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The Journal of Immunology

Tbet or Continued RORgt Expression Is Not Required for

Th17-Associated Immunopathology

Verena Brucklacher-Waldert,* Cristina Ferreira,* Silvia Innocentin,* Shraddha Kamdar,†

David R. Withers,‡ Marika C. Kullberg,† and Marc Veldhoen*

The discovery of Th17 cell plasticity, in which CD4
+
IL-17–producing Th17 cells give rise to IL-17/IFN-g double-producing cells

and Th1-like IFNg
+
ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology

during inflammatory diseases. In this study, we show usingHelicobacter hepaticus-induced intestinal inflammation that IL-17ACre– or

Rag1Cre-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-g double-producing cells, but leads to a marked

absence of Th1-like IFNg+ ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal

inflammation in mice in which Tbx21 was excised in IL-17–producing or Rag1-expressing cells is indistinguishable from that

observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17ACre–mediated

deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-g double-producing cells as well as Th1-like IFN-g+ ex-Th17

cells. However, IL-17ACre–mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated

by Ag-specific Th1 cells. IL-17ACre–mediated deletion of Rorc reveals that RORgt is essential for the maintenance of the Th17 cell

lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17

subset, nor its progeny, is solely responsible for immunopathology or autoimmunity. The Journal of Immunology, 2016, 196: 4893–4904.

T
he immune system needs to rapidly and robustly respond

to pathogenic threats, whereas inappropriate responses to

benign stimuli must be avoided. For a long time, the CD4-

expressing Th cells that orchestrate adaptive immune responses

were thought to consist of two subsets, the Th type 1 (Th1) and Th

type 2 (Th2) cells (1). Regulatory T cells (Treg) were identified

based on their ability to prevent autoimmunity (2) and were able to

reduce the activity of both Th1 and Th2 subsets, thereby upholding

the paradigm of two ultimate effector lineage fates. However, in

recent years, this paradigm has undergone substantial revision.

Upon activation, Ag-inexperienced CD4+ T cells can differentiate

into multiple lineages, including Th1, Th2, Treg, Th17, Th9, and

follicular Th cells (Tfh) (3). The development of these Th subsets

is determined by the local environment, and especially, but not

exclusively, the cytokines present (4, 5).

Th subsets are largely defined by the signature cytokines they

produce and their lineage-associated transcription factors. Thus,

Th1 cells are characterized by their expression of the cytokine IFN-g

and the transcription factor T box expressed in T cells (Tbet) (6).

Th2 cells express IL-4, -5, -13, and GATA3 (7). Treg cells are

defined by the expression of forkhead box p3 (Foxp3) (8), and

Th17 cells express IL-17, IL-17F, and RORgt and RORa (9). Each

Th subset is often ascribed a specific role in immunity, such as

providing help to clear intracellular pathogens (Th1), helminths

(Th2), and extracellular bacteria and fungi (Th17) (3). Further-

more, Th subsets also play a prominent role in aberrant immunity.

Although Th1 cells were initially thought to be critical in auto-

immune disorders such as rheumatoid arthritis, type 1 diabetes,

and multiple sclerosis, the focus rapidly shifted to Th17 cells

being involved in these diseases (10, 11).

Shortly after the first description of Th17 cells, CD4+ T cells

producing both IL-17 and IFN-g (Th1/Th17 or IL-17/IFN-g

double producers) were discovered in both humans and mice (12,

13), their frequency sometimes outnumbering IL-17 or IFN-g

single producers (14). These IL-17/IFN-g double-producing cells

coexpress RORgt and Tbet (15–17). Detailed studies in mice

revealed not only the presence of IL-17/IFN-g double producers

(16, 18, 19), but the existence of IFNg+ ex-Th17 cells. Using a

fate reporter system in which IL-17–secreting cells are perma-

nently marked, a near complete conversion of Th17 cells to an

IFN-secreting Th1-like phenotype could be observed (20). These

Th1-like IFNg+ ex-Th17 cells have ceased to express most char-

acteristic factors associated with the Th17 lineage, such as IL-17

and RORgt (16, 19–21), and instead express Tbet and Runt-related

transcription factor (Runx) family members (22). The pathogenic

potential of Tbet-expressing ex-Th17 cells remains controversial.

Mouse models of autoimmunity in which Th17 cells have been

implicated in disease pathogenesis have been reported by several

laboratories to be dependent on Tbet (23–29), yet others have
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observed that in vitro polarized Tbet-deficient Th17 cells or Tbet-

deficient CD4+ T cells maintain a high pathogenic potential (30, 31).

In this study, we investigated whether the Th17 cell lineage and its

Tbet- and IFN-g–expressing progeny are directly responsible for

immunopathology during inflammatory responses associated with the

Th17 cell lineage. We used two models of inflammation, experi-

mental autoimmune encephalomyelitis (EAE) and the Helicobacter

hepaticus typhlocolitis model, to examine whether conversion of

Th17 cells into Th1-like cells (defined by the expression of Tbet and

IFN-g, and absence of RORgt, IL-17A, and IL-17F) is necessary for

immunopathology. The use of an IL-17A-Cre mouse (20) enabled us

to track the fate of cells of the Th17 cell lineage as well as condi-

tionally remove genes of interest specifically in IL-17–producing

cells and their descendants. As a control, we also made use of a

Rag1-Cre mouse to allow us to study the influence of Rag1Cre-

mediated excision of similar genes. We show that the IL-17ACre– or

Rag1Cre-mediated removal of Tbx21 does not impact on the gener-

ation of IL-17/IFN-g double producers, but markedly blocks the

generation of Th17 cell–derived Th1-like cells during H. hepaticus-

induced colitis without reducing immunopathology. During EAE

both IL-17/IFN-g double producers and Th17 cell–derived Th1-like

cells are markedly reduced after IL-17ACre–mediated Tbx21 deletion,

but this only modestly reduced immunopathology. Finally, we dem-

onstrate using Rag1DTbet, Rag1DRORa, and IL-17ADRORgt mice that

neither Th17 cell conversion toward Th1-like cells, long-term

maintenance of Th17 cells, nor Tbet expression in lymphocytes is

essential for the induction of EAE. Together, our findings imply that

T cell–associated pathogenicity may not be solely attributed to the

Tbet- and IFN-g–expressing progeny of the Th17 cell lineage.

Materials and Methods
Mice

C57BL/6J, IL-17ACre Rosastop-tdRFP (20), IL-17ACre Tbx21fl/fl Rosastop-tdRFP,
IL-17ACre eomesodermin (Eomes)fl/fl Rosastop-tdRFP, Rag1Cre Rosastop-tdRFP

(32), Rag1Cre Tbx21fl/fl Rosastop-tdRFP, Rag1Cre Rorafl/fl Rosastop-tdRFP,
Rag22/2 (33), and IFN-geYFP [Yeti; yellow-enhanced transcript for IFN-g
(34)], all on the C57BL6/J strain, were bred at the Babraham Institute.
IL-17ACre Rorgtfl/fl Rosastop-tdRFP were bred at the University of Birmingham.
Tbx21fl/fl and Eomesfl/fl (35) were obtained from S. Reiner (Department of
Microbiology and Immunology and Department of Pediatrics, College of
Physicians and Surgeons, Columbia University, New York, NY), Rorafl/fl (36)
from A. McKenzie (Medical Research Council Laboratory of Molecular
Biology, Cambridge, U.K.), and Rorgtfl/fl from JAX Laboratories. All animals
were bred and maintained under specific pathogen-free conditions, and ex-
periments were conducted in accordance with the United Kingdom Scientific
Procedures Act (1986) under Project Licenses authorized by the United
Kingdom Home Office and local ethical review committees (EAE, Babraham;
H. hepaticus, York). Animals employed tested negative for Abs to specific
murine viruses, including murine norovirus, were free of Helicobacter spp. as
assessed by PCR, and were .6 wk old when used.

In vitro T cell cultures

For T cell differentiations, naive CD4+CD62L+ T cells were isolated from
spleens by magnetic beads following the manufacturer’s instructions
(Miltenyi Biotec), or by flow cytometric sorting of CD4+CD252CD26L+CD44lo

cells to .98% purity, as previously described (37). Briefly, cells were
cultured in IMDM supplemented with 2 mM L-glutamine, 100 U/ml peni-
cillin, 100 mg/ml streptomycin, 5 3 1025 M 2-ME, and 5% FBS. Th17 and
Th1 cells were differentiated in 96-well plates coated with 2 mg/ml anti-CD3
(clone 2C11; BioXcell) and 2 mg/ml anti-CD28 (clone 37.51; BioXcell) in
the presence of either 20 ng/ml IL-6, 0.2 ng/ml TGF-b1 (PeproTech), 10 mg/ml
anti–IFN-g (clone XMG1.2; BioXcell), and 5 mg/ml anti–IL-4 (clone
11B11; BioXcell) (Th17 condition) or 2 ng/ml IL-12 (PeproTech) and
5 mg/ml anti–IL-4 (Th1 condition). For T cell proliferation, naive CD4+

T cells were loaded with 2.5 mM CFSE (Lifesciences).

EAE induction

For active EAE induction, animals were injected s.c. with 250 mg myelin
oligodendrocyte glycoprotein (MOG)35–55 peptide (ProImmune) emulsi-
fied in IFA (Sigma-Aldrich, Gillingham, U.K.) supplemented with 250 mg

Mycobacterium tuberculosis extract H37Ra (Difco). The animals also re-
ceived 200 ng pertussis toxin (List Biological Laboratories) i.p. on days
0 and 2. For passive EAE induction, CD4+RFP+ cells were sorted by flow
cytometry from lymph nodes and spleens of EAE-induced IL-17ACre

Rosastop-tdRFP mice on day 17 post-MOG peptide immunization, and 23 105

CD4+RFP+ cells (.98% pure) were injected i.v. into Rag22/2 mice. Rag22/2

hosts were injected s.c. with 250 mg MOG35–55 peptide (ProImmune)
emulsified in IFA (Sigma-Aldrich) supplemented with 250 mg M. tuber-

culosis extract H37Ra (Difco) 5 wk after adoptive transfer. Clinical signs
of EAE were assessed blindly and according to the following scores: 0, no
signs of disease; 1, flaccid tail; 2, impaired righting reflex and/or gait; 3,
partial hind limb paralysis; 4, total hind limb paralysis; and 5, total hind
limb paralysis with partial forelimb paralysis.

H. hepaticus infection

To induce typhlocolitis, mice were allocated to treatment groups and inoc-
ulated intragastrically with 1.5 3 107 H. hepaticus NCI-Frederick isolate 1A
(38), isolated from the same mouse colony as isolate Hh-1 (American Type
Culture Collection strain 51449) (39) and treated i.p. with 1 mg anti–IL-10R
(clone 1B1.3a) on days 0 and 7 of H. hepaticus infection, as described
previously (40). One week after the last mAb injection, mice were sacrificed,
and mesenteric lymph nodes (mLN) and large intestines (cecum and colon)
were collected for analysis. A piece of ascending colon (∼1 cm from the
cecum) was fixed in buffered 10% formalin, and paraffin-embedded sections
were stained with H&E (Mary Lyon Centre at MRC Harwell, Oxfordshire,
U.K.). Histology sections were evaluated in a blinded fashion using a scoring
system based on epithelial hyperplasia and lamina propria (LP) cellularity
(0 to 3 each), and goblet cell depletion, submucosal inflammation, edema,
crypt abscesses, and ulcers (0 to 1 each). A total score was calculated by
adding the individual scores. A typical score for a noninflamed colon is,1.5.

Cell preparations and flow cytometry

For EAE experiments, single-cell suspensions were prepared from spleens,
lymph nodes, lungs, Peyer’s patches, and spinal cord. CNS-infiltrating
immune cells were isolated from the spinal cord by isolating the soft tis-
sue from the spine and mashing it through 70-mm mesh filter, followed by
36.5% Percoll (Sigma-Aldrich) separation. For H. hepaticus experiments,
single-cell suspensions were prepared from mLN. Ceca and colons were
cut into 3- to 5-mm pieces and incubated twice in RPMI 1640 containing
10 mM HEPES, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM glu-
tamine, 1% FCS, 1 mM DTT, and 5 mM EDTA for 20 min at 37˚C while
shaking to release epithelial cells. Tissue pieces were then digested with
Liberase TL (0.3125 mg/ml; Roche, Burgess Hill, U.K.) and DNase I (125 U/ml;
Sigma-Aldrich) in RPMI 1640 containing 10 mM HEPES, 100 U/ml
penicillin, 100 mg/ml streptomycin, 2 mM glutamine, and 1% FCS for 1 h
at 37˚C while shaking. The resulting tissue suspension was passed through a
70-mm cell strainer, centrifuged, resuspended in 40% Percoll, and underlayed
with 80% Percoll. After centrifugation at 6003 g for 20 min at 10˚C, LP cells
were recovered from the 40/80% interface and resuspended in medium.

For cytokine profiles, cells were stimulated for 4 h with 500 ng/ml PdBU
and 500 ng/ml ionomycin (EAE experiments) or 10 ng/ml PMA and 1 mg/ml
ionomcin (H. hepaticus experiments) in the presence of brefeldin A (all re-
agents from Sigma-Aldrich). Cells were stained with anti-CD4, anti-CXCR5,
anti-CD44, anti-CD3, and anti-PD1 (EAE experiments) or anti-CD4 and anti-
CD3 (Hh experiments) and a fixable viability dye, followed by intracellular
staining with anti–IL-17A, anti–IL-17F, anti–IFN-g, anti-TNF, anti–GM-CSF
(all BioLegend) (EAE experiments) or anti–IL-17A, anti–IFN-g, and anti-
Tbet (all from eBioscience) (Hh experiments). The proportion and abso-
lute numbers of T cells were determined by including counting beads
(Spherotech). I-Ab/MOG38–49 tetramer was obtained through the National
Institutes of Health Tetramer Facility and used according to their guidelines.
Samples were analyzed on a Fortessa 4 flow cytometer (BD Biosciences)
(EAE experiments) or a CyAn ADP flow cytometer (Beckman Coulter)
(Hh experiments), and data were analyzed using FlowJo software (Tree Star).

Statistical analysis

The p values were calculated with a two-tailed Student t test. Differences
were considered statistically significant with p , 0.05. Significance is
indicated as follows: *p , 0.05, **p , 0.01, and ***p , 0.001.

Results
Immunopathology coincides with appearance of Th17-derived

IFN-g producers

We have previously reported in EAE that Th17-derived Th1-like

cells become the dominant T cell population in the CNS (20). To

4894 DISPENSABLE ROLE OF Tbet AND RORgt IN Th17 IMMUNOPATHOLOGY
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examine the role of Tbet in Th17 cells and their Th1-like progeny in

pathology, we made use of two models in which Th17 to Th1-like

cell conversion has been established: EAE and the H. hepaticus

typhlocolitis model (16, 20). Using IL-17Acre Rosa26stop-tdRFP

lineage-reporter mice (from hereon called IL-17AWT mice) in which

a cell that has turned on IL-17 production is specifically and perma-

nently marked with RFP, we readily detected within the RFP+CD4+

T cell population the presence of single IL-17 (6–36%), double IL-17/

IFN-g (9–23%), and single IFN-g producers (13–70%). These

cell populations were found in IL-17AWT mice with EAE or

H. hepaticus-induced colitis both at the site of inflammation (CNS

and LP, respectively) and in draining lymph nodes (Fig. 1A). Under

steady state conditions in the large intestine, the proportions of

IL-17– or IFN-g–producing CD4+ T cells average at 3–4%, indi-

cating that the enhanced frequencies of cytokine-positive CD4+

T cells observed in the intestine are induced following H. hepaticus

inoculation (data not shown) (16). To gain insight into the generation

and distribution of these three subpopulations, we performed a ki-

netic analysis upon EAE induction. We analyzed IL-17 and IFN-g

expression in RFP+ CD4+ T cells of IL-17AWT mice in draining

(inguinal) lymph nodes, the peritoneal cavity, blood, spleen, lungs,

and the CNS before MOG35–55 immunization, at day 6 prior to onset

of clinical signs (presym), and at day 17 during established EAE

(peak). In secondary lymphoid tissues, peritoneal cavity, blood, and

lung, the fraction of Th17 cells (IL-17 single positive) within the

RFP+CD4+ T cell compartment increased during the presymptom-

atic phase, and regressed at the peak of the disease in favor of IL-17/

IFN-g double-producing cells and IFN-g–producing ex-Th17 cells

(Fig. 1B). In the CNS, all three cell populations were detectable at

their highest levels at the peak of the disease (Fig. 1B). We con-

firmed that RFP+ cells were the majority of CD4+ T cells present in

the CNS at the peak of the disease, and 46.1% 6 17.41 of these

RFP+ cells were IFN-g single-producing ex-Th17 cells (data not

shown). The total number of Th17 cells in inguinal lymph nodes

(iLN) declined during peak of clinical EAE symptoms, whereas in

all other organs total Th17 cell numbers were highest at the peak of

the disease (Fig. 1B). IL-17/IFN-g double-producing T cell numbers

remained low before disease onset, and increased during the peak

clinical phase in all organs (Fig. 1B). Numbers of ex-Th17 cells,

with a Th1-like profile (RFP+, IFN-g+, IL-172), increased during

peak clinical scores in all organs (Fig. 1B) and also outnumbered

bona fide Th1 cells in the iLNs, blood, spleen, and CNS (data not

shown) (20). Thus, the majority of CD4+ T cells present in the target

organ during EAE in IL-17AWT mice are Th17 cells, and their

progeny have converted to an IL-17/IFN-g double-producing or Th1

cell-like phenotype. The appearance of these latter two populations

coincides with the onset and maintenance of clinical disease.

To determine what cell population harbors Ag-specific T cells, we

used MOG38–49 MHC-II tetramer staining in IL-17Acre Rosa26stop-tdRFP

IFN-geYFP mice (from hereon called IL-17AWTIFN-geYFP mice) in

which IL-17 is lineage marked by RFP and IFN-g protein expression

reported via eYFP (20, 41). We determined the proportion of MOG38–49

MHC-II tetramer-positive cells within activated CD4+CD44hi T cells

that were negative for RFP and eYFP, single positive for either,

or positive for both. In line with an important role for Th17 cells in the

initiation of EAE (11), the majority of Ag-specific CD4+ T cells in

the CNS was found within the Th17 cells (eYFP2RFP+) and the

Th17 cell–derived IL-17/IFN-g double or IFN-g single producers

(eYFP+RFP+), but not in bona fide Th1 cells (eYFP+RFP2) (Fig. 1C).

For H. hepaticus–induced intestinal pathology, full conversion

of Th17 to Th1 is not required

To examine the importance of the Th17 to Th1-like cell conversion

for the onset and progression of immunopathology, we generated

mice in which Tbx21 is conditionally deleted upon IL-17 ex-

pression and in which IL-17–producing T cells are permanently

marked by RFP (IL-17ACre Tbx21fl/fl Rosa26stop-tdRFP, from

hereon called IL-17ADTbet). The IL-17ADTbet mice exhibited nor-

mal gross development and were born according to a Mendelian

distribution (data not shown). Moreover, we confirmed efficient

and specific Tbx21 excision in RFP+ cells from IL-17ADTbet mice

by PCR (data not shown). The in vitro differentiation potential of

naive CD4+ T cells toward the Th1 or Th17 cell lineages as well

as their proliferation were similar in IL-17ADTbet and IL-17AWT

control mice (Fig. 2A, 2B), demonstrating that polarization toward

Th17 and Th1 cells was not affected by the IL-17ACre–mediated

removal of Tbx21.

Th17-derived Th1-like cells have been detected in H. hepaticus-

induced intestinal inflammation in which their generation corre-

lates with the development of pathology (16). To examine the role

of Tbet in Th17 to Th1 conversion in this model, IL-17AWT and

IL-17ADTbet mice were given H. hepaticus plus anti–IL-10R mAb

to induce typhlocolitis, and colonic inflammation was examined 2

wk later. To exclude the potential initiation of Th17 to Th1 cell

conversion prior to Tbx21 excision giving rise to IL-17/IFN-g

double-producing T cells, we also included in these experiments

Rag1Cre Rosastop-tdRFP and Rag1Cre Tbx21fl/fl Rosastop-tdRFP mice

(from hereon called Rag1WT and Rag1DTbet mice). Rag1DTbet mice

allowed us to study the influence of Rag1-mediated Tbx21 exci-

sion on the development of H. hepaticus-induced pathology and

Th17 conversion. Our findings demonstrate that the degree of

colonic pathology was indistinguishable between H. hepaticus/

anti–IL-10R–treated IL-17AWT, IL-17ADTbet, Rag1WT, and Rag1DTbet

mice (Fig. 2C). Within the CD4+ T cells not derived from Th17

cells (RFP2 cells), we did not observe any differences in pro-

portion or cell numbers expressing IL-17 or IFN-g between

IL-17ADTbet and IL-17AWT controls (Fig. 2D, 2E). As expected,

very few RFP2CD4+ T cells were observed in Rag1WT and

Rag1DTbet mice (Fig. 2E). When examining the RFP+ population,

the percentage of LP IL-17 single-producing Th17 cells was sig-

nificantly enhanced in IL-17ADTbet compared with IL-17AWT an-

imals and in Rag1DTbet compared with Rag1WT mice (Fig. 2D).

However, upon IL-17ACre–mediated Tbx21 deletion, CD4+ T cells

in mLN and LP failed to fully switch to Th1-like cells (Fig. 2F),

and both the percentage and number of RFP+ Th1-like cells were

almost absent (90% reduction) in H. hepaticus/anti–IL-10R–

treated IL-17ADTbet compared with IL-17AWT mice (Fig. 2D, 2E).

A similar picture was observed in the LP of Rag1DTbet mice

(Fig. 2D–F). It could be possible for bona fide Th1 cells to

compensate for the reduction in Th17-derived Th1-like cells in the

IL-17ADTbet mice. However, we found no difference in IFN-g–

producing CD4+RFP2 cell proportions or numbers between this

strain and IL-17AWT mice (Fig. 2D, 2E). That Tbx21 excision had

worked efficiently in the two DTbet strains was confirmed by flow

cytometry showing the absence of Tbet staining in IFN-g and IL-

17/IFN-g–producing CD4+RFP+ populations of IL-17ADTbet and

Rag1DTbet mice, but the presence of Tbet in the CD4+RFP+ cells

from IL-17AWT and Rag1WT animals (Fig. 2G, 2H). Together,

these data indicate that colonic immunopathology during

H. hepaticus-induced typhlocolitis does not depend on the gen-

eration of Tbet- and IFN-g–expressing ex-Th17 cells or the ac-

tivity of Tbet; however, a role for IL-17/IFN-g double producers

cannot be excluded.

Conditional deletion of Tbet prevents Th17 to Th1 cell

conversion in EAE

The role of specific CD4+ Th subsets in EAE pathogenesis remains

poorly understood with conflicting findings in the literature
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FIGURE 1. The Th17 cell lineage dominates during inflammation. IL-17A fate-reporter mice (IL-17AWT) were subjected to MOG/CFA administration to

induce EAE or given H. hepaticus (Hh) plus anti–IL-10R mAb to induce typhlocolitis, and the cytokine-secreting phenotype of Th17 lineage-positive

(RFP+) CD4+ cells was assessed at different time points. (A) Representative intracellular flow cytometry plots for IFN-g and IL-17 of gated RFP+CD4+

T cells during EAE (day 17) in iLN and CNS, or during H. hepaticus colitis (day 14) in mLN and large intestinal LP. (B) Dynamics of Th17 cell–derived

populations as a proportion of RFP+CD4+ T cells (upper panels) and their absolute numbers (lower panels) in indicated tissues during EAE induction (PEC,

peritoneal exudate cells). Naive = prior to MOG/CFA administration, presym = presymptomatic (day 6), and peak = peak of clinical score (day 17). Values

represent average 6 SEM, n = 4/time point. (C) Representative staining for I-Ab/MOG38–49 (top flow panels) and average distribution (bottom panel) in

indicated T cell populations as proportion of CD4+CD44hi T cells harvested from the CNS of IL-17AWTIFN-geYFP mice at day 17 after EAE induction. Data

are representative of two independent experiments (average 6 SEM, n = 6), ***p , 0.001.
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[for review, see (42)], but so-called polyfunctional T cells or IL-

17/IFN-g double-producing CD4+ T cells have been implicated in

the disease process (43). To examine the role of Tbet in Th17 cell

plasticity in EAE, we performed a detailed analysis of lineage-

marked Th17 cells and their progeny in IL-17AWT versus

IL-17ADTbet mice. Upon MOG35–55 immunization, Th17 cells

were readily detected in the iLN and CNS of IL-17AWT and

IL-17ADTbet mice (Fig. 3A). Compared with the IL-17AWT hosts,

we found an enhanced proportion and a 3-fold increase in the

number of IL-17 (and IL-17F) single-producing cells in the CNS

of IL-17ADTbet mice 17 d post-MOG peptide administration, in-

dicating a greater stability of the IL-17–producing Th17 cell

profile upon Tbx21 excision (Figs. 3B, 3C, 4D). Consistent with

the findings in H. hepaticus-induced colitis, Th17-derived IFN-g+

Th1-like cells were absent in IL-17ADTbet mice compared with

IL-17AWT controls at this same time point after EAE induction

FIGURE 2. Th17 to Th1 conversion is not required

for H. hepaticus-induced intestinal pathology. IL-

17AWT mice were crossed with floxed Tbx21mice and

their naive T cell polarization potential assessed

in vitro (A and B), and IL-17AWT, IL-17ADTbet,

Rag1WT, and Rag1DTbet mice were inoculated with

H. hepaticus (Hh) plus anti–IL-10R, and, 2 wk later,

ceca, colons, and mLN were collected and processed

for histology (C) and/or intracellular staining for cy-

tokines and Tbet (D–H). (A) In vitro differentiation of

naive CD4+ T cells from IL-17AWT controls and IL-

17ADTbet mice toward Th1 and Th17 lineages. (B)

Proliferation profile of naive CD4+ T cells cultured

under Th17-polarizing conditions from indicated

mouse lines. (C) Histology scores of ascending colon

from indicated mouse lines 2 wk post-Hh/anti–IL-10R

administration (n = 4 per group except for Rag1WT

where only two mice were examined). Data for IL-

17AWT and IL-17ADTbet mice are representative of two

independent experiments. (D and E) Proportions (D)

and numbers (E) of LP RFP+CD4+ and RFP2CD4+

T cells expressing IFN-g alone, IL-17 alone, or both

IFN-g and IL-17 from pooled cecum and colon from

indicated mouse lines 2 wk post-Hh/anti–IL-10R ad-

ministration. Data for IL-17AWT and IL-17ADTbet

mice are representative of two independent experi-

ments. (F) Dot plots show the proportions of IL-17

single-positive, IL-17/IFN-g double-positive, and

IFN-g single-positive cells within the mLN and LP

RFP+CD4+ T cell population from indicated mouse

lines 2 wk post-Hh/anti–IL-10R administration. (G)

Assessment of Tbet expression by flow cytometry

staining in RFP+ (top row) or RFP2 (bottom row) LP

CD4+ T cells positive for either IL-17 alone (filled

gray), IL-17 and IFN-g (thin line), or IFN-g alone

(bold line) from indicated mouse lines 2 wk post-Hh/

anti–IL-10R administration. (H) Average mean fluo-

rescence intensity (MFI) of Tbet staining of indicated

RFP+ CD4+ T cell subsets derived from indicated

mouse lines. Data are from the mice shown in (D) and

(E) (averages 6 SEM). *p , 0.05, **p , 0.01,

***p , 0.001.
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(Fig. 3A–C). However, in marked contrast to H. hepaticus-induced

colitis, both the proportion and number of IL-17/IFN-g double-

producing T cells were reduced (.95%) during EAE (Fig. 3A–C).

As Eomes can be an important mediator of T cell IFN-g expression

and T cell cytotoxicity (44), we next used mice in which Eomes

is conditionally deleted in IL-17–expressing cells (IL-17ADEomes

mice). Our data show that the proportions of IL-17– and IFN-g–

producing T cells were indistinguishable in IL-17ADEomes and

IL-17AWT control mice (Fig. 3A). Together, these results demon-

strate that Tbet, but not Eomes, is required for the efficient con-

version of Th17 cells to IL-17/IFN-g double-producing and IFN-g

single-producing CD4+ T cells in the EAE model.

As Th17 cells have also been shown to convert to Tfh in the

intestine (45), we next analyzed Th17-derived Tfh cells in Peyer’s

patches in nonimmunized IL-17AWT versus IL-17ADTbet mice.

Th17-derived Tfh cells (identified as CD4+RFP+CXCR5+PD-1+

cells) were detected in similar proportions in Peyer’s patches of

IL-17AWT controls and IL-17ADTbet mice (Fig. 3D), together

suggesting that Tbet is not required for the conversion of Th17

cells to Tfh cells. Furthermore, it highlights that Tbet is not required

for the conversion of Th17 cells per se, but only for the generation

of IFN-g–producing Th1-like cells. These results indicate that the

IL-17ADTbet mouse is a promising model to specifically study the

role of Th17 to Th1 plasticity in autoimmunity and infection.

Tbet-deficient Th17 cell populations have an altered

cytokine profile

Because Th17 cells and IL-17/IFN-g double-producing T cells

have been implicated in the pathogenesis of EAE, we analyzed

the cytokine profile of the Th17 cell lineage in the presence or

absence of Tbet. Seventeen days after induction of EAE, the CD4+

T cell populations present in the CNS were analyzed for their

cytokine profile by flow cytometry. As expected, inflammatory

cytokines assayed, with the exception of GM-CSF, were enriched

within the RFP+ Th17 cell lineage compared with the RFP2

population (Fig. 4A–C) (20). No significant difference in cytokine

production by the RFP2 non-Th17 lineage-derived cells was

found between IL-17AWT and IL-17ADTbet hosts (Fig. 4A–C).

The prevention of Th17 to Th1 cell conversion in IL-17ADTbet

mice resulted in changes in cytokine profiles of the Th17 cell–

derived populations. IL-17F–expressing cells were significantly

increased in the Tbet-deficient Th17 cell population (Fig. 4A, 4D).

This increase in number was found in all RFP+ Th17 cell–derived

populations independent of their IL-17 expression profile. The

proportion and number of GM-CSF–expressing T cells, a cytokine

strongly associated with autoimmunity and required for the in-

duction of EAE (46), were significantly altered in the Th17 cell

population from IL-17ADTbet mice compared with controls. Thus,

in the absence of Tbet, there were more IL-17+ GM-CSF2 RFP+

cells, whereas in the presence of Tbet there were more IL-172

GM-CSF+ RFP+ cells (Fig. 4B). Although the total proportion of

GM-CSF–expressing CD4+ T cells was reduced, the total number

of cells expressing GM-CSF was not significantly altered when

the Th17 cell subset was Tbet sufficient or deficient (Fig. 4D).

Expression of TNF followed a similar pattern as GM-CSF. In the

absence of Tbet, there were more IL-17+ TNF2 RFP+ cells,

whereas in the presence of Tbet there were more that have lost

their IL-17 expression (IL-172TNF+RFP+) cells (Fig. 4C). The

combination of RFP+ cells expressing both IL-17 and TNF was

significantly higher in the IL-17ADTbet mice compared with the

FIGURE 3. Tbet is required for Th17 to Th1 conversion in EAE. IL-17A fate-reporter mice (IL-17AWT) were crossed with floxed Tbx21 or Eomes mice.

T cells were sourced from the iLN or CNS of IL-17AWT controls, IL-17ADTbet, and IL-17ADEomes mice at the onset of EAE symptoms (day 17) and

characterized for cytokine production (A–C), or from the Peyer’s patches of nonchallenged mice (D). (A) Flow cytometry for IFN-g and IL-17 in RFP+

Th17 lineage–positive cells in indicated mouse lines and tissues 17 d after EAE induction. (B) Representative dot plots of RFP+ (top row) or RFP2 (bottom

row) CD4+ T cells harvested from the CNS at day 17 post-EAE induction from IL-17AWT controls (left panels) and IL-17ADTbet mice (right panels) and

stained for IFN-g and IL-17. (C) RFP+ Th17 lineage-positive (top panels) and RFP2 lineage-negative (bottom panels) cells from IL-17AWT controls (open

bars) or IL-17ADTbet mice (black bars) were stained for IL-17 and IFN-g, and proportions (left panels) and cell numbers (right panels) of cells expressing

IL-17 and/or IFN-g are shown. (D) Staining for PD-1 and CXCR5 in Peyer’s patches of indicated mouse lines. Dot plots are gated on RFP+CD4+ cells. Data

are from two independent experiments with n = 4–5 per experiment (averages 6 SEM). *p , 0.05, ***p , 0.001.
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IL-17AWT controls (Fig. 4C). The overall proportion of TNF-

producing cells was, however, not significantly different in

CD4+ T cells from IL-17ADTbet mice (85.4 6 5) compared with

IL-17AWT controls (76.56 6) (Fig. 4D). These results suggest that

TNF and GM-CSF expression do not depend on the expression of

Tbet and may precede the conversion of Th17 to Th1-like cells.

Furthermore, it shows that Tbet expression alters the combination

of cytokines simultaneously expressed by the same T cell, but

does not affect the total number of TNF- or GM-CSF–producing

CD4+ T cells present in the CNS.

Th17 to Th1 cell conversion is not required for EAE

pathogenesis

As IL-17/IFN-g double-producing T cells have been associated

with autoimmune and inflammatory pathology (19, 21, 47, 48), we

next investigated the susceptibility of the IL-17ADTbet mouse to

EAE. We found no difference with respect to timing of EAE onset

between IL-17ADTbet and IL-17AWT controls (Fig. 5A). However,

the maximum clinical scores were reduced in IL-17ADTbet hosts

(Fig. 5A). As Tbet and other factors implicated in immunopa-

thology, such as GM-CFS, are not exclusively expressed by the

Th17 cell lineage, we next assessed the susceptibility of Rag1DTbet

mice in which Tbet was conditionally deleted via Rag1-Cre in

all lymphocytes. In this case, Rag1DTbet mice showed a more pro-

nounced reduction in EAE susceptibility, with later onset and lower

maximum clinical score than IL-17AWT, Rag1WT controls, and

IL-17ADTbet mice (Fig. 5A). This finding indicates that blocking

Th17 to Th1 cell conversion as well as de novo Th1 cell differen-

tiation had a more pronounced impact on reducing EAE pathogenesis

than removal of Tbet in IL-17–expressing cells only. However, we

cannot exclude an additional role for Tbet in other lymphocytes that

once expressed Rag1. As we observed in the IL-17ADTbet animals,

Rag1DTbet mice showed an increased proportion and number of

IL-17–producing cells and a marked decrease in the proportion and

number of IFN-g–producing CD4+ T cells in the CNS at day 17 post-

MOG immunization (Fig. 5B). Although no difference in the pro-

portion of GM-CSF–producing T cells was observed in Rag1DTbet

mice compared with Rag1WT controls, the number of GM-CSF–

producing CD4+ T cells in the CNS was reduced in the former an-

imals (Fig. 5B). The reduction in IFN-g– and GM-CSF–producing

FIGURE 4. Characterization of Tbet-

deficient Th17 cells in EAE. T cells were

sourced from the CNS of IL-17AWT

controls and IL-17ADTbet mice at the peak

of EAE symptoms (day 15–17) and char-

acterized for their cytokine production

(A–D). RFP+ Th17 lineage-positive (top

panels) and RFP2 lineage-negative (bottom

panels) cells from IL-17AWT controls

(white bars) or IL-17ADTbet mice (black

bars) were stained for IL-17, GM-CSF,

and TNF, and proportions (left panels)

and cell numbers (right panels) of cells

expressing IL-17 and/or IL-17F (A), GM-

CSF (B), and TNF (C) are shown. (D)

Total proportion and numbers of IL-

17F–, GM-CSF–, and TNF-producing

CD4+ T cells present in the CNS of

indicated mouse lines (averages 6 SEM,

n = 4–5). *p , 0.05, **p , 0.01, ***p ,

0.001.
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T cells in the CNS of Rag1DTbetmice correlated with reduced maximum

EAE scores (Fig. 5A).

We subsequently investigated whether the block in Th17 to Th1 cell

conversion was maintained long-term in vivo. Seventeen days fol-

lowing MOG35–55 immunization of IL-17AWT and IL-17ADTbet mice,

RFP+CD4+ T cells were isolated from the draining iLNs and trans-

ferred to Rag22/2 hosts. Upon subsequent MOG35–55/CFA immuni-

zation of the recipient mice, a delayed onset of EAE was observed in

the group receiving IL-17ADTbet RFP+CD4+ T cells, although equally

high clinical scores were observed in both host groups (Fig. 5C).

Furthermore, the majority of IL-17AWT control cells had converted

to a Th1-like IFN-g–expressing phenotype (Fig. 5D), whereas

IL-17ADTbet cells remained stable in their IL-17–expressing profile

and did not express IFN-g (Fig. 5D). The distribution of TNF and

GM-CSF was also similar to that seen in the respective donor mice

(Fig. 4B, 4C), with the majority of GM-CSF– and TNF-producing

cells found among the IFN-g–producing cells in IL-17AWT controls,

but within IL-17–producing cells in IL-17ADTbet cells (Fig. 5D).

Although the majority of CD4+ T cells encountered in the CNS

in both IL-17ADTbet and IL-17AWT control mice were originally

derived from the Th17 cell subset, as we reported before in

IL-17AWT control mice (20), it was possible that Ag specificity

could have risen in the bona fide Th1 cell population. However,

MOG38–49 tetramer staining in IL-17ADTbetIFNgeYFPmice at day 17

after EAE induction revealed that Ag specificity remained within

the RFP+ populations, as previously seen in IL-17AWTIFN-geYFP

control mice (Fig. 1C), but was particularly enriched within the few

remaining IL-17/IFN-g double producers (Fig. 5E).

RORgt is required to maintain Th17 cells

Th17 cells rely on the RORa and especially RORgt for their

differentiation (9, 49). Hence, the absence of RORgt prevents

FIGURE 5. Th17 to Th1 conver-

sion is not required for EAE patho-

genesis. (A) Clinical EAE scores of

four indicated mouse lines immu-

nized with MOG/CFA (n = 8–9/

group, two biological repeats). (B)

Relative distribution (top panels)

and number of cells (lower panels)

expressing indicated cytokines in

the CNS of IL-17AWT controls

(white bars) or IL-17ADTbet (black

bars) during EAE (day 17). (C)

Clinical EAE scores of Rag22/2

mice, upon adoptive transfer of flow-

sorted CD4+RFP+ T cells obtained

from indicated mouse lines, immu-

nized with MOG/CFA (n = 6/group

pooled from two biological repeats).

(D) Flow cytometry for indicated

cytokines on cells obtained from

mice undergoing EAE, as shown in

(C). (E) Staining for I-Ab/MOG38–49

in indicated T cell populations (left

panels) harvested from the CNS

and proportional distribution (right

panel) as proportion of CD4+CD44hi

T cells (n = 8). Data are pooled from

two independent experiments (aver-

age 6 SEM). *p , 0.05, **p ,

0.01, ***p , 0.001.
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the differentiation of Th17 cells and susceptibility to EAE (9, 49).

However, it is not clear whether these orphan receptors remain

important for Th17 cell maintenance. This is of particular importance

for potential therapeutic targeting of Th17 cells in inflammatory

disorders. Thus, we isolated naive CD4+ T cells from Rag1Cre

RORafl/fl Rosastop-tdRFP (from hereon called Rag1DRORa), IL-17ACre

RORgtfl/fl Rosastop-tdRFP (from hereon called IL-17ADRORgt), and

their respective Rag1WT and IL-17AWT controls, and differentiated

the cells in vitro toward the Th17 subset. In vitro polarization of

naive CD4+ T cells from Rag1DRORa and IL-17ADRORgt cells into

Th1 or Th17 was indistinguishable from their respective controls

(Fig. 6A). Moreover, IL-17ACre–mediated deletion of Rorc did not

affect the in vitro proliferation of naive T cells under Th17-polarizing

conditions (data not shown).

We next analyzed the susceptibility of Rag1DRORa and

IL-17ADRORgt mice to MOG35–55/CFA-induced EAE. The ab-

sence of RORa in all lymphocytes in Rag1DRORa hosts did not

impact EAE onset compared with controls, but the clinical score

progression was slightly delayed in the Rag1DRORa hosts

(Fig. 6B). Similarly, IL-17ACre–mediated deletion of Rorc in IL-

17ADRORgt mice did not significantly delay the onset or final

clinical score of EAE, but resulted in a minor delay in disease

progression (Fig. 6C). Detailed analysis of the CD4+ T cell

compartment in the CNS of IL-17ADRORgt mice revealed a sig-

nificant reduction (71% 6 12%) in RFP+CD4+ T cells compared

with that observed in IL-17AWT controls, a number that con-

tributed to the reduction in total numbers of CNS-infiltrating

T cells in the former strain (Fig. 6D). The limited number of

RFP+CD4+ T cells remaining in IL-17ADRORgt mice did not

express IL-17 or IL-17F, but did produce IFN-g, with reduced

proportions of TNF and GM-CSF–positive T cells compared

with controls (Fig. 6E). The reduction in GM-CSF–producing

cells in IL-17ADRORgt mice was not compensated by GM-CSF

production from the RFP2 T cell CNS infiltrate (Fig. 6F). As a

result, the total number of CD4+ T cells producing IL-17, IL-

17F, GM-CSF, and TNF was significantly reduced in the IL-

17ADRORgt mice (Fig. 6G). However, no significant difference in

numbers of total IFN-g–producing CNS-infiltrating T cells was

found between IL-17AWT and IL-17ADRORgt mice (Fig. 6G). These

data indicate that Th17 cells require RORgt not only for their

initial generation, but also for their IL-17 production and long-term

survival. Importantly, once Th17 cells have been generated, the

excision of Rorc did not significantly affect the clinical outcome of

EAE despite the significant reduction in IL-17– and GM-CSF–

producing CD4+ T cells.

Discussion
The mechanism underlying the pathogenicity of T cells and the

identity of CD4+ T cells instrumental for the onset and mainte-

nance of immunopathology, especially those inducing EAE, are

still debated in the literature. In this study, we demonstrate that

Th17 cells and their Tbet- and IFN-g–expressing progeny are

the predominant populations of T cells present in EAE and

H. hepaticus-induced typhlocolitis, in line with their established role

as potent effector cells contributing to immunity and immunopa-

thology (10, 11). To our knowledge, for the first time, we assessed

the influence of the excision of Tbet, Eomes, RORa, and RORgt,

in all lymphocytes or in IL-17–expressing cells only, in the de-

velopment of immunopathology in vivo. We show that neither the

IFN-g–producing Th17 cell progeny (ex-Th17 and IL-17/IFN-g

double producers in the case of EAE, or ex-Th17 cells in the case

of H. hepaticus colitis) nor long-term Th17 cell maintenance (in

the case of EAE) is essential for the establishment of T cell–

mediated immunopathology.

Numerous studies have shown that distinct populations of T cell

subsets have the capacity to induce pathology upon adoptive

transfer into lymphopenic or T cell–sufficient hosts, with different

types of EAE as a result (50, 51). However, criticism has been

raised that these cells, often bearing an Ag-specific TCR and

polarized in vitro with a mix of cytokines, may not accurately

recapitulate the phenotype of in vivo generated effector T cells.

Our study did not make use of TCR transgenic mice or the transfer

of in vitro cultured cells. Instead, we employed conditional dele-

tion, either Rag1Cre- or IL-17ACre–mediated, of genes of interest

and tracked the Th17 population and its progeny with an RFP

lineage marker. We show that the generation of IL-17/IFN-g

double-producing T cells requires the expression of Tbx21 in Th17

cells during EAE. In stark contrast to the EAE model, we further

demonstrate that Tbet is not an absolute requirement for the

generation of these double-producing lymphocytes, as these cells

were readily found in H. hepaticus typhlocolitis in Rag1DTbet

and IL-17ADTbet mice. This may highlight the different micro-

environments present in the intestine compared with the CNS,

providing different cues enabling the development of double-

producing T cells. Furthermore, it re-emphasizes the high de-

gree of plasticity of Th17 cells and the extraordinary tailored

response of the immune system, depending on microorganisms

encountered, as well as the site of inflammation.

IL-17/IFN-g double-producing T cells have been found during

active colitis in mice and humans (18, 21, 52, 53); however, their

contribution to intestinal pathology is largely unknown. A recent

study by Harbour et al. (24) using adoptive transfer into lym-

phopenic hosts of in vitro polarized Th17 cells from Tbx212/2

mice showed that these cells were unable to induce colitis, despite

unaffected in vivo generation of IL-17/IFN-g double-producing

cells in the recipients. In contrast, we have previously demon-

strated that IL-17/IFN-g double-positive T cells isolated from the

large intestine of H. hepaticus-infected colitic mice are able to

induce colitis upon transfer to H. hepaticus-infected Rag22/2

mice (16), indicating that ex vivo IL-17/IFN-g double-producing

lymphocytes isolated from Tbet-sufficient mice can induce in-

testinal pathology. Moreover, as shown in the current study,

IL-17ACre– or Rag1Cre-mediated excision of Tbx21 in cells once

expressing IL-17 or Rag1 had no effect on the number of IL-17/

IFN-g– double-producing cells, nor on the severity of immuno-

pathology in H. hepaticus colitis. Hence, in vivo polarized cells or

those encountering specific cues associated with particular path-

ogens such as H. hepaticus may directly contribute to colitis,

independently of their ability to express Tbet. Of note, Rag1Cre

-mediated excision of Tbx21 did result in the presence of IL-17/

IFN-g double-producing cells in the absence of bona fide Th1 cell

development (6), indicating that double producers are most likely

Th17 cell derived.

The generation of Th17-derived Th1-like cells, which have lost

the expression of IL-17, was dependent on the presence of Tbet in

both the H. hepaticus typhlocolitis and EAE models. Importantly,

the excision of Tbx21 in IL-17–producing cells had no impact on

H. hepaticus-induced intestinal pathology, indicating that, in this

model, Th17 cell transition to IFN-g–producing Th1-like cells is

not absolutely required for colitis development. These findings are

in contrast to those by Harbour et al. (24), who concluded that

Tbet expression by Th17 cells is required for their transition to

Th1-like cells and for mediating transfer colitis. Among possible

explanations for this discrepancy is the use of different colitis

models and the use of mice in which Tbx21 is excised in vivo upon

IL-17 or Rag1 expression in our study versus the use of in vitro

differentiated Th17 cells from Tbet-deficient mice in the report by

Harbour et al. (24). In contrast to the findings in the H. hepaticus
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FIGURE 6. Th17 cell maintenance is not required for EAE immunopathology. (A) Flow cytometry for IFN-g and IL-17 from naive T cells from Rag1WT

and Rag1DRORa mouse lines polarized in vitro toward Th1 or Th17 cells. (B) Clinical EAE scores of Rag1WT and Rag1DRORa mouse lines immunized with MOG/CFA

(n = 6–7). (C) Clinical EAE scores of IL-17AWT and IL-17ADRORgt mouse lines immunized with MOG/CFA (n = 8/group). (D) Numbers of total CD4+ T cells, RFP+

Th17 lineage-positive, and RFP2 Th17 lineage-negative cells present in the CNS of IL-17AWT controls (white bars) or IL-17ADRORgt mice (gray bars) upon EAE

induction at day 17 (averages 6 SEM., n = 6). (E and F) Flow cytometry for indicated cytokines on RFP+ Th17 lineage-positive (E) or RFP2 lineage-negative (F) cells

obtained from IL-17AWT and IL-17ADRORgt mice undergoing EAE, as shown in (C). (G) Numeric presence of total CD4+ T cells expressing indicated cytokines in the

CNS of IL-17AWT controls (white bars) or IL-17ADRORgt (gray bars) during EAE at day 17 (averages 6 SEM, n = 6). *p , 0.05, **p , 0.01, ***p , 0.001.
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colitis model, IL-17–mediated deletion of Tbx21 had a mild re-

ducing impact on EAE. These results are in line with recent

studies indicating that pathogenicity of IFN-g–producing T cells is

independent or partially dependent on Tbet (22, 31, 54). Two

studies made use of in vitro stimulated and adoptively transferred

Ag-specific T cells from Tbx21-deficient mice or CD4Cre-mediated

Tbx21 excision (22, 31). Duhen et al. (54) used gene knockout

mice or CD4Cre-mediated gene excision, affecting several lineages

and cell types, including CD8 T cells. We extended these obser-

vations by employing Tbx21 excision specifically in IL-17–pro-

ducing cells, and conclude that the absence of Tbet in in vivo

differentiated Th17 cells has limited impact on immunopathol-

ogy in the intestine and CNS. In line with CD4cre-mediated or

germline deletion of Eomes, we failed to observe effects of Eomes

on Th17 cell polarization, plasticity, or immunopathology in the

EAE model (data not shown). The removal of Tbx21 in

all lymphocytes, through Rag1Cre-mediated deletion, resulted in a

much more pronounced reduction of EAE scores, although clini-

cal symptoms were not completely ameliorated. In this case, both

bona fide Th1 cells as well as Th17-derived Th1-like cells were

largely absent, yet some immunopathology was still observed.

This suggests that even an interplay between Th1- and Th17-

derived Th1-like cells is not essential for the development of EAE.

In the current study, to our knowledge, we addressed for the first

time whether the maintenance of Th17 cells or their progeny is

important for the immunopathology observed in EAE. We found a

minor contribution of RORa in EAE, in line with a more essential

role of RORgt in Th17 cell differentiation (9, 49). Moreover, the

excision of Rorc after the generation of Th17 cells resulted in

rapid loss of Th17 cells, in line with results from pharmacological

inhibition of RORgt (55). This reveals an important role for

RORgt in maintaining Th17 cells after their generation in addition

to their differentiation. The remaining Th17-derived cells exclu-

sively produced IFN-g, in line with their loss of Rorc that is re-

quired for the Th17 lineage program, including the expression

of IL-17 and IL-17F (9). Interestingly, despite the significant re-

duction of cells expressing IL-17, the marked loss of Th17 cell

progeny, and cells expressing GM-CSF in the CNS of IL-17ADRORgt

mice, the onset and pathology of EAE were only mildly affected.

Although no significant reduction in EAE upon IL-17ACre–

mediated Tbx21 or Rorc excision was observed, this does not

exclude a role for Th17 cells in the initiation of EAE. We found

that both MOG Ag specificity and the majority of other cytokines

implicated in EAE pathogenicity, such as IFN-g, TNF, and

GM-CSF, were found within the Th17 cell– derived lineages.

Upon deletion of Tbet within the Th17 subset, the MOG Ag

specificity did remain within the Th17 cell lineage. Although

MOG Ag is not the only Ag involved in EAE, it suggests that

Th17 cell polarization at the initiation of EAE is sufficient to

enable entry to the CNS (56). Moreover, it is clear that factors

implicated in immunopathology, such as TNF and GM-CSF, are

not exclusive for the Th17 cell–derived lineage found in the CNS.

Cytokine profiles were altered within the Th17 cell subsets upon

Tbet deletion, modifying the combinations of cytokines secreted

by the same T cell. It also remains possible that the absence of

Tbet does allow for a partial conversion of Th17 cells, but without

terminating IL-17 expression or initiating the Tbet transcriptional

program such as IFN-g expression. Although combinations of

cytokines produced by the same cell, such as TNF in combination

with either IL-17 or IFN-g that result in distinct cellular responses

(57, 58), were altered upon excision of Tbx21 or Rorc, the effect

on immunopathology was limited. Because GM-CSF has been

shown to be necessary for the development of EAE (46, 59, 60),

the alteration of T cell populations producing GM-CSF/TNF in

combination with IL-17 or IFN-g may not significantly impact on

immunopathology.

Extensive studies to find the pathogenicity factor(s) have focused

on the Th17 cell subset with potential novel mediators of pathology

reported (61). However, inflammation is characterized by diversity

in cell subsets, mediators, as well as clinical course and drug re-

sponsiveness (51). Important cytokines in the Th1 and Th17 cell

axis, with the exception of IL-6 and IL-23, have been reported to

be dispensable for the induction and clinical disease progression

of EAE (51, 62, 63). Our work implies that a focus on a particular

Th subset during the pathology phase of disease may be of limited

clinical benefit. In summary, our results contribute to a growing

body of evidence that immunopathology cannot be attributed to a

single lineage of Th cells. Instead, it is likely that multiple Th cell

lineages and immune cell types contribute to immunopathology.

Until the identification of a lineage-independent pathogenicity factor,

disease-modifying therapies may need to continue to be targeted

more broadly.
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