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Cerebral vascular dynamics are generally thought to be controlled by neural activity

in a unidirectional fashion. However, both computational modeling and experimental

evidence point to the feedback effects of vascular dynamics on neural activity. Vascular

feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via

the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model

of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural

firing. Similarly, arguing from known cerebrovascular physiology, an approach known as

“hemoneural hypothesis” postulates functional modulation of neural activity by vascular

feedback. To instantiate this perspective, we present a computational model in which a

network of “vascular units” supplies energy to a neural network. The complex dynamics

of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF

randomly. The informational consequence of such dynamics is explored in the context of

an auto-encoder network. In the proposed model, each vascular unit supplies energy to

a subset of hidden neurons of an autoencoder network, which constitutes its “projective

field.” Neurons that receive adequate energy in a given trial have reduced threshold,

and thus are prone to fire. Dynamics of the vascular network are governed by changes

in the reconstruction error of the auto-encoder network, interpreted as the neuronal

demand. Vascular feedback causes random inactivation of a subset of hidden neurons

in every trial. We observe that, under conditions of desynchronized vascular dynamics,

the output reconstruction error is low and the feature vectors learnt are sparse and

independent. Our earlier modeling study highlighted the link between desynchronized

vascular dynamics and efficient energy delivery in skeletal muscle. We now show that

desynchronized vascular dynamics leads to efficient training in an auto-encoder neural

network.

Keywords: desynchronized vascular dynamics, vasomotion, vascular driven neural computation, neuronal

demand, error estimating neurons, predictive coding

1. INTRODUCTION

Conventionally, information processing in the brain is assumed to be primarily undertaken
by neurons, whereas the other constituents (glia, blood vessels) are attributed at best,
an auxiliary function. The computational capability of the brain is associated with its
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large number of individual units (100 billion neurons) and
their dense connectivity (order of 10,000 synapses per neuron).
Interestingly, recent findings estimate that there are about a 100
billion blood vessels in the human brain (Quaegebeur et al.,
2011), suggesting the possibility of vascular regulation at the level
of a single neuron.

Blood flow regulation is traditionally thought to be local,
in response to the activity of the neurons in the vicinity of
the microvasculature (penetrating arterioles and capillaries; Roy
and Sherrington, 1890). In general, this is accomplished by the
activation of the astrocytes in response to the neurotransmitters
(released by the active neurons), which in turn release vasoactive
molecules (Zonta et al., 2003; Metea and Newman, 2006). This
forms the basis of functional imaging studies such as blood
oxygen level dependent (BOLD)-fMRI and positron emission
tomography (PET; Horwitz, 2004), although there are studies
questioning the criticality of astrocytes in neurovascular coupling
(Nizar et al., 2013; Jego et al., 2014). Cortical blood flow could
also be directly regulated by innervations from distal neuronal
projections as opposed to the conventional view of entirely local
regulation (Cohen et al., 1997; Iadecola, 1998; Krimer et al.,
1998).

However, neither of these regulations were attributed a role
in information processing in the brain. A recent review by
Moore and Cao (2008), proposed an active role of the vascular
system in governing the excitability of the neurons in the
brain. In experiments performed by Sirotin and Das (2009), the
hemodynamic signal was observed prior to the neuronal activity
before the onset of the next trial, suggesting an anticipatory
feedforward role of the vascular system. They further clarify,
in response to critique by Kleinschmidt and Müller (2010)
and Handwerker and Bandettini (2011), that this hemodynamic
signal could be due to neuro-modulatory control of blood vessels
(Das and Sirotin, 2011). The decorrelation between hyperemia
and neuronal oxygen demand (Leithner and Royl, 2014) further
empirically supports the hypothesis (Moore and Cao, 2008) that
the vascular system may play an important role in computation
in the brain.

Recent theoretical studies (Chander and Chakravarthy, 2012)
that simulate a biophysical model of a neuro-glio-vascular unit,
also support this hypothesis. This model proposes bidirectional
interactions within the neuro-glio-vascular unit: neural activity
is communicated to the vascular unit via the glial interface,
which in turn receives the energy substrates from the vascular
system and passes them on to the neuron, thereby completing
the loop. Interestingly, the model also proposes that vasomotion
can independently influence neural firing patterns.

If the vascular system can modulate neural activity, the
vascular dynamics and vessel to neuron projections take on
additional importance. Capillaries constitute approximately 90%
of the blood vessels in the brain (Prioreschi, 1996; Viale, 2006),
and form a mesh-like structure. Capillaries interact with each
other through chemical signals called vaso-mediators (Intaglietta,
1990; Vanhoutte and Mombouli, 1996). These vaso-mediators
are released by the endothelial cells, lining the capillaries and
govern the overall dynamics of the network. These dynamics can
be either chaotic or regular, depending on the vaso-mediators.

The transition from regular to chaotic could be a means to
enhance tissue perfusion levels (Parthimos et al., 1996). Capillary
dynamics affect the neural firing by providing requisite energy
“resources” (glucose, lactate, oxygen).

In the present study, information processing in a vascular
coupled auto-encoder network is postulated. An auto-encoder
could be considered as a model implementing predictive coding
(Rao and Ballard, 1999), assuming the response of neurons in
the output layer to be predictive of the input given to the
network. The prediction of the output layer is accurate when
the input reconstruction error is minimized. Thus, there are
two sets of neurons, as in the predictive coding framework:
the output neurons which act as the predictive units, and the
error estimating neurons which estimate the error between the
predicted and the actual outputs. The collective activity of these
error estimating neurons are conventionally used to train the
weights and the biases associated with the network using the
back-propagation or the re-circulation algorithm (Hinton and
McClelland, 1988). In the present model, the influence of the
activity of these error estimating neurons on the activity of the
vascular network is modeled.

Autoencoders are based on the paradigm of unsupervised
learning wherein the input patterns themselves form the
desired/target patterns. A simple linear autoencoder can learn
to perform feature extraction or input compression with
the network architecture having fewer hidden layer neurons
as compared to the input layer neurons. With such a
bottleneck, an autoencoder performs dimensionality reduction,
extracting the principal components. An autoencoder could also
extract interesting features by imposing a sparsity constraint
on the hidden layer neurons. Interestingly, these sparsity
constraints also yield independent components as described
in the seminal work by Olshausen and Field (1996). Now,
Independent Component Analysis (ICA) is important for source
reconstruction and a number of unsupervised models could also
yield the same effect. The underlying feature of such models
is an attempt to decorrelate the activity of neurons in the
intermediate layers. This could be achieved by introducing lateral
connections among the neurons in the intermediate layer and
training the connection weights using an anti-hebbian learning
rule (Földiak, 1990). Similarly, an algorithm known to implement
non-linear-PCA, using a weight normalization term similar to
the Sangers rule with a non-linearity introduced, is known
to yield independent components (Oja, 1997). However, it is
necessary to whiten the input data for the algorithm to work.

Another such regularization constraint, the dropout of
neurons in the hidden layer, proposed by Srivastava et al. (2014)
has been implemented in the autoencoder model described in
the present study. Dropout refers to the random switching
off of a certain fraction of neurons in the hidden layer of a
neural network during each training iteration. The motivation
behind the dropout algorithm is to minimize overfitting on the
training data in a supervised learning paradigm. Dropout aids
this process by preventing the co-adaption of features learnt
by the neurons in the intermediate layers. In other words, the
features learnt by individual neurons in the hidden layer are
roughly distinct to the features learnt by any other neuron in
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the hidden layer. This was verified by Srivastava et al. (2014)
on considering an unsupervised implementation of the dropout
algorithm in an autoencoder. In the auto-encoder context, as
opposed to the supervised learning context, the mean squared
error(mse) (reconstruction error) gives a good estimate of the
performance of the network. Using the mse in a supervised
context would be inappropriate; since the training mse may not
be reflective of the test performance (measured as a percentage
of test patterns correctly classified, on comparing with their
corresponding class labels). In an unsupervised auto-encoder, the
goal of the network is to learn non-redundant features which will
be useful in reconstructing the input pattern. Thus, by definition,
the mean squared error, a reconstruction error measure, would
be minimized when features ideal for reconstruction, are learnt.
These ideal features (which minimize mse), are empirically
shown to be either purely (in the case bar patterns) or roughly (in
the case of MNIST) independent of each other, when the network
is trained using the appropriate percentage of dropout. This now
raises an important issue, which the authors believe is the main
contribution of this paper: Is there a plausible mechanism by
which an auxiliary vascular network can regulate the percentage
of random dropout in the hidden layer?

Previous studies with autoencoder neural networks have
shown that implementing a fixed dropout of hidden neurons
improves generalization (Baldi and Sadowski, 2014). In this
paper, a mechanism involving a neurovascular loop that
implements an optimized version of such a dropout is proposed.
We concede that it is possible to envision purely neural sources
that could drive such dropout . There are indeed various sources
of neural noise such as thermal noise, stochastic molecular
diffusion, crosstalk noise, synaptic neurotransmitter release,
short term plasticity, ion channel gating etc. (McDonnell and
Ward, 2011). But it is not clear if such noise can be modulated
by error and used in an optimal fashion to control dropout.

We hypothesize an error feedback loop, partly neural and
partly vascular, for driving the dropout. The hemodynamics
regulates the firing ability of neurons in the hidden layer and thus
incorporates a form of homeostasis. The proposed mechanism
has as its basis the following elements from experimental and
computational neurobiology:

• In terms of its role in information processing in the brain,
neuromodulators such as dopamine have been linked to
prediction error (Iadecola, 1998; Schultz, 1998; Schultz and
Dickinson, 2000; Steinberg et al., 2013).

• But these neuromodulators also have a vascular aspect to their
function: dopaminergic projections to distal vessels are known
to control the dynamics of such vessels (Iadecola, 1998; Krimer
et al., 1998).

• Vascular rhythms: Vessels exhibits complex rhythms both
chaotic and periodic (Nilsson and Aalkjaer, 2003). Temporal
chaos in vascular dynamics has been associated with efficient
energy delivery (Griffith, 1996). Desynchronized vasomotor
oscillations have also been linked to efficient energy delivery
in a computational model of perfusion in skeletal muscle
(Pradhan et al., 2007). In a similar fashion, given that vascular
energy resources in the brain are limited (total blood flow

is constrained), the vascular system needs to optimize its
supply and not merely cater to the need of all the neurons
active (demanding energy) at a particular time instant. Thus,
resorting to a desynchronized pattern of supply to the neural
tissue is a more feasible strategy employed by the vascular
system.

• Zenke et al. (2013) studied possible mechanisms of regulation
of firing rates in a cortical model with plasticity, and showed
that a feedback homeostatic mechanism, that keeps the firing
rates from exploding or from collapsing to zero, must be acting
at a time scale of minutes. It is interesting that the vasomotor
rhythms are slow operating in the range of a few cycles per
minute (Intaglietta, 1990), thereby suggesting a plausible role
for vascular dynamics in regulating neural activity.

• A recent adjoining study from our group proposed a low-
dimensional neuron-energy model that describes the effect
of energy/ATP (outcome of vascular feedback) on neural
dynamics. In this work, a rate-coded neuron model in which
the threshold of firing depends on ATP, is shown to exhibit
dynamics that is nearly identical to a conductance-based
neuron model in which ATP is consumed to drive the
activity of Na-K-ATPase and K-ATP channel (Chhabria and
Chakravarthy, 2016). This study corroborates the notion of
ATP modulating the neural firing and also proposes that the
variations in the intraneuronal ATP is a resultant of vascular
dynamics, thus providing a crucial link between vascular
dynamics and neural firing.

The present model is designed by integrating the above five
phenomena in a single framework. The prediction error of the
autoencoder (“Error estimating neural layer” in Figure 1) is
thought to represent the neuromodulatory system. The error
signal thus generated controls vascular dynamics in “Vascular
oscillatory network.” Assuming that the feed forward signal to
the vascular system comes from the error estimating neurons,
as described earlier, it seems logical that the vascular network
would now attempt to optimize the supply to the neural system,
resulting in optimizing the dropout in the neural network.
The output of the vascular oscillators specifically controls the
threshold of neural firing in the hidden layer of the autoencoder,
thereby controlling dropout.

2. METHODS

In this section, the important components of the neuro-vascular
model are described. The overall model consists of two modules:
one representative of the neuronal network, the other of the
vascular network. The neuronal network feeds the reconstruction
error to the vascular network, whose dynamics enforce a certain
percentage of neurons to be OFF in the hidden layer via a
feed-back mechanism. A schematic representation of the model
architecture is shown in Figure 1.

2.1. Neuronal Network Model
The neural system is modeled as an auto-encoder. An auto-
encoder is a multilayer perceptron (MLP), designed such that the
activity at the input layer is replicated at the output layer. As in
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FIGURE 1 | Schematic representation of the coupled neurovascular model.

the standard MLP framework there is a hidden layer of neurons,
and the entire network is trained using the back propagation
algorithm (Oh, 1997), updating weights by stochastic gradient
descent on mini batches. Thus, given a neural network with the
input vector defined as x, the reconstructed input is given as y, the
activity of a neuron (vi) in the hidden layer is given by Equation 2.

hi = wT
i x+ bi (1)

vi = f (hi) (2)

f (hi) =

{

hi :hi > 0

0 :hi < 0
(3)

where wi, bi correspond to the weight vector that connects the
input x to the ith hidden unit and its bias, respectively. The
hidden neurons are linear rectified units, given in Equation 3. The
activity of a neuron ym in the output layer is given as:

ym = f (ζT
mv+ Bm) (4)

where ζm, Bm correspond to the weight vector that connects the
hidden neurons v to themth output unit and its bias, respectively.
The number of neurons in the hidden layer are chosen such that
there is a bottle-neck created between the input and output layers,
so as to learn a dimensionally reduced representation of the
given input. Traditionally, if a sparse representation of the input
is desired, an additional sparsity constraint is imposed. Once
sparsity is assured, the weight vectors corresponding to each of
the hidden neurons resemble independent components of the
input data. Another way in which sparsity of representation can
be achieved is by randomly switching off a certain percentage of
neurons (q) in the hidden layer during training. For each training
instance, a different set of hidden neurons are randomly turned
OFF. Thus, the activity vector of the hidden layer (vnew) is now
given by Equation 6.

ri ∼ Bernoulli(p) (5)

vnew = v ∗ r (6)

where the Bernoulli distribution is a discrete distribution having
two possible outcomes: o = 1 (“success”) occurring with
probability p and o = 0 (“failure”) occurring with probability
q = 1 − p, where 0 < p < 1. Thus, ri determines the state
(ON/OFF) of each neuron in the hidden layer. Now, the new
activity of each output neuron (ynewm ) is given as:

ynewm = f (ζT
mv

new + Bm) (7)

This technique, known as dropout, prevents co-adaptation of the
hidden units. Again, the features learnt resemble independent
components of the input. The percentage of dropout required
is arbitrarily fixed: if too small a percentage is chosen, the co-
adaptations would increase, if too large a percentage is chosen,
the individual components would not be comprehensive enough
to representatively encode the input data in its entirety.

In this paper, it is hypothesized that the neuronal
reconstruction error, in this case the mean squared error
(mse), could influence the percentage of dropout via the vascular
network. The mean squared error (mse) is defined as:

mse =
1

2 ∗ bt ∗M

∑

P

∑

m

(xm − ynewm )2 (8)

where P denotes the index of the pattern in a batch of size bt
presented to the network and m denotes the index of a node in
the input and output layers respectively of a total of M nodes.
The desynchronized vascular dynamics itself, allows for random
switching OFF of that percentage of neurons in the hidden
layer, thereby realizing sparse independent features. Thus, in the
proposed model ri is governed by the vascular network and is
further elaborated in Section 2.3.

2.2. Vascular network model
The vascular network model is adapted from Pradhan and
Chakravarthy (2007) and consists of n units. Each of these units
are described by non-linear dynamics as given by Equations 9–11.

dgj

dt
= −gj − uj +

n
∑

k=1

TjkSk + I (9)
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and

τv
duj

dt
= −uj + Sj (10)

where

Sj = tanh(λvgj) (11)

where Sj denotes the state of the jth vessel (ON=+1 , OFF=−1)
representative of the levels of perfusion; where Sj = +1, and Sj =
−1 denote the maximal and minimal perfusion, respectively.
It is Sj that influences the neural activity. Furthermore, g is a
supporting variable and u is an auxiliary variable that represents
the history of the vessel activity. The slope of the non-linear
function in Equation 11 is given by λv and τv is the time constant
of the vessel dynamics. The vessels are mutually coupled, in a
ring structure with weights described by the Tjk matrix, given
by Equation 12. If we assume that there is no coupling between
vessel (i.e., Tjk = 0), then if g is at a negative (positive) state,
a large negative (positive) u flips g to its positive (negative)
state as per Equation 9. Similarly as per Equation 10, u simply
follows S with a delay. A proof that a limit cycle exists in such a
configuration is given in Devarajan et al. (2006).

Tjk =

{

ǫ − 2 exp(−djk/σ
2) :djk < 3σ

0 :djk > 3σ
(12)

djk = ρ[(cos(αj)− cos(αk))
2 + (sin(αj)− sin(αk))

2]1/2 (13)

where, ǫ is a crucial model parameter that determines the
characteristic dynamics of the vascular network and can
have values between 0 and 2, the extremes representing
desynchronized and synchronized activities, respectively. While
ǫ > 0 denotes that the nearby vessels are inhibitory and
distant ones are excitatory, ǫ = 0 represents mutual inhibitory
interactions amongst all the vessels. Hence, ǫ controls the balance
between excitation and inhibition in the vascular network. The
position of the jth and the kth vessel on the vascular ring are
represented by angles αj and αk, respectively. ρ is the distance
of any vessel from the neural tissue. The output from the
neural tissue modulates the vascular tissue activity, such that
the vascular supply (Ns), eventually approaches the neuronal
energy demand (Nd). Here, Ns is given by the summation of the
vessel states as described in Equation 14. The tissue perfusion
levels are reflected by the quantity called the “energy deficit” (e),
representing the instantaneous difference between the demand
and the supply, given in Equation 15.

Ns =

n
∑

j=1

Sj (14)

e = Nd − Ns (15)

τe
dE

dt
= tanh(λee) (16)

I = E−
n

2
(17)

Here, E is the accumulated deficit, τe is the time constant for
the accumulation and I is the final deficit signal coming to
the vessels, representative of the vasoactive mediators, released
by the neuron-glial system, and control the vascular dynamics
according to the energy deficit, e.

2.3. Neurovascular Coupling
The objective of the auto-encoder coupled vascular network is to
minimize the output reconstruction error (mse). Srivastava et al.
(2014) have shown that a certain percentage of dropout (q) in
the hidden layer of the auto-encoder helps minimize mse. In the
present study, q in the hidden layer is governed by the percentage
of inactive (OFF) vessels in the vascular network, which in turn is
dictated by neuronal energy demand (Nd). The change in mse is
fed to the vascular system in order to update Nd.

The Nd is initialized at the maximum possible value, implying
that all the vessels are ON, corresponding to q = 0. The value of
Nd is updated with respect tomse, as given by Equation 18.

Nd(t + 1) = Nd(t)− β
∆mse

∆Nd
(18)

where, β is a model parameter that represents the rate of
perfusion. Depending on the value of Nd, the states of individual
vessels could be ON/OFF. The connectivity between the neuronal
and the vascular layer determines the states (ON/OFF) of the
individual neurons in the hidden layer of the auto-encoder.
Formally, each neuron could receive inputs from any z of the
n vessels, chosen randomly, with each vessel’s state scaled by
a factor of 1/z. Thus, the ri (an inverse correlate of neuronal
firing threshold) corresponding to each unit in the hidden layer
is given by Equation 19 and determines whether that neuron is
OFF (dropped out) or not, as described previously in Equation 6.

ri = H





1

z

n
∑

j=1

aijSj



 (19)

aij =

{

1 :ith neuron is connected to jth vessel

0 :ith neuron is not connected to jth vessel
(20)

n
∑

j=1

aij = z (21)

where H is the Heaviside Step function; and aij represents the
connectivity between the ith neuron and jth vessel. A schematic
representation of the vascular projections to a single neuron is
illustrated in Figure 2 If Nd is too large, mse will increase as the
dropout percentage is too low. On the contrary, if Nd is too low,
due to “over-sparseness,” mse will increase. Hence, the objective
of Equation 18 is to search for the optimalNd that minimizesmse.
The essence of the neurovascular coupling lies in the symbiosis
between Nd andmse.
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FIGURE 2 | Vascular projections to a single neuron: Each neuron

receives vascular inputs from z of the n vessels. The neuron would be in

the ON state, if the average activity of the z vessels is positive as described in

Equation 19.

3. EXPERIMENTS AND RESULTS

In this section, some of the prominent simulation results are
described, on implementation of the conceptualized model.
These results can be summarized as follows:

• Desynchronized vascular dynamics enables the auto-encoder
network to learn sparse independent features, by introducing
stochastic dropout in its hidden layer.

• The connectivity pattern between the neural and the vascular
network governs the stochasticity in the hidden layer. Thus, by
itself, desynchronized vascular dynamics do not ensure sparse
independent features being learnt.

• The time scale of the vascular dynamics has a direct bearing on
the temporal stochasticity in the hidden layer.

The auto-encoder network efficiency is described by its ability
to learn sparse features. Two datasets are used to train the
network, highlighting the importance of the desynchronized
vascular activity in extracting sparse independent features. The
first data set consists of 5000 images of size 8 × 8, each of which
contains a random number of horizontal (1 × 8) or vertical
(8 × 1) bars. For this data set it is fairly easy to speculate as to
how independent weight patterns should appear. If 16 neurons
are chosen in the hidden layer, each of them should respond to
a single bar (either vertical or horizontal) in order to achieve a
sparse representation of the input bar patterns. A similar data
set has been used by Földiak (1990) to study evolution of sparse
features. In the second data set, the MNIST digit data, it is
not quite apparent how the independent components of the
input data should appear. The MNIST digit dataset consists of
60,000 images of size 28 × 28, each of which contains a single
handwritten digit. The performance of the model is assessed on

the basis of three performance measures: converged value ofmse,
mutual information index (MII), and structural similarity index
(SSI). MII is used to measure the interdependencies between a
pair of images (here weight patterns) and is given by Equation 22
(Mora and Ucelay, 2009).

MII = S(X)+ S(Y)− S(X,Y) (22)

where, S(X) and S(Y) are the entropies calculated on the
histograms of the individual values of pixels in the two images X
and Y, respectively; S(X,Y) represents the joint entropy, similarly
calculated from the joint histogram of X and Y . Thus, for sparse
independent weights, MII would be low. On the contrary, the
non-sparse weights would have highMII, signifyingmore overlap
in the information being conveyed by them. The third measure
for evaluating the network is SSI that measures the qualitative
similarity between a pair of images (Wang et al., 2004). SSI is a
multiplicative combination of three terms: the luminance term,
the contrast term and the structure term for the two images (X
and Y) as given by Equation 23.

SSI =
(2µ(X)µ(Y)+ C1)(2σ (X,Y)+ C2)

(µ(X)2 + µ(Y)2 + C1)(σ (X)2 + σ (Y)2 + C2)
(23)

where µ(X) and µ(Y) , σ (X) and σ (Y) and σ (X,Y) represent the
means, standard deviations and cross covariance for the images
X and Y , respectively. C1 and C2 are parameters of the equation.
In the present context, SSI gives a measure of the sparseness, as
conceptually it is based on the idea that spatially close pixels carry
information of the structures in the image. Hence, for sparse
independent features, SSI should be high as compared to the
non-sparse weight patterns.

3.1. Impact of Vascular Dynamics:
Synchronized or Desynchronized
The internal connectivity pattern within the vascular network
determines the degree of synchronization amongst the individual
vascular units. Synchrony among the vessels in the vascular
network is characterized by a parameter: Average Pairwise
Correlation (APC). The correlation (γjk) between a pair of
vessel states (Sj, Sk) over time is given by Equation 24. The
averaged correlation over all such pairs of vessels gives the APC
(Equation 25).

γjk =

∑

t(Sj(t)− S̄j)(Sk(t)− S̄k)
√

∑

t(Sj(t)− S̄j)2
∑

t(Sk(t)− S̄k)2
(24)

APC =
1

n(n− 1)

n
∑

j

n
∑

k 6=j

γjk (25)

where, n is the number of vessels and n(n − 1) is the number of
pairs of distinct vessels. As described in Equation 12, decreasing
the value of ǫ, switches the dynamics of the vascular network
from synchronized to desynchronized as quantified by the APC
(Figure 3). This in turn governs the stochasticity in the hidden
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FIGURE 3 | Synchronized vessel activity with individual periodic dynamics; compared with desynchronized vessel activity with individual chaotic

dynamics. (A) depicts the measure of synchrony, APC for different values of ǫ; (B1) Synchronized activity seen among 100 vessels across time; (B2) Desynchronized

activity seen among 100 vessels across time. (C1) APC for different values of Nd , assuming synchrony (ǫ = 1); (C2) APC for different values of Nd , assuming

desynchrony (ǫ = 0).

layer of the coupled auto-encoder. The dropout in the hidden
layer is governed by the states (Sj) of individual vessel units.

In the case of desynchronized vascular dynamics, assuming
one-to-one connectivity with the hidden layer, each vessel units
activity turns ON/OFF neurons in the hidden layer in a random
fashion. Randomized dropout is crucial in order to minimize
mse and learn sparse independent features. The randomness of
the dropout of neurons in the hidden layer, is introduced by the
desynchronized vascular input.

Now when the hidden layer receives synchronous vascular
input, assuming one-to-one connectivity with the hidden layer,
all of the hidden neurons are either turned ON/OFF in a
particular learning iteration. Hence the randomness of dropout
is lost. Thus, when all the hidden neurons are ON, there is
no dropout, hence no sparse independent features learnt; when
all the hidden neurons are OFF, there is no learning, since the
corresponding weight values will not be updated.

These results are illustrated in Figures 4, 5 for the bar and
MNIST datasets respectively. The first row in both figures
corresponds to the hidden layer receiving desynchronized
vascular input; whereas the bottom row corresponds to
synchronized case. The features learnt under desynchronized

vascular input are sparse and independent as compared to
synchronized, quantified by their MII and SSI scores. It is also
observed that the mse for both data sets is minimized in the
case of desynchronized vascular input compared to synchronized
input (desynchronized: 0.055, synchronized: 0.062, for the bar
dataset; desynchronized: 0.016, synchronized: 0.026, for the
MNIST dataset).

3.2. Impact of the Spatial Parameter:
Vascular-Neural Connectivity
The connectivity scheme between the vascular and the neural
network is as important as the vascular intralayer connectivity.
The complete range of connectivity configurations between the
two layers are considered. If each neuron receives an input
from a single vessel, it is termed as one-to-one connectivity, as
mentioned in the previous subsection. On the other hand, if each
neuron receives inputs from every vessel a complete connectivity
scheme is achieved. It is obvious that on complete connectivity,
the stochasticity introduced due to desynchronized activity of the
vessels is lost, as each neuron receives exactly the same feedback.
Thus, the neural network’s ability to learn sparse features is
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FIGURE 4 | Desynchronized (ǫ = 0) vascular dynamics, assuming a one-to-one connectivity with the neurons in the hidden layer, results in sparse

independent features being learnt (top row), as opposed to synchronized (ǫ = 1) vascular dynamics (bottom row), on training on bar patterns. (A1,A2)

depict the weight patterns learnt by the neurons in the hidden layer under desynchronized and synchronized vascular dynamics, along with their independence

measures MII and SSI; (B1,B2) demonstrate that the final converged value for mse is lower (0.055) under the influence of desynchronized vascular activity as

compared to synchronized (0.062); (C1,C2) shows the trend of the percentage of dropout (q) of neurons in the hidden layer.

FIGURE 5 | Desynchronized (ǫ = 0) vascular dynamics, assuming a one-to-one connectivity with the neurons in the hidden layer, results in sparse

independent features being learnt (top row), as opposed to synchronized (ǫ = 1) vascular dynamics (bottom row), on training on the MNIST digit data.

(A1,A2) depict the weight patterns learnt by the neurons in the hidden layer under desynchronized and synchronized vascular dynamics, along with their

independence measures MII and SSI; (B1,B2) demonstrate that the final converged value for mse is lower (0.016) under the influence of desynchronized vascular

activity as compared to synchronized (0.026); (C1,C2) shows the trend of the percentage of dropout (q) of neurons in the hidden layer.

gradually degraded on traversing from a one-to-one toward an
all-to-all connectivity architecture.

The sparse independent features learnt, on differing degrees of
interlayer connectivity are shown in Figures 6, 7, along with their
corresponding performance measures. Assuming the vascular
input is desynchronized, for various connectivity patterns (10,
25, 50, 100% connectivity), the features learnt are shown. On
increasing the projective field, the randomness of dropout in the

hidden layer is lost and as a result the features learnt are no longer
sparse and independent. This is verified using the two measures:
MII and SSI.

3.3. Impact of the Temporal Parameter:
Neural-Vascular Time-Scale Ratio
In the context of the present model that studies the effects of
neurovascular coupling, the ratio of time scales of the neural

Frontiers in Neural Circuits | www.frontiersin.org 8 February 2016 | Volume 10 | Article 7

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Philips et al. A Neurovascular Network Learns Sparse Features

FIGURE 6 | The role of the spatial parameter (vascular-neural connectivity), on learning sparse independent features, assuming desynchronized

vascular activity (ǫ = 0 and APC ≅ 0), when trained on bar patterns. (A1–A4) are representative of the learnt weight matrices of neurons in the hidden layer on

increasing the projective field from one-to-one (k = 1) to complete (k = n) connectivity; (B) demonstrates that the MII shows an upward trend on average on increasing

the projective field from one-to-one (k = 1) to complete (k = n) connectivity; (C) demonstrates that the SSI shows a downward trend on average on increasing the

projective field from one-to-one (k = 1) to complete (k = n) connectivity.

FIGURE 7 | The role of the spatial parameter (vascular-neural connectivity), on learning sparse independent features, assuming desynchronized

vascular activity (ǫ = 0 and APC ≅ 0), when trained on MNIST digit data. (A1–A4) are representative of the learnt weight matrices of neurons in the hidden layer

on increasing the projective field from one-to-one (k = 1) to complete (k = n) connectivity; (B) demonstrates that the MII shows an upward trend on average on

increasing the projective field from one-to-one (k = 1) to complete (k = n) connectivity; (C) demonstrates that the SSI shows a downward trend on average on

increasing the projective field from one-to-one (k = 1) to complete (k = n) connectivity.

and vascular dynamics assumes significance . The vascular time
step (dt) describes the rate at which vascular dynamics are
updated. The temporal ratio (TR) is defined as the number of
input patterns presented to the neuronal layer during a single
vascular time step. Therefore, TR denotes the ratio of time

scales of stimulus presentation to the neural network vs. vascular
dynamics.

With a lower TR, it was observed that the network shows
better performance for both datasets, as illustrated by the
performance measures; MII and SSI in Figures 8, 9 . On the
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FIGURE 8 | The role of the temporal parameter (TR), on learning sparse independent features, assuming desynchronized vascular activity (ǫ = 0 and

APC ≅ 0), when trained on bar patterns with k = 1. (A1– A4) are representative of the learnt weight matrices of neurons in the hidden layer on increasing the time

delay; (B) demonstrates that the MII shows an upward trend on increasing the temporal ration (TR); (C) demonstrates that the SSI shows a downward trend on

increasing the temporal ratio (TR).

FIGURE 9 | The role of the temporal parameter (TR), on learning sparse independent features, assuming desynchronized vascular activity (ǫ = 0 and

APC ≅ 0), when trained on MNIST digit data with k = 1. (A1–A4) are representative of the learnt weight matrices of neurons in the hidden layer on increasing the

time delay; (B) demonstrates that the MII shows an upward trend on increasing the temporal ratio (TR); (C) demonstrates that the SSI shows a downward trend on

increasing the temporal ratio (TR).

contrary, increasing the TR adversely affects the learning of
the sparse independent features. Figures 8, 9 depict that with
a higher TR, the network efficiency becomes equivalent to that
observed in the case of synchronized vascular dynamics. This
is due to the fact that for large values of TR, the same sets

of neurons in the hidden layer are dropped out for a number
of input presentations. As a result the randomness of dropout
is compromised, leading to larger reconstruction errors. Thus,
these results suggest that the TR should be optimal for efficient
information representation.
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4. DISCUSSION
The present study proposes a neural network model in which
modulatory feedback from vascular dynamics has a direct
influence on learning and performance of the neural network.
Most neurovascular models focus on the feedforward effect
of neural dynamics on vascular dynamics, and ignore the
feedback influence of vascular dynamics on neural activity.
Drawing from experimental literature, a strong case for the
significant influence of vascular feedback on neural activity
has been theorized by Moore and Cao (2008). Interestingly, a
number of cognitive impairments have been associated with
vascular dysfunctions (Di Marco et al., 2015). The proposed
model specifically emphasizes the role of the vascular system
in information representation in neural circuits. Within an
auto-encoder framework, the influence of desynchronized
vascular dynamics on the information representation in a neural
network is investigated. It is further demonstrated that the
spatio-temporal characteristics of the vascular network must
be optimal for the neural network to learn efficient, sparse
independent representations of input data.

The model impinges on the capability of the vascular system
to introduce a certain percentage of dropout in an auto-encoder.
It has previously been demonstrated that dropout in the
hidden layer is imperative for learning sparse independent
features (Srivastava et al., 2014). In the present study, the
stochastic dropout has been linked to desynchronized vascular
dynamics, given the requisite temporal and spatial parameters.
The desynchronized vascular dynamics are a result of the
vascular intra-connectivity matrix (T). Furthermore, it has been
demonstrated that one-to-one connectivity between the neural
and the vascular layer, is adequate in bringing about the requisite
stochasticity in the neuronal layer, given desynchronized vascular
dynamics. The spatial parameter, k, represents the size of the
projective field of individual vascular units onto the neuronal
layer. Experimental studies report that the ratio of the number
of neurons to capillaries is 1:1, suggesting that a one to one
connectivity between the neural and vascular layer is feasible
(Quaegebeur et al., 2011). In addition, with intercapillary
distances of 40 µm, each capillary supplies neurons within
a radial distance of 25 µm (Pardridge, 2011). However, it is
possible that due to the dynamic nature of the blood flow, this
radius of influence could be larger and of the radius of astrocytic
microdomains ≈ 100 − 200µm (Oberheim et al., 2006). Under
the assumption of these larger radii of vascular influence, the
one-to-one relation between vessels and neurons is no longer
valid. Each neural node in the model could now however be
reinterpreted as a set of neurons having similar receptive fields
as in a cortical column, rather than a single neuron. Thus, two
nodes in the hidden layer would represent two non-overlapping
cortical receptive field domains which are known to be≈ 500µm
apart (Leise, 1990).

The neural network model considered in this paper is rate
coded. This implies that the value of a particular node in the
network signifies the firing rate of that node. Thus, when the
vascular dynamics results in the dropout of a particular node, it
implies that for the entire duration of the corresponding vessels’
cycle, that particular node is silent. The neuronal weight update
is of the order of the timescale of vascular dynamics. Also it

must be noted that the time scale of vascular dynamics is of
the order of stimulus presentation. These points lead to the
testable hypothesis: Assuming the time for a response spike train
to be insignificant as compared to the vascular dynamics, how
many separate input stimuli could be presented within a single
vascular cycle, such that the performance of the network is not
compromised? The temporal ratio (TR) is intended to help arrive
at this number.

The role of vascular plasticity is not elaborated in the current
model. It is known that angiogenesis follows new learning via the
expression of Vascular Endothelial Growth Factor (VEGF) within
minutes of changes in oxygen demands in the brain (Welberg,
2011). In the model described, post training, each of the neuronal
hidden nodes respond on the presentation of at least one of the
input stimuli considered, and hence are active at different time
points corresponding to their presentation. The frequency of
activation of different nodes is close to uniform when considered
across input presentations due to the nature of the stimuli set
considered. This implies that though the overall network demand
changes, it changes equally for each of the individual neurons. In
the light of this, for the model in its current formulation, uniform
connections from the vascular layer to the hidden neuronal
layer should be sufficient, and angiogenesis, which implies,
among other things, training of connections from the vascular
layer to the hidden layer, is not necessary. However, when the
input stimuli are skewed, angiogenesis, expressed in the form of
trainable vascular-neural connections, will become important.

A number of recent experimental findings corroborate that
predictive coding mechanisms are at play in the visual system
(Allman et al., 1985; Miller et al., 1991; Spratling, 2008; Egner
et al., 2010). Such a predictive coding model has been shown to
learn independent features based on the overall image statistics.
However, additional requirements such as a hierarchy of such
predictive modules, sparsity constraints, and predefined image
patches need to be employed to extract meaningful features
(Rao and Ballard, 1999). In the predictive coding framework,
the ensemble input reconstruction error (mse) represents the
activity of the error estimating neural layer. Traditionally, this
error is employed to change the synaptic weights and biases
associated with the network, such that the prediction mimics
reality (Hinton andMcClelland, 1988). In the present model,mse
additionally influences the feedforward signal from the neural to
the vascular layer. The rationale for utilizing this lumped mse, is
pivoted by experimental evidence suggesting that neurons work
in concert to regulate vascular dynamics (Cohen et al., 1997;
Krimer et al., 1998). The activity of the error estimating neurons
is fed to the vasculature associated with the hidden layer neurons
in the model. This phenomenon of distal neuronal control of the
vascular dynamics is a known mechanism of neural regulation of
cerebral blood flow (Cohen et al., 1997; Iadecola, 1998; Krimer
et al., 1998). The change in mse is interpreted by the vascular
system as the neural demand (Nd). The vascular system optimizes
its supply such that at every time instant the neural demand is
met. The optimization paradigm is similar to that implemented
by Pradhan and Chakravarthy (2007) in the context of perfusion
in skeletal muscle.

In general, cerebral blood vessels show spontaneous
oscillations known as vasomotion in physiological conditions,
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which can either be chaotic or periodic (Griffith and Edwards,
1994). “Chaos,” in physiological systems, is considered to
provide certain inherent variability, characteristic of normal
physiology, while the loss of such variability is a sign of impaired
health (Nilsson and Aalkjaer, 2003). Experimental studies
by Griffith (1996) depict the link between temporal chaos in
microvasculature and efficient energy delivery. However, in the
present context it is more relevant to consider vasomotion as
a network phenomenon, in lieu of fluctuations in the lumen
of a single, isolated capillary. This is because the vascular
dynamics is largely governed by complex interactions among
multiple interconnected capillaries communicating through
physicochemical signals. Thus, the significance of vasomotion
rhythms (regular or chaotic) is more naturally appreciated in
terms of the dynamics of microvascular network (Pradhan and
Chakravarthy, 2011). A previous modeling study highlighted the
link between desynchronized vascular dynamics and efficient
energy delivery, in skeletal muscles (Pradhan et al., 2007; Pradhan
and Chakravarthy, 2009). In the current framework, it is shown
that desynchronized vascular dynamics are essential for efficient
training. Desynchronized vascular activity, as currently modeled,
could be considered a consequence of chaotic capillary dynamics.

Physiologically, could such desynchronized dynamics have
an importance in information representation in an associated
neural tissue, in addition to simply allowing efficient energy
delivery? While there is meager biological evidence to second
the association of desynchronized vascular dynamics with
information processing, there are studies suggesting the presence
of periodic vasomotion under metabolically compromised states
such as hypoxia and ischaemia (Nilsson and Aalkjaer, 2003).
Such conditions have been shown to result in impaired neural
plasticity (Failor et al., 2010). These two studies predict a crucial
link between the prevalence of vasomotion and plasticity in
the brain. However, the precise causal relationships between
abnormal vasomotion and cognitive dysfunctions need to
be experimentally explored further. Furthermore, it would
be interesting to understand the correlation of the different
frequencies and amplitude of vasomotion on learning and
plasticity in the brain.

Although the present model is abstract, it preserves the
essence of known mechanisms of neurovascular coupling.
Moreover, it proposes a novel paradigm of “vascular

computation,” wherein the vascular network actively participates
in information processing. Within this framework, biologically
realistic neurovascular models could be developed, incorporating
the biophysical details of neurons and blood vessels. An example
of such a detailed framework would include modeling the
signaling pathways from the neurons to the vessels leading to
dilation/constriction. The downstream effect of this further
can be reflected in the glucose, lactate and oxygen release
probabilities from the vessels, as was described by Chander and
Chakravarthy (2012). The influence of these energy substrates
on the neuron could then be modeled in a similar fashion as that
of the present study via controlling the neural firing threshold.
Moreover, there are significant evidences suggesting an energy
dependent control of the firing threshold through the activity of
the KATP channels (Ballanyi, 2004). It would not be unreasonable

to expect such a detailed model to manifest all the underlying
features of the abstract model described in this paper.

Another plausible attempt would be to consider a vascular
anatomic network model, proposed by Boas et al. (2008) along
with detailed spiking neuron models. The neural network
considered in this paper is rate coded, hence sub-threshold
neuronal oscillation which could influence vascular dynamics are
not considered. Such approaches might help in establishing the
informational association between the BOLD and EEG signals.
Further studies need to be pursued in the path paved by themodel
in order to precisely understand the plasticity within the neuronal
and vascular networks.
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