulation partly
caused by bacterium-produced volatile organic compounds
(Wintermans et al., 2016). Also, salicylic acid to assemble a
better root microbiome might play a role, since salicylic acid
can modulate colonization of the root by specific bacterial
families (Lebeis et al., 2015). Pyrrolizidine alkaloids (PAs),
involved in plant cell re-programming for micro-symbiont entry,
might be further a contributor and a target for investigation.
A plant-homo-spermidine synthase (HSS), the first pathway-
specific enzyme of PA biosynthesis, is exclusively localized in
nodules (Irmer et al., 2015) suggesting that the plant is the main
PA producer. Investigation how drought affects expression of
soybean nodule HSS (Glyma.06g126700) might be therefore
interesting.

Drought might finally also affect expression of nodule specific
cysteine-rich antimicrobial peptides (NCR AMPs) essential for
bacteroid development and found in legumes with indeterminate
nodules (Mergaert et al., 2003; Horváth et al., 2015). In

M. truncatula nodules, the bacteria undergo an irreversible
differentiation process producing elongated polyploid bacteroids
that cannot resume cell division. This differentiation process
is controlled by nodule specific NCRs (Van de Velde et al.,
2010; Haag et al., 2011, 2012; Frendo et al., 2013; Horváth
et al., 2015). Although 138 NCRs were recently detected in
M. truncatula bacteroids (Durgo et al., 2015) such NCRs, or
peptides with similar antimicrobial functions, have so far not
been found in soybean. Search for similar peptides in soybean
and characterizing them under drought might be therefore an
interesting future task.
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