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A crucial assumption of many high-level system models of the cerebellum is that
information in the granular layer is encoded in a linear manner. However, granule cells
are known for their non-linear and resonant synaptic and intrinsic properties that could
potentially impede linear signal transmission. In this modeling study we analyse how
electrophysiological granule cell properties and spike sampling influence information
coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory
feedback (open-loop mode). A detailed one-compartment granule cell model was excited
in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals
were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz
(approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were
assessed using estimates of both the transfer function, and the fidelity of input-signal
reconstruction measured as variance-accounted-for. The detailed granule cell model with
realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the
frequency range of the vestibular-ocular reflex. This was achieved most simply if the model
neurons had a firing rate at least twice the highest required frequency of modulation, but
lower rates were also adequate provided a population of neurons was utilized, especially
in combination with push-pull coding. The exact number of neurons required for faithful
transmission depended on the precise values of firing rate and noise. The model neurons
were also able to combine excitatory and inhibitory signals linearly, and could be replaced
by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates.
These findings suggest that granule cells can in principle code modulated firing-rate inputs
in a linear manner, and are thus consistent with the high-level adaptive-filter model of the
cerebellar microcircuit.
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INTRODUCTION
Understanding the function of the cerebellar microcircuit means
relating the properties of its neural constituents to its overall
computational capacity. Models are likely to prove useful for this
purpose, but at present they often take one of two forms with
little interaction between them. Detailed models of spiking neu-
rons and networks are powerful tools for making contact with
experiment, but the focus on low-level features such as channel
properties can preclude computational analysis. Conversely, high-
level lumped system models that do allow computational analysis
typically lack the detail required to make meaningful contact with
biology. Multi-scale modeling has been suggested as a natural
approach to overcome these kinds of problems (e.g., Sejnowski
et al., 1988; Noble, 2002; Hunter and Nielsen, 2005).

The first challenge in reconciling these two levels of modeling
is to justify the simplification made from biological spike-coded
signals to linear continuous signals. A natural starting point for
this analysis in the cerebellum is the granular layer network. Here,
the granule cells process the very extensive mossy-fiber input to

the cerebellum, and are the most numerous type of neuron not
only in the cerebellum itself, but also in the entire mammalian
brain (e.g., Herculano-Houzel, 2010). They function as part of a
recurrent network in the granular layer, which involves inhibitory
feedback from Golgi cells, and our long-term goal is to charac-
terize how this network as a whole can transform mossy fiber
inputs.

Granule cells are known for their sub-threshold voltage-
dependent potassium channels that promote resonance during
sinusoidal and burst stimulation (D’Angelo et al., 2001; Gandolfi
et al., 2013). Furthermore, mossy fiber to granule cell synaptic
transmission is based on non-linear transformations determined
by several pre- and postsynaptic mechanisms (Arleo et al., 2010).
While it has been suggested that these intrinsic and synaptic
mechanisms can improve spike timing of theta-frequency bursts
(Gandolfi et al., 2013) their involvement in other coding schemes
has not been examined yet.

Since the mossy-fiber input to the cerebellum arises from
many different sources, it seems likely that the granular layer is
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able to deal with a wide variety of neural coding schemes. Initial
recordings from granule cells in vivo support this view (Arenz
et al., 2009). Here we focus on one particular coding scheme
(Arenz et al., 2009; Galliano et al., 2010), namely modulated
firing-rate (MFR) coding, where the dynamics of sensory signals
are encoded as temporal modulation of a tonic firing-rate. The
mossy-fiber vestibular input to the flocculus uses MFR (Arenz
et al., 2008), and it is known that the flocculus is essential for
calibrating the vestibulo-ocular reflex (VOR). The VOR has been
extensively studied experimentally (for review see Boyden et al.,
2004) and theoretically, both in the linear-systems framework
(Robinson, 1981) and from the perspective of the adaptive-filter
model of the cerebellum (Porrill and Dean, 2007; Dean et al.,
2010).

Another interesting feature of granule cells is that these only
possess a mean of 4 dendrites and that despite high activity of
mossy fibers carrying MFR coded signals (e.g., 40 spikes/s floc-
culus, Lisberger and Fuchs, 1978) the activity of granule cells
themselves is often reported to be irregular and low (Hensbroek
et al., 2006; Barmack and Yakhnitsa, 2008). The effect of this
“down sampling” on signal transmission fidelity however is cur-
rently unknown and might lead to imprecise signal transmission.
To this end we also analyzed how “push-pull” coding, where two
populations of the same cell type encode the positive and the neg-
ative amplitude respectively, can improve fidelity in the case of
low firing rates.

To answer the question whether granule cells can faithfully
and linearly represent vestibular-like input signals this study anal-
yses information transmission by detailed granule cell models
in open-loop mode, that is without input-related, i.e., uncorre-
lated, inhibitory feedback. This strategy was chosen following the
assumption that information lost in open-loop mode cannot be
regained whatever the properties of closed-loop mode.

Furthermore, this study serves as an initial step toward under-
standing the dynamical complexities of granular-layer processing:
analysing signal transmission properties of granule cells in this
study will help to separate intrinsic- and network contribution in
future research.

In modeling the coding by floccular GrCs of vestibular inputs
we can concentrate on the transmission of MFR signals as used
in motor systems, and can ask whether the signal transmission
properties of the model are consistent with data for real motor
systems.

The main model analyzed here is that of D’Angelo et al. (2001),
with mossy-fiber synaptic inputs as modeled by Nieus et al.
(2006) and the minor modifications described by Solinas et al.
(2010). This model has a single compartment and 10 active ion
channels, and quantitatively reproduces a wide range of in vitro
phenomena, including ionic current measurements, IPSC and
EPSC kinetics, shape of action potential, and the timing and fre-
quency of action potentials in response to current injection and
synaptic stimulation (Solinas et al., 2010).

It appears that for natural head rotations in primate and
human most of the power is below 20 Hz (Grossman et al., 1988;
Pozzo et al., 1990; Demer and Viirre, 1996; Carriott et al., 2013).
Appropriately, VOR performance in humans and primates is good
up until (at least) 20 Hz (Tabak et al., 1997; Huterer and Cullen,

2002; Ramachandran and Lisberger, 2005). We therefore focussed
on modeling GrC responses to input modulations up to 20 Hz.

MATERIALS AND METHODS
SINGLE CELL AND SYNAPTIC MODELS
The granule cell (GrC) model and corresponding AMPA,
NMDA, and GABA synapse models used in all simulations
are from Solinas et al. (2010). These models are based on the
previous models of D’Angelo et al. (2001) (for GrC), Nieus
et al. (2006) (for AMPA, NMDA synapses) and Mapelli et al.
(2009) (for GABAA synapse) with parameters appropriately
adjusted for an operating temperature of 37◦C (correspond-
ing to in vivo rather than in vitro conditions). The detailed
excitatory synaptic models explicitly simulate presynaptic
depression using a three state scheme, presynaptic facilitation
and postsynaptic depression due to receptor desensitization.
The inhibitory synaptic models include fast direct activation of
α1 and slow spillover activation of α6 GABAA receptors. The
granule cell and synaptic models have previously been made
available on the Open Source Brain repository: http://github.

com/OpenSourceBrain/GranCellSolinasEtAl10. Furthermore,
the models and all scripts used to analyse the models were made
available on the github repository https://github.com/croessert/
AnalyseGranCellRoessertEtAl14. A snapshot of the scripts and
models can also be found on modeldb: http://senselab.med.yale.
edu/modeldb/ShowModel.asp?model=156733.

The GrC model has a single compartment to reflect the granule
cell’s compact electrotonic structure, with nine active conduc-
tances (3 sodium, 5 potassium, 1 calcium) and a non-specific
leakage current. Conductances and calcium dynamics are mod-
eled using standard methods (e.g., Yamada et al., 1998) and
parameters based on experimental measurements given in Table
1 of D’Angelo et al. (2001). The model had a capacitance of
C = 3 pF and the resistance, measured at rest by a hyperpolar-
izing current of −1pA, was R = 1049 M� giving a time constant
of τ = 3.15 ms. The spike detection threshold was set to −20 mV
in all simulations.

To help characterize the contribution of the complex synap-
tic and conductance properties of the detailed model to its
information-processing capacities, its responses were compared
with those of two simpler artificial neurons (e.g., Gabbiani and
Koch, 1998). The first was a standard integrate-and-fire (IF) neu-
ron, the second was a modified IF neuron including a resonant
current IB modeled as an abstract spike-dependent leak conduc-
tance (Benda and Herz, 2003) and a spike delay. The equation for
the resonant neuron (rIF) was:

C
dV

dt
= − 1

R
(V − ER) − IB + IE

with IB = gb · b(V − ER); τb
db

dt
= δ(t − ti) − b (1)

Output spikes were additionally delayed by a time �S with respect
to the input signal. This was done without additional effect on
the membrane function (1) to reflect the pure phase delay in the
estimated transfer function of the detailed model (see Results).
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The equation for the standard IF neuron is obtained by set-
ting IB = 0 and �S = 0. The stimulation current is IE, the term
δ(t − ti) denotes the Dirac delta-function where ti is the time
of the latest spike. In this model the following parameters were
obtained directly from the GrC model: C = 3 pF, resting and
reset ER = −71.5 mV (set to GrC resting potential), threshold
potential Vth = −41.8 mV (set to give the same rheobase current-
step threshold of 5.68 pA as the GrC model). The remaining
parameters were estimated by fitting to the transfer function of
the detailed GrC model for frequencies below 20 Hz, acquired
using the “sinusoidal fit” method as explained later. The val-
ues obtained were R = 5227 M� (giving a time constant of
τ = 15.7 ms) and spike output delay �s = 4.85 ms. The fitted
resonant current parameters were gb = 55.6 pS (conductance
increase when spike occurs) and τb = 19.6 ms (time constant).

Granule cells show a strong inward rectification with a nine-
fold increase of resistance (D’Angelo et al., 1995) which is also
reflected in the detailed model. Thus, while the resistance of the
detailed model at rest (−71.5 mV) was 1049 M�, the resistance
of the IF models was 5227 M� which reflects the effective lumped
resistance around spike threshold.

Two stimulation modes, current and synaptic, were utilized to
investigate the capabilities of these model for modulated firing
rate (MFR) transmission.

CURRENT STIMULATION
Although the neuron’s input can be a continuous variable (e.g.,
direct current injection), its spiking output is not continuous. In
the following we try to avoid the ambiguity attached to the term
frequency when discussing spiking codes by using the term fir-
ing rate (units spikes/s) rather than firing frequency to describe
rate of spike production, and reserve the term frequency (units
Hz) to describe the frequency of sinusoidal components of the
continuous input signal.

For current stimulation, either a sinusoidally or stochastically
modulated tonic excitatory current was injected into the model
cells. This mode of stimulation allowed us to examine the con-
tribution of the intrinsic conductance structure of the neuron to
information processing. For both sinusoidal and stochastic mod-
ulations a tonic excitatory current I0 was chosen to produce a
desired tonic firing-rate F0, which we refer to as the carrier-rate.
The value of the carrier-rate was usually set to 40 spikes/s, a
value that, according to the Nyquist theorem, in principle allows
information transfer for modulation frequencies of up to 20 Hz
corresponding to the upper frequency limit of natural primate
head movements (see below).

For sinusoidal modulations IE = I0 + AI sin (2π ft) and for
stochastic stimulations the excitatory current was IE = I0 +
AIx(t) and the Gaussian process x(t) was normalized to 2σ = 1.
The amplitude of modulation was then chosen so that a tonic
input I0 + AI produces a tonic firing rate (1 + a)F0, that is,
a relative output modulation a. Since Gaussian processes are
unbounded, this ensures that for stochastic stimulations with low
amplitudes the interval (1 ± a)F0 includes the output firing rate
approximately 95% of the time.

In cases where the relative modulation amplitude a is not
larger than one (Figures 1–4) the carrier-rate F0 is approximately

equal to the effective firing-rate Feff which was defined as the
activity in presence of modulatory input.

MEASURES OF INFORMATION TRANSMISSION
Quantifying information transmission and transformation for
spike-coded signals is in general a very difficult problem (Dayan
and Abbott, 2001). We wish to emphasize here three important
methodological considerations that must be taken into account
when interpreting neural transfer functions. Firstly, neural out-
puts (and possibly inputs) are spiking, hence the estimated trans-
fer function depends critically on the method used to transform
spiking to continuous outputs. We will motivate here the use
of a sampling-rate filter to obtain this estimate. Secondly, since
a linear transfer function cannot represent the non-linear (and
potentially noisy) spike generation process perfectly accurately,
a transfer function estimate must be accompanied by an esti-
mate of its fidelity. We will show that evaluation of a companion
statistic such as variance-accounted-for (VAF), estimated with an
ideal observer Wiener filter method (Gabbiani and Koch, 1998),
is crucial in interpreting transfer function estimates. Finally, it is
important to recognize that the information transfer performance
of the neuron depends crucially on the statistics of the input sig-
nals required for a behavioral task; these must be specified as part
of the analysis if the results are not to be misleading.

To illustrate the importance of this we consider the com-
monly used technique for transfer function estimation illustrated
in Figure 1, where the neuron’s response to sinusoidal current
inputs is measured at a range of different frequencies, and the
output gain and phase is plotted as a function of input frequency
(the Bode plot). In this method a sinusoidal fit (with the fre-
quency of the interpolated sinusoid taken to be the known input
modulation frequency) to the instantaneous firing frequency (cal-
culated from inter-spike-intervals) is used to estimate a continu-
ous neural output. Panels A1–A3 show the response of a passive
integrate-and-fire (IF) neuron to sinusoidal modulated direct
current stimulation. In the example shown the carrier-rate is F0 =
40 spikes/s the relative modulation amplitude is a = 0.1 and the
sinusoidal modulation frequencies are f = 5, 15 and 35 Hz.

The first column shows the best sinusoidal fit through the
cell’s instantaneous firing rate against spike time (filled circles).
Comparison of input and output modulation amplitudes gives
the transfer function shown in the bottom panel Figure 1C (green
line marked sinusoid fit) which can also be calculated analyti-
cally (black dashed line) (Knight, 1972). For frequencies below
the carrier-rate of 40 spikes/s the neuron’s gain declines mono-
tonically above ∼10 Hz, whereas above the carrier-rate there are
resonance lobes in the transfer function at particular frequen-
cies. These resonances are caused by “locking,” a phenomenon in
which spikes are entrained preferentially into a particular phase
relationship to the underling signal.

The transfer function obtained in this way seems to demon-
strate substantial information transmission above 20 Hz.
However, inspection of the spiking output reveals that the
particular form taken by the transfer function at these high
frequencies depends critically upon our knowing what frequency
of sinusoid to fit to the discrete firing rate data. The plotted
sinusoidal fits (green curves) show that at low frequencies the
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A1 B1

A2 B2

A3 B3

C

FIGURE 1 | Different methods to compute neuronal transfer function

from spike times. (A) Sinusoidal fit method: spike rate (black dots) and
fitted sinusoids (green lines) for stimulation of integrate-and-fire neuron
(τ = 15.7 ms) with current modulated at 5 Hz (A1), 15 Hz (A2), and 35 Hz
(A3). (B) Filter method: spike times, resulting from stimulation of
integrate-and-fire neuron as in (A), with current modulated at 5 Hz (B1),
15 Hz (B2), and 35 Hz (B3), are convolved with either an alpha-function
(with τα = 100 ms) (red lines), called “synaptic filter,” or a rectangular
function (width = 0.025 ms, i.e., simulation step size) (blue lines), called
“sampling-rate filter.” (C) Resulting transfer function using either sinusoidal
fit (green line, analytical function: black dashed line) or filter methods
(synaptic, red line; sampling-rate, blue line).

fit accurately reflects the behavior of the sampled data (5, 15 Hz
in Figures 1A1,A2). However, at frequencies above the Nyquist
frequency of 20 Hz (35 Hz, Figure 1A3) this is no longer the
case. For example it is unlikely that the 35 Hz sinusoid shown
(green line) would have been the preferred reconstruction of
the data in Figure 1A3 without prior knowledge of the input
frequency, and since this prior knowledge could not be available

in any behaving system this particular reconstruction must be
considered artificial.

This explains an apparent conflict between Figure 1C and the
Shannon sampling theorem. Since a single neuron can only trans-
fer information at the times when spikes occur, its output is effec-
tively sampled at an average rate given by the carrier-rate. Hence
by the Shannon sampling theorem the frequency content beyond
the Nyquist frequency (half the carrier-rate) is not well-defined
and we have unambiguous information transfer only below this
frequency. It is our prior knowledge of the input frequency that
apparently allows this limit to be transcended. Hence, although
the Bode plot in Figure 1C (green line) accurately represents the
results of a particular kind of experiment, the transfer function
is misleading, since it suggest that information transfer by a sin-
gle neuron employing MFR coding is not limited by the Nyquist
frequency. To investigate this limitation further we must consider
other decoding methods.

Direct estimation of transfer functions: the sampling-rate filter
A more relevant method for transforming neuronal spiking out-
put into a continuous variable is to apply an appropriate linear
filter. This avoids the need for prior assumptions, as in sinusoidal
fitting, and it approximates the physical conversion of spikes into
postsynaptic potential changes. One problem is that the transfer
function obtained using this method depends on the filter cho-
sen. For example Column B of Figure 1 shows the response using
two different types of filter. The red curve shows the output of the
IF neuron passed through a model synaptic filter (alpha-function,
low-pass filter, with time constant 100 ms) The blue curve shows
the output passed through a delta-function filter, approximated
in discrete time as a sampling-rate filter (a rectangular window
filter with width equal to the simulation step size dt = 0.025 ms)
so that each time a spike occurs the output function is set to 1 and
0 otherwise. Subsequently, the corresponding normalized trans-
fer function gain (Figure 1C, blue and red lines) can be derived
directly from the continuous output y(t) (Figures 1B1–B3, red
and blue lines) and input data x(t) by dividing their respective
Fourier-amplitudes at corresponding sinusoid input frequencies:

mag = [∣∣FT(x(t), f )
∣∣ /

∣∣FT(y(t), f )
∣∣]200 Hz

f =0.5 Hz.

Clearly a central question for this method is which filter to
choose. Since we do not wish to limit a-priori the efficiency of
subsequent processing we propose a “direct estimation” of the
transfer function, i.e., employ the sampling-rate filter but use
variance-accounted-for (VAF) statistics, estimated with an ideal
observer Wiener filter method (Gabbiani and Koch, 1998), to
interpret the signal transmission fidelity.

The ideal observer
The Wiener filter that allows the most accurate subsequent lin-
ear reconstruction of the input signal is termed the non-causal
ideal observer (Gabbiani and Koch, 1998) and has been applied,
for example, to quantify the accuracy of stimulus encoding in
vestibular afferents (Sadeghi et al., 2007). A requirement for this
method is that the input now has to be changed from single
sinusoids to a Gaussian process. For input signals x(t) and spik-
ing (delta-function sampling-rate filter) outputs y(t) the transfer
function estimate is
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T(f ) = Pxy(f )

Pxx(f )
(2)

and the optimal reconstruction filter is:

K(f ) = Pyx(f )

Pyy(f )
(3)

where Pxx, Pyy, Pxy, Pyx are the spectral and cross-spectral
densities of the processes x and y, computed using Welch’s
average periodogram method (Bendat and Piersol, 2010). The
optimal reconstructed input is xest = K ∗ y and the accuracy of
reconstruction can be assessed using the variance-accounted-for
statistic:

VAF(f ) =
∣
∣Pxy(f )

∣
∣2

Pxx(f )Pyy(f )
(4)

which is usually expressed as a percentage, so that VAF(f ) =
100% implies perfect reconstruction at that frequency and thus
a high fidelity in signal transmission.

Although use of the ideal observer eliminates the dependence
on the choice of reconstruction filter, it introduces a new depen-
dence on the statistics of the input process as illustrated in
Figure 2. In Column A of this figure the input process is chosen
to be a completely unpredictable white noise process. The numer-
ically estimated transfer function in panels A1, A2 (red lines)
shows signal transmission at all frequencies with a regular series
of infinite resonance peaks (the analytical transfer function is also
known in this case (Knight, 1972) and is shown for comparison as
black dashed line). However, these prominent features of the Bode
plot do not indicate significant information transfer at high fre-
quencies. Applying the optimal reconstruction filter (which can
be seen to be an approximate triangular function at the spike sam-
pling time scale, shown in panel A3) reveals a complete failure to
reconstruct (red plot in A4) any high frequency detail in the white
noise input (black plot). This failure is predicted by the VAF plot
(A5) which shows unsatisfactory reconstruction even at low fre-
quencies (maximum VAF ∼ 75%) and a falloff in VAF around the
Nyquist frequency (20 Hz) with no useful reconstruction beyond
the carrier-rate of 40 spikes/s.

In column B the input is taken to be band-limited white noise
with a flat spectrum up to a cutoff frequency of 20 Hz equal to
the Nyquist frequency. The transfer function is plotted in panels
B1, B2 only up to the Nyquist frequency, since higher frequencies
are not present in the input. Up to this limit it is identical to that
in column A. The ideal reconstruction filter shown in panel B3,
it is essentially a sinc (band-pass reconstruction) function, and
a sample input reconstruction is shown in panel B4. The recon-
structed (red) signal accurately overlays the band-passed input
(black), and this accuracy is predicted in the VAF plot in panel
B5, which shows almost perfect reconstruction, VAF ∼ 100%,
all the way up to the Nyquist frequency. Using colored noise
inputs between these two extremes of white and band-passed
white noise (results not shown) gives intermediate results, with

A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

FIGURE 2 | Response of integrate-and-fire neuron to white noise

stimulation using sampling-rate filter and ideal observer methods.

Parameters for all following simulations: carrier-rate F0 = 40 spikes/s,
modulation amplitude a = 0.1. (A) Response to unfiltered white noise.
(A1,A2) Show transfer function gain and phase respectively (red line),
compared with analytically derived response (black dashed line). (A3)

Shows the optimal filter for unfiltered white noise, (A4) the results of its
use in a sample reconstruction (black shows input, red shows output), and
(A5) the reconstruction quality (VAF). (B) Response to white noise low-pass
filtered at 20 Hz. (B1–B5) as in (A). The black dashed line in (B3) is the
function f (t) = sinc

(
2π · 20 Hz · t

)
, which is the Fourier transform of the

20 Hz white noise filter.

some information transmission possible at higher frequencies
and subsequent information loss at low frequencies.

Clearly we need to choose a suitable candidate for input-signal
process statistics. Although white noise signals are important
theoretically they are very unlike the usual signals found in sen-
sorimotor systems and transmitted by MFR coding. For example,
natural head movements in people and monkeys have most of
their power below 20 Hz (see Discussion). For this reason we have
chosen band-passed white noise inputs with a low-pass frequency
cutoff of 20 Hz for most of the simulations in this paper. However,
since the realistic limit for cerebellar cortical involvement in
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vestibular processing may be lower, we will also test for cutoffs
at lower frequencies.

While the loss of fidelity in the above simulations is produced
by the spike-sampling process alone, i.e., converting the contin-
uous input signal to a signal represented by spike events, we also
analyzed signal transmission properties under the influence of a
separate source of input noise modeled as an additive Ornstein-
Uhlenbeck stochastic process n (Destexhe et al., 2001) with a time
constant of τn = 1 ms (fast noise) and τn = 100 ms (slow noise).
The relative amplitude of the noise current AIN = an · F0 was
exemplarily set to an = 4 for fast and an = 2 for slow noise.

Population coding
The methodology described above can also be applied to input
reconstruction from the population spiking output. Analysis of
white noise signal transmission with small carrier-rate and large
population sizes was carried out for an example population of 100
detailed GrCs, resonant and passive IF models with and without
slow current noise (τn = 100 ms) as above.

Since in simulations with low firing-rate and in following
synaptic simulations the carrier-rate F0 was not equal to the effec-
tive firing-rate Feff we focused on the estimation of the latter since
we considered it to be a more truthful value to compare different
models and configurations. The modulation amplitude was thus
set to AI = 2 pA for all cases, whereas the noise amplitude AIN

and the mean and standard deviation of the tonic subthreshold
stimulation current I0 across the population was adjusted to result
in an effective population firing-rate of mean(Feff ) = 4 spikes/s
and std(Feff ) = 2 spikes/s for all cells and configurations.

A second coding scheme for populations, termed “push-pull
coding,” was employed where half of the neurons constitute a sec-
ond sub-population that receive the inverted signal −1 · x(t) and
the output to be reconstructed, used for transfer function and
VAF computations, is y(t) = y1(t) − y2(t) (Bialek et al., 1991).

SYNAPTIC STIMULATION
The second stimulation mode was synaptic, via stochastic mod-
ulation of the firing rate of the excitatory and inhibitory inputs
about a tonic rate; this mode allowed the additional contribution
from details of synaptic processing to be examined. Each model
cell had 4 excitatory synapses (AMPA, NMDA) and 4 inhibitory
synapses (GABA) reflecting realistic convergence ratios (Solinas
et al., 2010). Each excitatory synapse received a representation
of the input signal R(t) = a · F0in · x(t) + F0in with a different
input carrier-rate F0in chosen with mean of 40 spikes/s (reflect-
ing realistic value as seen for vestibular mossy fibers, Lisberger
and Fuchs, 1978) and standard deviation of 10 spikes/s so that
95% of input spike-rates lay between 20 and 60 spikes/s, e.g., 2 ·
std(F0in) = v · m(F0in) with a relative variance v = 0.5. In some
cases v was increased to 0.7 or 1.2. The Gaussian process x(t) was
normalized to 2σ = 1 which ensures that the amplitude a · F0in

includes the input firing rate 95% of the time. Each inhibitory
synapse normally received either the same constant frequency
input FI , or normally distributed carrier-rates with 2 · std(FI) =
0.5 · m(FI). In another simulation stochastically modulated sig-
nals were also sent through the inhibitory synapses with
R(t) = a · FI · x(t) + FI .

To generate spiking inputs from the firing rate R(t) we require
a standard method for generating an input spike train from a
continuous input signal. Spikes were generated using an ideal
(τ = ∞) integrate-and-fire neuron with resting and reset poten-
tial 0 and spike threshold 1 (Knight, 1972) which was chosen
because of its flat transfer function (see Results). To achieve
identical Feff and identical FI but different input modulations
or cutoff frequencies, the spike rate was additionally controlled
by a constant inhibitory current II = gI(V − 65 mV) in some
simulations.

Push-pull coding was also tested using synaptic stimulation.
Here all 4 synapses of 50% of the population received either the
normal or the inverted signal −1 · x(t).

GENERAL NOTES
Gain is always normalized to unity at the lowest frequency and
plotted in decibel (dB) with magdB = 20 log10(mag) and phase is
always measured in degree (◦). For all simulations a VAF of 90%
is used as a threshold for desired coding quality.

The carrier-rate F0, which is the activity without modula-
tory input, is in general not equal to the effective firing-rate
Feff , which is the activity during modulatory input. They both
are approximately equal during suprathreshold tonic current
injections with a ≤ 1 (Figures 1–4). In cases with subthresh-
old current (Figure 5) or synaptic stimulation (Figures 6–10) we
considered the effective-firing rate Feff to be a more truthful value
to compare different models and configurations. For comparison,
we estimated F0 from the spike activity without modulatory input
in some of these simulations.

RESULTS
This section first describes signal transmission by model gran-
ule cells (GrCs) in response to simulated injections of current.
We first compare our method of direct transfer function esti-
mation to the sinusoidal fit method and analyse the effect of
different properties on the fidelity. Furthermore, we explore the
influence of noise and low carrier-rates. Subsequently we analyse
the signal transmission and linearity during synaptic stimulation
of excitatory and inhibitory synapses.

CURRENT INJECTION
Current stimulation allowed us to examine the contribution of
the intrinsic electro-responsive properties of model granule cells
to signal processing.

Noise-free stimulation
We looked first at granule-cell firing rate produced by sinusoidal
modulation of a steady current. Transfer functions were derived
either by using sinusoidal fitting (Figure 3A), or using the direct
estimation with a sampling-rate filter (Figure 3B) (see Materials
and Methods for details). The red Bode plots in A1,A2, B1,B2
refer to the Solinas et al. (2010) model of the granule cell (GrC).
Bode plots for the best fit passive integrate-and-fire (IF) neuron
(dashed black line) and a resonant IF (rIF) neuron (dotted black
line) are also shown. As explained in the Materials and Methods
Section, the steady stimulation current gives a carrier-rate of ∼40
spikes/s and plots are only shown up to the Nyquist frequency
of 20 Hz. The best-fit IF model is unable to accurately reproduce
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significant features of the model GrC transfer function. It does
not show the small resonance peak (panel A1) found using the
sinusoidal-fit method, and it underestimates the size of the asso-
ciated phase-lag (panel A2). Using the sampling-rate method the
best-fit IF model underestimates the gain increase as the Nyquist
frequency is approached (panel B1) and overestimates the phase
lead (panel B2). However, these features of the GrC model could
be accurately fitted (dotted lines) by extending the model to a
resonant IF neuron with a spike delay (Materials and Methods)
resulting in a peak resonance of 10 Hz. The spike delay had to be
added to explain the phase lag [Figures 3A2,B2; compare phase
of GrC model (red line) to passive IF model (dashed black line)],
that cannot be produced by the resonant current and reflects the
delay induced by ion-channel spike generation.

More informative than the transfer function, however, is a
measure of how well the input stimuli are reconstructed using
a non-causal ideal linear observer (Materials and Methods).
Figure 3C shows the percentage variance-accounted-for (VAF)
for the passive IF (dashed), resonant IF (dotted), and the detailed
GrC model (solid lines). All models showed excellent stimu-
lus reconstruction up to 20 Hz even for a population size of
one (Figure 3C1) (the overlap in performance between the dif-
ferent models means the plots for individual models cannot
be distinguished). Thus, a single model neuron is capable of
encoding signals over the input frequency range of natural head
movements.

The dependence of VAF on carrier-rate for a single neuron
is shown in Figure 3C2. As the Shannon criterion suggests the

minimum carrier-rate required for faithful transmission of band-
passed white noise is twice the maximum frequency in the signal
to be transmitted. Due to the relative definition of modulation
amplitude the effective amplitude increases with carrier-rate. To
show that this factor is not the cause for the increase in fidelity
in Figure 3C2 the simulations were validated with identical abso-
lute modulation amplitudes of aF0 = 2 Hz for all carrier-rates
resulting in the same increase of VAF with carrier-rate (results not
shown).

The effect of modulation amplitude is further investigated in
Figure 3C3. Here, in the absence of additive noise the linear trans-
fer function approximation is most accurate at low modulation
amplitudes as we would expect, but is acceptable up to quite
large modulations. Even a modulation depth of a = 1, where
the input occasionally drives the cell below its firing threshold,
inducing signal rectification and decreasing spike resolution just
above threshold, only leads to a moderate reduction in VAF. Since
the relative amplitude a was never larger than 1, the carrier-rate
F0 which is the activity without modulatory input was always
approximately equal to the effective firing-rate Feff which was
defined as the spike activity during modulatory input.

From here on we will only use direct estimation (sampling-rate
filter) and ideal linear observer method for transfer function and
VAF calculations, respectively.

Effects of noise
Many neurons (for example those in cerebral cortex) receive a
continuous barrage of inputs from many synapses (Brunel et al.,

A1 A2

C2 C3C1

B1 B2

FIGURE 3 | Information transmission by model GrC in response to

modulated current injection, assessed by two methods. Baseline
conditions for all following simulations: population size N = 1, carrier-rate
F0 = 40 spikes/s, modulation amplitude a = 0.1. (A) Sinusoidal fitting. Transfer
function gain (A1) and phase (A2) for detailed GrC model (red lines), passive
integrate-and-fire (IF) neuron (dashed lines) and resonant integrate-and-fire
neuron (rIF) (dotted lines) under current stimulation. (B) Sampling rate filter for
20 Hz low-pass filtered white noise. Transfer function gain (B1) and phase (B2)

for three neuronal models (legend as in A). (C) Reconstruction quality (VAF) for
different neuron models under varying conditions. Legend for all panels: solid

line indicates the detailed GrC model, dashed line the passive integrate-and-fire
neuron (IF) and dotted line the resonant integrate-and-fire neuron (rIF). (C1)

Effects of population size (N = 1: red, N = 10: blue, and N = 100: green lines).
Mean % VAF for N = 1 97.9 GrC; 97.8 IF; 98.1 rIF. For N = 10 99.8, 99.7, and 99.8
respectively. For N = 100 all 99.9. (C2) Effects of carrier-rate (20 spikes/s, blue:
40 spikes/s, red: 80 spikes/s green). Mean % VAF for 20 spikes/s 49.3 GrC; 49.2
IF; 49.4 rIF. For 40 spikes/s 97.9, 97.8, and 98.1 respectively. For 80 spikes/s all
100. (C3) Effects of modulation amplitude a (a = 0.05 blue, a = 0.1 red a = 1:
green). Mean % VAF for a = 0.05 99.2 GrC; 99.0 IF; 99.2 rIF. For a = 0.1 97.9,
97.8, and 98.1 respectively. For a = 1 90.6, 91.3, and 89.2 respectively.
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2001), which acts as a main source of noise. While granule cells
have many fewer inputs the main source of noise for them is
probably from stochastic vescicle release and neurotransmitter
diffusion from other synapses in the glomeruli (DiGregorio et al.,
2002; Mapelli et al., 2009). We therefore investigated the effects
on signal transmission by the GrC model under the influence
of either slow noise, mimicking neurotransmitter diffusion, by
introducing additive white noise filtered by a time constant of
τn = 100 ms or fast noise, mimicking stochastic vescicle release,
with a time constant of τn = 1 ms.

As in the noise-free case, the input signal was white noise
low-pass filtered with a cutoff at 20 Hz and the carrier-rate was
set to 40 spikes/s. The default modulation amplitude however
was increased from a = 0.1 to a = 1 and population size N
was increased from N = 1 to N = 100 to yield cleaner transfer
function plots.

The effects of noise on the transfer function of the model
GrC cell are shown in panels 4A1,A2. Comparison of the transfer
functions in the noise–free case (black lines) with those previ-
ously shown (Figures 3B1,B2; red lines) indicate that increasing
amplitude modulation leads to a gain decrease in the absence of
noise, and is accompanied by a drop in VAF for high frequencies
(Figure 4C1; black lines) as shown before (Figure 3C3). Panels
4A1,A2 also show that the addition of filtered white noise (green
lines) irrespective of slow or fast, exposes the spike resonance

(Figure 3A1) which otherwise is hidden under the much larger
carrier-rate resonance.

Figure 4B shows an example of the reconstruction (green
lines) of the low-pass filtered white noise signal (black line)
in the presence of slow noise (upper panel) or fast noise
(lower panel) for population size N = 100. For comparison,
in each panel the input current to an example single cell is
shown in gray. Similar good performance is shown in both
cases.

Figure 4C shows the effects of noise on the VAF measure for
different model variables. The VAF is badly affected by noise for
small numbers of cells. For N = 100 cells, however, the addition
of noise actually has a beneficial effect and leads to an increase
in mean VAF from 89.2% without noise (black lines) to 97.1%
for fast noise (green lines) and 95.1% for slow noise (light green
lines). A similar beneficial effect on the fidelity can be observed
by a heterogeneous population carrier-rate. E.g., increasing the
standard deviation of the carrier-rates in all cells from std(F0) = 0
spikes/s to std(F0) = 2 spikes/s increases the mean VAF to 96.8%
(results not shown).

Further results were that the influence of the carrier-rate was
low due to the large population size of N = 100 (Figure 4C2) and
that the VAF also strongly depends on the modulation amplitude
(Figure 4C3) due to increased signal-to-noise ratio (Gabbiani
and Koch, 1998). Here the effect of increased amplitude, in

A1

C1 C2 C3

A2 B

FIGURE 4 | Information transmission by model GrC in response to

modulated current injection, with additive noise. Baseline condition for all
following simulations: population size N = 100, mean carrier-rate
m(F0) ≈ 40 spikes/s, std (F0) ≈ 0 spikes/s and modulation amplitude a = 1.
(A) Effects of noise on transfer function of GrC model (A1 gain, A2 phase)
measured using the sampling-rate filter method, with 20 Hz low-pass filtered
white noise as the input signal (black lines) and fast (τn = 1 ms, an = 4, dark
green lines) or slow (τn = 100 ms, an = 2, light green lines) additive
correlated white noise. (B) Reconstruction, from stimulation with additive
fast (green line) or slow (light green line) noise, of input signal (black line)
from GrC response. Total input current to one exemplary cell shown in gray.
(C) Reconstruction quality (VAF) for GrC model under varying conditions.
(C1) Effects of population size N and fast noise (N = 1: red, N = 10: blue, and

N = 100: green line), slow noise (N = 1: light red, N = 10: light blue, and
N = 100: light green line) or without noise (N = 100: black line). Mean % VAF
for N = 1 32.1 fast noise; 33.6 slow noise. For N = 10 81.6 and 76.7
respectively. For N = 100 97.1 and 95.1 respectively. For N = 100 without
noise 89.2. (C2) Effects of carrier-rate F0 and fast noise (20 spikes/s, blue: 40
spikes/s, red: 80 spikes/s green) or slow noise (20 spikes/s, light blue: 40
spikes/s, light red: 80 spikes/s light green). Mean % VAF for 20 spikes/s 95.0
fast noise; 93.4 slow noise. For 40 spikes/s 97.1 and 95.1 respectively. For 80
spikes/s 97.6 and 95.2 respectively. (C3) Effects of modulation amplitude a
and fast noise (a = 0.05: blue, a = 0.1: red, and a = 1: green line) or slow
noise (a = 0.05: light blue, a = 0.1: light red, and a = 1: light green lines)
Mean % VAF for a = 0.05 10.0 fast noise; 13.6 slow noise. For a = 0.1 31.0
and 35.6 respectively. For a = 1 97.1 and 95.1 respectively.
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contrast to the noiseless case (Figure 3C3), outweighs the disad-
vantages of occasional signal rectification.

The biggest difference between slow and fast additive noise is
that the fast noise acts uniformly on the whole frequency range
while slow noise leads to a decreased VAF preferentially at low
frequencies. The fidelity of both IF models, using variables as in
Figure 4C, was very similar to the GrC model (data not shown).

Low firing-rate with current stimulation
So far we have shown that lowering the carrier-rate has adverse
effects on the transmission quality for a single cell (N = 1)
(Figure 3C2, blue line). This lowered carrier-rate can how-
ever be offset by increasing the population size, e.g., N = 100
(Figure 4C2, blue line). To further analyse this effect we have sim-
ulated large populations with a firing-rate well below the Nyquist
frequency in the following.

While in simulations before, the carrier-rate F0 was approxi-
mately equal to the effective firing-rate Feff this now no longer
is the case. In all following simulations different models and
configurations are thus compared based on the effective-firing
rate Feff .

While the intrinsic properties of the GrC model have only a
slight influence on transmission properties for sufficiently high
firing-rates, this ceases to be the case when the firing-rates
are smaller than the maximum input signal frequency. When
analysing all three models (GrC, resonant IF and passive IF) in
a population of 100 cells with m(Feff ) = 4 spikes/s (Figure 5A,
blue lines) it can be observed that the gain and phase for the
passive IF population is flat over the whole frequency range and
the resonant IF population just shows a small phase lag at higher
frequencies due to the induced spike delay (Figures 5A1,A2). In
contrast, the response of the GrC model population shows a large
gain decay and phase lag at higher frequencies. Similarly, the VAF
(Figure 5A3) of the IF populations is rather flat between 40 and
60% over the whole frequency range, whereas for the GrC popula-
tion, VAF falls off to lower values for 20 Hz which was already seen
for the case F0 = 20 spikes/s (Figure 3C2). This relation can be
explained by the effect that since the higher frequency content is
highly damped, as seen from the strong gain decay, and therefore
any reconstruction potential erroneous, the Wiener filter tries
instead to optimize the low frequency content of the signal.

For all three models however, the VAF is too small to get
a good signal reconstruction as shown for the GrC population
(Figure 5A4, blue line). Due to the low firing-rate, only strong
and persistent positive amplitudes result in a spike output and
therefore can be reconstructed. One possible way to improve this
is to use push-pull coding where two populations of the same cell
type encode the positive and the negative amplitude respectively.
While this can indeed increase the VAF (Figure 5A3, red lines)
and also improve the encoding of strong negative signal ampli-
tudes, the whole population preferentially spikes during these
amplitudes and therefore is locked to the underlying modulated
signal.

To further increase the signal transmission quality the cells can
be uncoupled by a source of noise, here slow noise (τn = 100 ms)
is used which has previously been shown to be beneficial to
signal transmission (Gerstner, 2000). In contrast to the case with

A1 B1

A2 B2

A3 B3

A4 B4

FIGURE 5 | Transmission with low firing-rate. Transfer function gain
(A1,B1), phase (A2,B2), VAF (A3,B3) and reconstruction sample (A4,B4)

for 100 cell populations of passive IF (dashed lines), resonant IF (rIF) (dotted
lines) and GrC model (solid lines) without (A) and with (B) additive filtered
slow noise (τn = 100 ms). In addition to the normal case where population
is encoding the whole signal (blue lines) push-pull coding (red lines) is
shown. In this case, half of the cells encode only the positive and the
negative part of the signal respectively. Input current adjusted for all
recordings to result in m(Feff ) = 4 spikes/s and std (Feff ) = 2 spikes/s.
[m(VAF ) in % for IF/rIF/GrC: 50.9/50.8/46.4; 82.5/80.1/68.3 (push-pull);
72.0/73.1/72.4 (slow noise); 93.8/93.1/87.6 (push-pull + slow noise)].

large firing-rate (Figure 4), the slow noise had the opposite influ-
ence on the transfer functions, slightly increasing gain and phase
for higher frequencies especially in the GrC model populations
(Figures 5B1,B2). Noise furthermore enhanced the fidelity over
the whole frequency range and especially counteracted the VAF
drop of the GrC population at higher frequencies thus increas-
ing the quality of input signal reconstruction (Figure 5B4) for
standard and push-pull coding.

The mean population carrier-rate F0 of the granule cell model,
estimated during activity without modulatory input, was 1.4
spikes/s without noise, and increased to 4.5 spikes/s with slow
noise.

SYNAPTIC STIMULATION
Synaptic stimulation allowed us to examine the effects of sig-
nal transmission and combination through potentially non-linear
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synaptic processes and their interaction with intrinsic cellular
properties.

Information transmission by individual types of synapses
The previous analysis probes only the effects of neuron intrinsic
dynamics. We now investigate the effects of synaptic properties
on information transmission for spiking inputs. For this all model
cells have been connected with detailed models of AMPA, NMDA,
and GABAA synapses (Solinas et al., 2010) possessing dynamic
synaptic properties such as presynaptic facilitation/depression
and postsynaptic depression.

As described in Materials and Methods a low-passed white
noise input signal was transformed into an input spike train with
an input carrier-rate of 40 spikes/s using an ideal integrate-and-
fire (iIF) neuron (τ = ∞) and the default modulation amplitude
was a = 1. To separate the effects of input signal coding scheme
and synaptic processing on the overall response of the complete
GrC model, the transfer functions and fidelity of the gener-
ated input spike trains and of the resulting AMPA and NMDA
conductance signals were analyzed separately (Figure 6).

Figures 6A1,A2 shows that, as expected, the transfer function
for a single spike train and a population of Nin = 40 input spike
trains showed a flat gain and phase. Nin = 40 is equivalent to the
total input to a population of N = 10 model cells with 4 synapses
each. Similar to before (Figure 3C3), the fidelity (Figure 6A3) of
a single iIF (blue line) is degraded at high frequencies due to the
large modulation amplitude of a = 1 but is flat for the population
response (green solid line).

In contrast, the gain when the excitatory synapses were
included (Figures 6B1,C1) featured strong dynamics, especially
for AMPA, with a dip at ∼2 Hz and resonance at ∼10 Hz that can
be accounted for by the complex synaptic dynamics. Especially
the dip can be explained by presynaptic facilitation/depression
as it disappeared when these are removed from the simulations
(data not shown). Furthermore, due to their slower dynamics,
NMDA synapses had a higher gain drop and phase delay (∼−4 dB
and −30◦ at 20 Hz) (Figures 6C1,C2) compared to AMPA
synapses (∼−1.5 dB and −20◦ at 20 Hz) (Figures 6B1,B2). In
contrast to AMPA and NMDA, GABA synapses showed a constant
gain decrease (Figure 6D1) but phase properties (Figure 6D2)
similar to NMDA synapses. However, the VAF for all three
synapses (Figures 6B3,C3,D3) showed no apparent difference to
the VAF of the iIF coded spike input train indicating no significant
information loss at the synaptic stage. This suggest that all these
dynamic features as found in the transfer function are in fact lin-
ear since they can be counteracted by the linear Wiener filter and
thus do not affect the reconstruction. However, this is only true if
the modulation amplitude is not too large, as investigated further
below.

Combined neuronal and synaptic effects on signal transfer
Next, the overall response of the GrC model with both exci-
tatory and inhibitory inputs (see Materials and Methods) was
analyzed. As described in Materials and Methods the excitatory
synapses received trains with the same modulation signals but
different mean input carrier-rates with mean F0in of 40 spikes/s.
The modulation amplitude was set to a = 1 to obtain the best

A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3

FIGURE 6 | Information transmission by input spike train encoder and

synaptic conductances. (A) Transfer function gain (A1) and phase (A2) for
input spike trains produced by ideal integrate-and-fire (IF) neurons (blue lines
N = 1, green lines Nin = 40), with input carrier-rate F0in = 40 spikes/s and
modulation amplitude a = 1 stimulated by 20 Hz low-pass filtered white noise.
Gain values are normalized to the lowest frequency for the results from N = 1.
(A3) shows variance accounted for. The mean % VAF is 85.9 for N = 1, 99.1
for N = 40. (B) As in (A), but with the spike-train output of the ideal IF neurons
additionally passed through model AMPA synapses. The mean VAF is 80.7 for
N = 1, 96.1 for N = 40. (C) As in (B), but for model NMDA synapses. The
mean % VAF is 79.8 for N = 1, 95.3 for N = 40. (D) As in (B), but for model
GABA synapses. The mean % VAF is 76.9 for N = 1, 93.7 for N = 40.

signal to noise amplitude ratio, the initial size of the population
was N = 10 (Figures 7A1–A3).

Panels A1,A2 show that the gain and phase of the transfer
function for GrC with AMPA and NMDA excitation only exhibit
the strong dynamics as seen in AMPA and NMDA transfer func-
tions (Figures 6B,C1,C2) and the VAF is reasonably high with a
mean of 95.2% for N = 10 (A3). When the synaptic conductance
is decreased from its original value in the model (50%) (green
lines), resulting in Feff = ∼40 spikes/s, the overall gain is shifted
to lower values, the phase lag increases and VAF is decreased at
higher frequencies due to the reduced firing-rate.
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From here on all parameters are chosen to produce a mean
effective firing-rate of Feff = ∼40 spikes/s.

Adding inhibition in the form of unmodulated constant spike
trains with a rate of FI = 6 spikes/s to all inhibitory synapses
leads to an overall gain shift to lower values but also to an
increased resonance at ∼10 Hz and to a phase advance. More
importantly however the VAF shows large dips at multiples of
the rate of inhibition at 6 Hz. The reason for these VAF drops
can be easily observed in the spike pattering as seen in sin-
gle cell voltage traces (Figure 7B). This effect severely impairs
the signal transmission quality at multiples of 6 Hz since the
pattering is now part of the carrier signal, which concurs with
the input signal modulation at these frequencies. Note that this
influence of constant inhibition on signal transmission proper-
ties could not be inferred by looking at gain and phase alone
(Figures 7A1,A2).

There seem to be two natural ways in which this severe deteri-
oration in performance due to aliasing with the inhibitory input
spike trains could be addressed by the biological system. Firstly
natural signals would have intrinsic variability, which we can
model by using spike trains with a higher CV, e.g., Poisson coded
inhibitory spike trains instead of iIF trains (Figure 7A3, dotted
orange lines). Secondly there might be variation in rate between
individual inhibitory inputs, which we model by choosing FI to
be normally distributed with, e.g., 2 · std(FI) = 0.5 · m(FI) (solid
red line).

In all cases inhibition, especially with Poisson input (dotted
lines), has a similar effect on the VAF to that seen previously for
slow noise (Figure 4): the VAF is lower for low frequencies. This
indicates that, due to the slow synaptic properties of the GABAA

receptors inhibition essentially acts as a source of slow noise in
this case.

To keep VAF uniformly above 90% the population size had to
be increased to N = 100 (Figure 7A4) (red line), which however
does not have a strong improvement on the prominent VAF dip
for constant inhibition (orange line).

Information combination in the granule celI
In previous simulations the same signal has been conveyed by
excitatory synapses only. We thus continued our analysis by test-
ing signal combination at excitatory synapses (Figure 8A), at
excitatory and inhibitory synapses (Figure 8B) and signal trans-
mission through inhibitory synapses alone (Figure 8C). In the
following the rate of inhibition was normally distributed, all
spike trains were created by iIF coding, N = 100, a = 1 and all
other parameters are chosen to always produce a mean effective
firing-rate of Feff = ∼40 spikes/s.

When GrC cells receive two different modulatory input
signals (xA(t), xB(t)) on two excitatory synapses each, or on
one and three synapses, as depicted by the illustration above
column A in Figure 8, the respective combined signal of
x(t) = 2xA(t) + 2xB(t) (dark red line) or x(t) = 1xA(t) + 3xB(t)

A1

B

A2 A3

A4

FIGURE 7 | Information transmission for synaptic activation (AMPA +
NMDA) and inhibition (GABA) on signal transmission. Mean, standard
deviation of effective firing-rate in spikes/s and mean % VAF given as triplet
[m(Feff )/std (Feff )/m(VAF )] in the following. Baseline condition for all following
simulations: modulation amplitude a = 1. (A) Gain (A1), phase (A2), and
reconstruction quality (VAF) (A3) for N = 10 GrC model cells and VAF for
N = 100 GrC model cells (A4) with following conditions: without inhibition
but standard synaptic strength [blue lines, N = 10: (A1–A3) (109/6.8/95.2),
N = 100: (A4) (111/6.9/96.3)], without inhibition and reduced (50%) synaptic
conductance [green lines, N = 10: (A1–A3) (39/4.1/92.2), N = 100: (A4)

(40/4.1/95.6)], with constant inhibition FI = 6 spikes/s [orange lines, N = 10:

(A1–A3) (36/5.5/89.4), N = 100: (A4) (37/5.5/95.1)] and variable m(FI ) = 6
spikes/s inhibition [red lines, N = 10: (A1–A3) (39/8.2/90.1), N = 100: (A4)

(38.2/7.8/96.9)]. Input spike train encoded using iIF (τ = ∞) (solid lines).
Furthermore, results with inhibition coded using inhomogeneous Poisson
process (dotted lines): constant inhibition FI = 6 spikes/s [dotted orange
lines, N = 10: (A1–A3) (37/5.4/87.6), N = 100: (A4) (38/5.4/96.6)] and variable
inhibition m(FI ) = 6 spikes/s [dotted red lines, N = 10: (A1–A3) (40/8/88.3),
N = 100: (A4) (39/7.6/96.7)]. Gain was normalized to the lowest frequency for
the results from FI = 0 spikes/s and full synaptic conductance (blue solid
line). (B) Membrane potential trace of respective GrC model cell in (A) with
non-variable inhibition (FI = 6 spikes/s).
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(light red line) can be reconstructed from the population response
with high fidelity [m(VAF) = 95 or 96%]. These results are only
slightly lower than for the control case without signal combina-
tion (Figure 7A3, red line) [m(VAF) = 96.9%] and can thus be
considered linear.

When injecting a modulatory signal not only through exci-
tatory but also inhibitory synapses (see illustration above col-
umn B), the contribution of the inhibition is not known a priori.
We assumed that the factor w of inhibitory contribution is given
by the reconstructed signal x(t) = xA(t) − w · xB(t) with the
highest mean VAF. Simulations were done for two configurations
resulting in baseline condition of Feff = ∼40 spikes/s: (1) normal
excitatory conductance and m(FI) = 6 spikes/s (Figure 8B, solid
orange line) and (2) reduced (45%) excitatory conductance but
increased rate of inhibition [m(FI) = 40 spikes/s] (dotted orange
line). In both cases 1 and 2 the optimal inhibitory contribution
w was found to be w = 0.23 which indicates a lower contribu-
tion from inhibitory signals than from excitatory signals. This low
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FIGURE 8 | Synaptic signal combination and signal trough inhibitory

synapse. Reconstruction quality (VAF) (A–C) of N = 100 synaptically
activated (AMPA + NMDA) granule cells with m(FI ) = 6 spikes/s but
different input configurations as depicted by clipart above. Mean, standard
deviation of effective firing-rate in spikes/s and mean of VAF in % given as
triplet [m(Feff )/std (Feff )/m(VAF )] in the following. Baseline condition for all
following simulations: modulation amplitude a = 1. (A) Two different input
signals to two excitatory synapses respectively (dark red line) (37/8.2/95.0)
or to one and three excitatory synapses (light red line) (37/8.0/95.9). (B)

Two different input signals to 4 excitatory and 4 inhibitory synapses
respectively, best reconstruction x(t) = xA(t) − 0.23xB(t) (solid orange line)
(38/7.7/91.9). Additional simulations for reduced synaptic conductance
(45%) and increased inhibition rate m(FI ) = 40 spikes/s (dotted orange line)
(38/6.3/96.1). (C) One input signal to the 4 inhibitory synapses only (solid
blue line) (38/8.6/90.2). Additional simulations for reduced synaptic
conductance (45%) and increased inhibition rate m(FI ) = 40 spikes/s,
(dotted blue line) (38/7.2/86.6).

contribution can be mainly attributed to the low synaptic time
constant of the inhibitory synapse (using a single-exponential
inhibitory synapse with τ = 10 ms increases the contribution to
w = 0.8, data not shown).

While for the combination of excitatory and inhibitory sig-
nals the fidelity [m(VAF) = 96.1%] comes close to the control
[m(VAF) = 96.9%] if the inhibitory input frequency is increased
(case 2). However, the fidelity for signal transmission through the
inhibitory synapses alone is always lower (Figure 8C, blue lines)
further suggesting that these synapses are less suited to transmit
information.

Relation between maximum input frequency and firing-rate
While previous simulations have been conducted obeying to the
requirements of the Nyquist sampling theorem (m(Feff ) = ∼40
spikes/s and input frequency cutoff = 20 Hz], we continued to
explore the regime below this relationship using a population of
N = 100.

In the following simulations we used two different effective
firing-rate/cutoff configurations of Feff = ∼20 spikes/s with cut-
off = 30 Hz and Feff = ∼3.5 spikes/s with cutoff = 5 Hz. For
IF models and simulations with increased amplitude (a = 10) a
constant inhibition II was added (see Materials and Methods) to
achieve similar effective firing-rates.

As a benchmark, we first analyzed the exclusive effect of
spike sampling on the transmission properties by simulating a
population of ideal integrate-and-fire neurons (iIF) for F0in =
20 spikes/s and cutoff = 30 Hz (Figure 9A). While, as before
(Figures 6A1,A2), the transfer gain and phase are flat for all cases
(not shown), the VAF (A1) starts to deteriorate at the Nyquist
frequency of 10 Hz for a modulation amplitude of a = 1 (green
line). Interestingly the application of the push-pull coding scheme
does not improve the VAF for this case (dark orange line) sug-
gesting that signal rectification is negligible, However, increasing
the modulation amplitude to a = 10 leads to an expected recti-
fication of negative signals causing decreased VAF and impaired
reconstruction (A1,A2, light green lines). This however can be
counteracted by deploying push-pull coding (A1,A2, light orange
lines) which results in a highly increased VAF over the whole
frequency range and improved reconstruction.

While applying push-pull coding to the iIF population does
not improve the VAF for a = 1 it does improve signal transmis-
sion in the GrC population (Figure 9B, red and blue lines). On
the contrary, increasing the modulation amplitude to high val-
ues (a = 10, light red lines) is not beneficial even with push-pull
coding (a = 10, light blue lines) in contrast to the iIF model. The
reason for this discrepancy can easily be seen when comparing the
binned firing rate of GrC and iIF populations (Figure 9D). For
iIF, increasing the amplitude from a = 1 (green line) to a = 10
(light green line) leads to a relative increase of the spike rate for
positive signals and a rectification for negative signals. For the
GrC population however, the resulting signal with a = 1 (red
line) shows a high amplitude when the change of input signal
is large (D, ∗) (i.e., high frequency) due to the synaptic proper-
ties of facilitation. However, if the amplitude of the input signal is
too large (a = 10, light red line) the consecutive synaptic depres-
sion leads to a drop during a sustained signal (i.e., low frequency)
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(D, ∗∗). This consecutively causes an increased gain at high fre-
quencies and the strong dampening of low frequencies provokes
a potential erroneous reconstruction at low frequencies (B1, light
red line) that cannot be counteracted even when push-pull coding
is employed (B1, light blue line).

The behavior in the GrC population can be almost exclusively
attributed to the synaptic properties: replacing the GrC cells by
passive IF models (see Materials and Methods) shows that the
qualitative behavior of the VAF is maintained (B, dotted lines).

In the second configuration we analyzed the signal transmis-
sion at lowered effective firing-rate of ∼3.5 spikes/s with cutoff =
5 Hz for GrC and IF models (Figure 9C). Just as in the case
before, GrC and IF model simulations are qualitatively similar
without push-pull coding [m(VAF) 84.9% vs. 84.2% for GrC
and IF, respectively] (solid and dotted brown lines) while push-
pull coding (solid and dotted purple lines) the results for IF are
slightly better [m(VAF) GrC 90.9% vs. IF 93.6 for GrC and IF,
respectively].

To further test the effect of spiking inhibition, simulations have
been repeated in the configuration Feff = ∼20 spikes/s vs. cut-
off = 30 Hz and Feff = ∼3.5 spikes/s vs. cutoff = 5 Hz without
spiking inhibitory input (Figure 9E). The firing-rate was solely

adjusted by the constant inhibition II and relative variance v
was increased to v = 0.7 and 1.4, respectively to achieve com-
parable firing-rate distributions. For high firing-rate simulation
(Feff = ∼20 spikes/s) the VAF for GrC and IF models (dotted
and solid red lines) are similar to the case with spiking inhibi-
tion (Figure 9, compare dotted and solid red lines in E and B1).
This relationship however changes when the firing-rate is low
(Feff = ∼3.5 spikes/s). While the fidelity of the IF model is com-
parable to the case before (Figure 9, compare dotted brown lines
in E and C1), the GrC model simulation shows a strong drop in
low frequency VAF with constant inhibition only (Figure 9, com-
pare solid brown lines in E and C1). This suggest that as in the
case before with current stimulation and slow noise (Figure 5)
spiking inhibition through GABAA synapses imposes a slow noise
component which helps to counteract the intrinsic non-linear
properties of granule cells at low frequencies.

During synaptic stimulation the measured carrier-rate F0 was
always slightly larger than the effective firing-rate Feff with, e.g.,
F0 = 24.7 vs. Feff = 21.8 spikes/s (B1,B2, GrC, cutoff = 30 Hz,
red lines) or 5.8 vs. 3.6 spikes/s (GrC, cutoff = 5 Hz, C1,C2,
brown lines). Without inhibitory input however, F0 was lower
than Feff with F0 = 17.3 vs. Feff = 20.1 spikes/s (E, GrC, cutoff =

A1 A2 D

C1 C2 E

B1 B2

FIGURE 9 | Transmission quality depends on modulation amplitude a,

maximum low-pass filtered noise input frequency (cutoff) and push-pull

coding. (A) Reconstruction quality (VAF) (A1,B1,C1) and sample
reconstruction (A2,B2,C2) with N = 100. Mean, standard deviation of
effective firing-rate in spikes/s and mean of VAF in % given as triplet
[m(Feff )/std (Feff )/m(VAF )] in the following. (A) iIF input with cutoff = 30 Hz
and F0in = 20 spikes/s: a = 1, green lines (19.5/5.0/92.9); a = 10, light green
lines (44.5/10.6/85.7); a = 1, push-pull, orange lines (19.5/5.0/93.2); a = 10,
push-pull, light orange lines (44.5/10.6/98.7). (B) Input signal (cutoff = 30 Hz)
through synaptic excitation, m(F0in) = 40 spikes/s and additional inhibition of
m(FI ) = 9 spikes/s. (B1,B2): GrC model: a = 1: red lines, (21.8/6.6/93.0);
push-pull: blue lines (21.1/6.4/96.5). a = 10, gI = 0.14 nS: light red lines
(21.1/4.5/67.4); push-pull: light blue lines (20.6/4.4/87.5). (B1) IF cell: a = 1,
gI = 0.19 nS: dotted red line (21.5/8.6/90.7); push-pull: dotted blue line
(20.7/8.6/97.6). a = 10, gI = 0.4 nS: dotted light red line (21.4/6.0/59.1);

push-pull: dotted light blue lines (20.8/6.0/84.5). (C) Input (cutoff = 5 Hz)
through synaptic excitation, m(F0in) = 40 spikes/s, a = 1 and low firing-rate
due to increased inhibition of m(FI ) = 14 spikes/s. (C1,C2) GrC model: brown
lines (3.6/3.4/84.9); push-pull: purple lines (3.3/3.2/90.9). (C1) IF model,
gI = 0.19 nS: dotted brown line (3.7/3.2/84.2); push-pull: dotted purple line
(3.4/2.9/93.6). (D) Sample spike-rate (binsize 5 ms) of 100 ideal IF cells (a = 1,
green line and a = 10, light green line) and 100 synaptically activated GrC
models (a = 1, red line and a = 10, light red line) in response to short 30 Hz
low-pass filtered white noise input (black line) with high- (∗) and low
frequency components (∗∗). (E) Excitatory synaptic stimulation [m(F0in) = 40
spikes/s, a = 1] with constant inhibitory current II only. High Feff , cutoff =
30 Hz: GrC model, gI = 0.56 nS and increased relative variance v = 0.7: red
line, (20.1/6.7/92.3); IF model, gI = 0.74 nS: dotted red line, (20.5/8.9/91.3).
Low Feff , cutoff = 5 Hz and v = 1.4: GrC model, gI = 0.635 nS: brown line,
(3.3/3.1/78.5); IF model, gI = 0.84 nS: dotted brown line, (3.3/3.1/85.0).
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20 Hz, red line) or identical with F0 = Feff = 3.3 spikes/s (E, GrC,
cutoff = 5 Hz, brown line).

To extend our analysis to different firing-rates we further esti-
mated the relation of maximum white noise cutoff frequency that
can be transmitted under different mean effective firing-rates Feff

while maintaining m(VAF) > 90% for several model cells, condi-
tions and a population of N = 100 (Figure 10). For the case of the
ideal integrate-and-fire neuron (A), the Feff vs. cutoff closely fol-
lows a straight 1:2 relation for an amplitude of a = 1 with (orange
line) and without push-pull coding (green line). For an increased
amplitude of a = 10 this relation is even better than 1:6 (light
orange line).

For the following Feff vs. cutoff relations, adjusting the rate of
spiking inhibition controlled the firing-rate. For the granule cell
model (solid lines) the relations at low Feff are slightly better than
Nyquist frequency (2:1) or 1:2 when applying push-pull coding.
However, these relations soon improve with increasing firing-rate
and reach up to 1:6 and 1:2 with and without push pull coding,
respectively. Interestingly the relations saturate with a maximal
transmittable cutoff frequency at about 60 Hz. Repeating these
simulations with the passive IF model (dotted lines) shows a
close agreement at low firing-rates reaching the same maximum
effectiveness of 1:6 and 1:2 but show saturation at a higher cut-
off frequency of 90 Hz. This suggests that at low firing-rates the
main contribution to the transmission properties comes from the

synaptic properties and intrinsic properties only come into play
for high firing rates of the GrC model.

The best signal transmission properties, in terms of cutoff vs.
Feff relation, for synaptically activated GrC and IF models in the
open-loop case seem to be at cutoff = 40 Hz which relates to
Feff = ∼20 spikes/s for one and Feff = ∼6 spikes/s for push-
pull coding. Furthermore, for both GrC model and passive IF
model the advantage of employing push-pull coding saturates
at a firing-rate of 40 spikes/s, which is the mossy fiber input
frequency.

DISCUSSION
This study has tested the signal transmission properties of model
granule cells (GrCs) under simulated current and synaptic stimu-
lation. Using direct spike transfer-function estimation in addition
to a variance-accounted-for (VAF) measure we have been able to
analyse signal transmission fidelity based on intrinsic membrane
and synaptic properties. The main finding is that the detailed
GrC model with realistic mossy-fiber synaptic inputs is capable of
transmitting information faithfully and linearly in the frequency
range of the VOR despite the existence of non-linear intrinsic and
synaptic mechanisms (Arleo et al., 2010; Gandolfi et al., 2013).

Faithful signal transmission can be achieved simply if the
model neurons are driven to fire at a rate at least twice the
highest required frequency of modulation (here assumed to be

A

B

FIGURE 10 | Signal with maximum input frequency (cutoff) that

can be transmitted with a mean reconstruction quality VAF >

90% for populations of N = 100 under different firing-rates (Feff ).

(A) Results for ideal IF cell (iIF) (green line/circles: a = 1; orange
line/circles: a = 1, push-pull coding; light orange line/circles: a = 10,
push-pull coding). (B) Results for synaptically stimulated GrC

population (red line/circles: a = 1; blue line/circles: a = 1, push-pull)
and IF population (red dotted line/triangles: a = 1; blue dotted
line/traingles: a = 1, push-pull coding). Different levels of firing-rates
for GrC and IF resulting from increased mean inhibition rate (FI ).
Back dashed lines give markers for different cutoff:Feff relations from
2:1 (Nyquist frequency) to 1:6.
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20 Hz), but lower firing-rates can also be adequate if a population
of neurons is utilized especially in combination with push-pull
coding. The exact number of neurons required for faithful trans-
mission depends on the precise values of firing rate and noise. The
model neurons are also able to combine excitatory and inhibitory
signals linearly. Finally, in this “open-loop” case with no input-
related Golgi-cell feedback, i.e., only uncorrelated feedback, the
detailed GrC model can be replaced by a simpler (modified)
integrate-and-fire neuron especially in the case of a high tonic
firing rate.

We consider first the issues raised by our methods of analy-
sis, then the implications of the findings for how floccular GrCs
could code vestibular information in principle. Next we discuss
the experimental evidence relevant to this coding in practice and
finally consider the implications of the present findings for future
experimental and modeling studies.

METHODS OF ANALYSIS
Analysing information transmission by systems that use pulse
(i.e., spike) frequency modulation is difficult (Bayly, 1968;
Dayan and Abbott, 2001). Here we employ two methods,
first a sampling-rate filter method for a direct estimate of
the transfer function (Bendat and Piersol, 2010), and sec-
ond an ideal observer Wiener filter method (Gabbiani and
Koch, 1998) for estimating the fidelity of signal transmis-
sion using a variance-accounted-for (VAF) measure. This sec-
ond method is important because a linear transfer function
cannot represent the non-linear (and potentially noisy) spike
generation process perfectly accurately, but it requires knowl-
edge of the statistics of the input signals (Materials and
Methods).

The first point we would make with this study is to show
the benefits of combining direct estimation of the trans-
fer function and variance-accounted-for statistics. First of all,
by calculating the transfer function directly from the spiking
output without any binning or fitting we avoid any assump-
tions about subsequent filtering characteristics. This on the
other hand separates the act of signal reconstruction quality
completely from the transfer function estimation: while com-
monly used procedures of fitting single-sinusoids to the spike
rate of single neurons (see Materials and Methods, Figure 1A)
or to the binned population response (Richardson et al.,
2003) would equate to some form of signal quality estima-
tion embedded in the transfer function estimation itself, this
is not the case when using a direct estimate. To this end we
introduced variance-accounted-for statistics that add valuable
knowledge about signal transmission quality, e.g., loss of trans-
mission quality due to artifacts induced by inhibition processes
(Figure 7).

Since this form of analysis makes use of Wiener filters that are
non-causal, the results first and foremost represent an analysis
of the information that can be linearly recovered from the spike
trains and represents an upper bound. However, since the Wiener
filters (Figures 2A3,B3) only have finite support in the time
domain, causality could also be achieved in neural systems by
introducing a delay in the reconstruction process (Bialek et al.,
1991).

CODING OF VESTIBULAR INFORMATION BY FLOCCULAR GRANULE
CELLS—THEORETICAL POSSIBILITIES
Current stimulation
Comparing the transfer function to the fidelity suggests that the
intrinsic ion-channels of GrC models resulting in gain resonance
for sinusoidal fit (Figure 3A) or gain increase for the direct esti-
mate (Figure 3B) do not present substantial non-linearities and
in fact can be reversed by the Wiener filter procedure if the firing
rate is high (40 spikes/s).

Furthermore, for high firing rates, the GrC model has been
shown to behave similarly to an integrate-and-fire neuron in
terms of transfer function and fidelity. The typical resonance at
∼10 Hz (D’Angelo et al., 2001) as also seen in single sinusoid
spike transfer function gain measurements (Figure 3A) can be
easily reproduced by a simple spike-dependent current and does
not have any influence on the fidelity (Figure 3C). With the direct
estimate of the transfer function used in this study, the reso-
nance is concealed by the bigger carrier-rate resonance but can
be uncovered either by additive uncorrelated noise to each neu-
ron (Figure 4) or by a spread of population carrier-rates that both
reduce the carrier-rate resonance. A reduction of the carrier-rate
resonance indicates a reduced “locking” of the population to the
carrier-rate (Knight, 1972) and can have beneficial effects on the
fidelity as shown below.

In the presence of noise, high modulation amplitudes are
clearly required to produce a large signal-to-noise ratio. Since the
firing rate cannot be driven below zero, very large modulation
amplitudes however can lead to rectification effects. The addi-
tion of noise in turn reduces the “locking” therefore uncoupling
population firing which minimizes the rectification. Both adverse
factors of noise and high amplitude rectification thus mutually
cancel each other to some extent (Figure 4C1).

In contrast to the high-firing-rate case, low-firing-rate sim-
ulations (Figure 5) gain and fidelity of the detailed GrC model
is substantially lower than for the IF models indicating that the
intrinsic ionic currents have a non-linear influence that rises with
decreasing firing-rate. This suggests that due to the increased
inter-spike interval, especially the input frequencies with shorter
wave-length have time to interact with the dynamic sub-threshold
properties (Richardson et al., 2003) leading to a decreased fidelity
at high frequencies.

Especially in the low-firing-rate simulation the modulation
is prone to rectification effects since the modulation amplitude
is higher than the carrier-rate. While as before, additive noise
helps to counteract rectification we also found that an additional
mechanism termed push-pull coding where a second popula-
tion receives the inverted signal is very beneficial for the fidelity.
The biological evidence relating to this possibility is considered
below.

Synaptic stimulation
Estimating the transfer functions of the synaptic processes alone
suggest that the dynamic receptor kinetics (Nieus et al., 2006;
Mapelli et al., 2009), do not lead to any non-linearities that could
decrease signal transmission in the synapses themselves if the
modulation amplitudes are within a reasonable range (a = 1 see
below). This means that albeit the dynamics, the synapses act
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almost completely as linear filters that can be reversed by the
Wiener filter procedure.

The fidelity of synaptically activated small granule cell popu-
lations is high with excitation alone and signal combination at
excitatory synapses is approximately linear. There has been some
discussion on the literature (e.g., Dean et al., 2010) as to whether
activity at multiple synapses is required to drive granule cell out-
put (the integrator hypothesis, e.g., Jörntell and Ekerot, 2006) or
whether the cell behaves as a “detonator” in which activity at a
single synapse is sufficient (Rancz et al., 2007). The granule cell
model we investigate here has been tuned to act as an integrator
at the single spike level (requiring simultaneous activation on at
least three of its four inputs to produce an output spike, as indi-
cated by data from D’Angelo et al. (1995). Despite this our results
show that it responds faithfully and linearly to independent mod-
ulations in firing rate at individual synapses. Hence it seems that
the integrator-detonator distinction is not relevant in the modu-
lated firing rate regime discussed here (although it may become
relevant in the burst coding regime).

The addition of GABAergic inhibition can lead to two phe-
nomena. First of all, if the inhibition frequency is identical for all
synapses, aliasing with the inhibitory input spike trains, due to the
small numbers of synapses, leads to substantial degradation of the
VAF at the rate of inhibition. These results indicate that synchro-
nized neuronal inhibition compromises the signal transmission
quality of MFR and thus is an argument against GoC synchrony.
The easiest way a biological system could avoid this behavior is
by incorporating variability in the spiking inhibition. Our results
indicate that variation in tonic rate with low CV is more effective
than high CV inhibititory inputs, e.g., Poisson.

The second phenomenon we observed is that, due to the slow
synaptic properties of the inhibitory input it can act as a slow
noise source in the case of open-loop simulations, which has
potential positive benefits (see below).

We also found linearity for signals presented at inhibitory
synapses. However, although inhibition is effective in controlling
the tonic spike rate of granule cells, we found that the contribu-
tion of these synapse to arithmetic operations is only 1/4th of
that of an excitatory synapse due to their slow synaptic dynam-
ics. Thus, GABAergic synapses are less suited to transmitting
information.

For a population of ideal IF neurons a very large modula-
tion amplitude and push-pull coding dramatically increases the
fidelity. For synaptically stimulated cells (GrC and IF) however,
very large modulation amplitudes lead to a decrease in fidelity
that can be explained by the strong adaptation in the synaptic
AMPA and NMDA models (Figure 9B3). This suggests that the
main modulation amplitude cannot be increased indefinitely to
improve signal to noise ratio when synapses possess short-term
plasticity.

The use of push-pull coding has its main beneficial effect
on the fidelity if rectification of negative signals occurs
(Figures 9A1,A2, a = 10, light yellow vs. light green lines).
On the other hand, synaptic stimulation of GrC or IF mod-
els with a modulation amplitude of only a = 1 and thus no
rectification in the input benefits strongly from push-pull cod-
ing (Figures 9,B1,B2,C1,C2, 10B) suggesting that rectification

emerges due to the characteristic “down-sampling” of high mossy
fiber inputs of 40 spikes/s to lower granular cell frequencies (see
below). This is further confirmed by the observation that the
main beneficial effect of push-pull coding vanishes when the
input frequency is equal to the GrC or IF output firing-rate of
40 spikes/s (Figure 10B). This suggests that signal transmission at
the granular layer stage would massively benefit from push-pull
coding.

Overall, apart from two exceptions, the influence of the synap-
tic properties seems to predominate the signal transmission prop-
erties of granule cells in the open-loop case. The first exception
can be found in the cutoff vs. firing-rate relation of GrC and IF
models. Here the saturation, i.e., the point at which an increase
in firing-rate does not improve the possible cutoff frequency, is
lower for GrC than for IF models.

The second exception can be found during synaptic stimula-
tion resulting in a low-firing-rate (Figure 9E). Here, in absence
of spiking inhibition, intrinsic properties of granule cells come
into account and have a negative influence on the fidelity. The
inhibitory input effectively acts as a noise source that has bene-
ficial effects on the fidelity comparable to the direct slow noise
current during subthreshold tonic current stimulation (Figure 5).
In the absence of noise, the large amplitudes of the modulatory
input signal can lead to an effective firing-rate Feff that is higher
than the carrier-rate F0. This however also results in a decrease of
fidelity due to the preferred encoding of large signal components
(Figure 5A4). The addition of noise to the population decouples
the spike-precision from the large signal components and thus
increases the fidelity as especially seen for granule cells. In return,
this decoupling leads to a carrier-rate F0 that is larger than the
effective firing-rate Feff .

CODING OF VESTIBULAR INFORMATION BY FLOCCULAR
GrCs—EXPERIMENTAL EVIDENCE
Mossy fiber signals to flocculus
Recordings from putative mossy fibers in the floccular complex
(Voogd and Barmack, 2006) of awake primates have established
the basic properties of their vestibular coding (Lisberger and
Fuchs, 1978; Miles et al., 1980). First, the majority (70%) of floc-
cular mossy fibers carry signals related to eye position and eye
movement, with no detectable vestibular input. Of the remain-
ing 30% that do carry vestibular signals about 50–75% also
respond to eye velocity or position, so that overall vestibular
only (VO) mossy fibers constitute 8–15% of the total. Secondly,
VO mossy fibers have high tonic firing rates (average 40–50
spikes/s) and code sinusoidal head-velocity by modulation of
their firing rate. Their average sensitivity to head velocity is 0.76
spikes.s−1/deg.s−1, so they would on average be driven to 100%
modulation by peak head velocities of ∼60 deg.s−1. For human
subjects peak head velocities are ∼35 deg/s for walking and ∼75
deg/s for running (Grossman et al., 1988; Pozzo et al., 1990).
Thirdly, approximately half the fibers increase firing when the
head moved ipsilateral to the recording site (type I), and half for
contralateral movement (type II).

Similar results have been obtained by recording from the cells
of origin of floccular mossy fibers, which are located mainly in
the vestibular nuclei (Zhang et al., 1993; Cheron et al., 1996;
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Voogd and Barmack, 2006) for both awake primate (Zhang et al.,
1993) and cat (Cheron et al., 1996), and also by recording EPSCs
from floccular granule cells in mice anesthetized with ketamine-
xylazine (Arenz et al., 2008). For anesthetized mice, as for awake
primates, head velocity was encoded by modulation of tonic EPSC
frequency, with about half the recordings showing an increase
with ipsilateral head movement, and half with contralateral. The
response to changes in head velocity was generally linear, with
no obvious short-term synaptic dynamics, although because the
tonic EPSC frequencies were low (13 Hz, range 0 to ∼36) they
could easily be driven to zero in the non-preferred direction
so introducing a non-linearity. Bayesian stimulus reconstruction
was use to estimate that about 100 synapses would accurately
encode the head-velocity signal. It was concluded that head
“velocity information is represented linearly via bidirectional
modulation of EPSC frequency and charge round a tonically
active vestibular input” (Arenz et al., 2008, p. 979). It is likely
that the low tonic frequencies observed in this study resulted from
the anaesthetic, since recordings of VO neurons in the vestibular
nuclei of awake mice give average resting rates of 45–58 spikes/s
(Beraneck and Cullen, 2007; Medrea and Cullen, 2013).

Because all the above studies focussed on low-frequency
(<1 Hz) modulation of head velocity, measurements of the high-
frequency signal carried by floccular mossy fibers are not avail-
able. However, recordings from VO neurons in the macaque
vestibular nucleus indicate that they respond well to modulation
of head velocity up to 16 Hz, the highest frequency tested (Massot
et al., 2011). It seems plausible that at least some of these neurons
do project to the flocculus (Zhang et al., 1993; Cheron et al., 1996;
Massot et al., 2011).

In summary the evidence concerning mossy-fiber input to the
flocculus indicate that the assumptions made in the present study
are reasonable, and would provide a basis for linear coding over
a wide range of frequencies and head velocities [though it should
be noted that rhesus monkeys display negligible velocity depen-
dent non-linearities in VOR gain and phase up to 300 deg/s over
a wide frequency range (5–26 Hz) (Huterer and Cullen, 2002)].
Moreover the evidence that about half the mossy fibers carrying
vestibular signals are in phase with contralateral head velocity and
half out of phase would be consistent with a push-pull coding
scheme of the kind investigated here.

Finally, floccular mossy-fibers also influence GrCs indirectly
via unipolar brush cells (UBCs). These have not been included
in the present model, and the implications of their presence for
future work are considered below.

Granule cell firing in the flocculus
At present only preliminary reports of floccular GrC firing pat-
terns are available. In awake rabbits GrC are usually silent or
have very irregular tonic firing rates, and show a wide variety
of responses to Gaussian-profile changes in head-velocity that
may signal “various aspects of head velocity and acceleration, eye
position, saccades and timing” (Hensbroek et al., 2006). These
responses often included high frequency bursts (up to ∼700
spikes/s for 10–25 ms), which appear sometimes to be related to
the direction of movement only, rather than its velocity or acceler-
ation (Van Beugen et al., 2013). Similar patterns of response have

been described for rabbits anesthetized with ketamine-xylazine
(Hensbroek et al., 2005; Van Dorp et al., 2009), though here
responses related to head acceleration can be seen more read-
ily, in contrast to the responses of floccular mossy fibers that are
primarily related to head velocity (Hensbroek et al., 2012).

These initial results suggest that in closed loop conditions,
tonic inhibition from Golgi cells is typically high enough to offset
the high tonic firing rates of mossy fiber inputs. If so, the analysis
of push-pull coding above becomes particularly relevant. It may
also be the case that for some GrCs the phasic inhibitory input
from Golgi cell input enables of a form of differentiation, convert-
ing velocity into acceleration signals. This possibility is considered
further below.

Granule cell firing in other areas
While there is no specific information on mean spike rates and
whether cells in the flocculus show a background activity (i.e.,
activity without stimulation) that could function as a carrier-rate,
there is concrete information in other areas. While background
activity was found absent in C3 zone cells sensitive to cutaneous
stimulation, cells sensitive to joint movement show a mean back-
ground activity of 6 spikes/s in the decerebrate, non-anesthetized
cat (Jörntell and Ekerot, 2006). Furthermore, background activity
was found in half of the granule cells sensitive to limb stimulation
in lobules Crus Ic/II a/b of anesthetized rats with mean activity
of 3.9 spikes/s (Holtzman et al., 2011) and mean effective spike
activity in the uvula-nodulus during vestibular stimulation is 3.3
spikes/s in anesthetized mice (Barmack and Yakhnitsa, 2008).
This suggests that at least in some areas of the cerebellum the
inhibition is low enough to allow for carrier-rate spike activity.
However, also in this regime push-pull coding is likely to be ben-
eficial for signal transmission if the mossy fiber activity is higher
than granule cell activity.

IMPLICATIONS FOR FUTURE WORK
As indicated in the Introduction, the analysis of information
transmission by GrCs with uncorrelated inhibition (open-loop
mode) is an initial step toward understanding the properties
of the complete granular layer, as modeled by Solinas et al.
(2010). Here we consider only future work on GrC processing in
open-loop mode.

Role of unipolar brush cells in vestibular processing
The present model has assumed that floccular GrCs receive their
vestibular signals as direct mossy-fibers from external sources,
such as floccular projecting neurons in the secondary vestibu-
lar nuclei. However, a substantial proportion of this mossy-fiber
input is processed further before it reaches the GrCs, because
it is relayed via unipolar brush cells (UBCs) which are par-
ticularly numerous in the vestibulo-cerebellum (e.g., Mugnaini
et al., 2011). Although the exact nature of this further process-
ing is unclear, a variety of evidence suggests that UBC responses
are more diverse than their mossy-fiber inputs (Simpson et al.,
2005a,b; Hensbroek et al., 2006; Barmack and Yakhnitsa, 2008;
Kennedy et al., 2014), probably because they can generate delayed
and prolonged responses to brief stimulation (Locatelli et al.,
2013; Kennedy et al., 2014; Van Dorp and De Zeeuw, 2014).

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 304 | 17

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Rössert et al. Cerebellar granule cell information transmission

Diversity of GrC responses is a central feature for adaptive-
filter models of the cerebellum (e.g., Dean et al., 2010), and could
in principle be generated by diversity in mossy fiber, UBC, or
Golgi cell inputs or GrC intrinsic properties (Dean et al., 2010,
2013; Gao et al., 2012; Houston et al., 2012; Geborek et al., 2013;
Spanne and Jorntell, 2013; Kennedy et al., 2014). Including UBCs
(Subramaniyam et al., 2014) in the present model would help
clarify their contribution to diversity in GrC vestibular responses.

Burst coding by granule cells
Recent reviews (Arenz et al., 2009; D’Angelo and De Zeeuw,
2009; Chadderton et al., 2014) have argued that GrC coding of
sensory signals takes at least two forms, one the linear modula-
tion of firing rate MFR considered here, the second a brief burst
response to sudden changes in sensory (often tactile) input in the
absence of tonic firing. Applying the present model to burst cod-
ing could address important questions such as reproducing the
very high frequencies observed experimentally for GrCs, the sen-
sory parameters that GrCs burst could in principle encode, and
the kind of information that could be lost in non-linear burst
coding.

Experimental test
The open loop model used here predicts that if both tonic and
phasic inhibition from Golgi cells were blocked, then the GrC
response to sinusoidal vestibular stimulation would be modula-
tion around a tonic firing rate. It might prove feasible to test
this prediction by recording from GrCs in awake animals where
granular layer inhibition has been blocked.

GENERAL CONCLUSION
We began by asking two questions. Firstly, are the properties of
the granular layer compatible with the computational require-
ments of high-level cerebellar models, e.g., the adaptive filter
model, as far as information transmission (rather than informa-
tion recoding) is concerned, concentrating on the VOR as a test
case. Furthermore, we focused only on uncorrelated inhibitory
feedback under the assumption that information lost in open-
loop mode cannot be regained whatever the properties of the full
network.

Our answer to this question is positive: there are plausible
mechanisms by which small populations of granule cells can
faithfully represent an vestibular-like input signal, combine dif-
ferent classes of input signals linearly over excitatory inputs, and
combine them linearly with a feedback signal from Golgi cells
over inhibitory inputs. The next step is to use the methods estab-
lished here to investigate information recoding in the closed-loop
regime to verify that the granular layer inputs can supply the
rich recodings needed for motor control problems. A clue as to
the nature of these required recodings comes from engineering
applications where linear adaptive filters based on “tapped delay
lines” are used; producing accurate delayed versions of the input
signal (Dean et al., 2010). Although this is biologically implau-
sible, suggested alternatives include recoding by spectral timing
filters, in which the input is processed by progressively broader
filters whose peak recedes in time, by banks of frequency tuned fil-
ters, or by bases of exponential filters of increasing time constants

(Fujita, 1982). In addition the recoding should include compo-
nents implementing non-linear recoding of the input if it is to
deal with non-linear control problems (Dean et al., 2010).

Our second objective was to explain the relatively complex
intrinsic and synaptic dynamics of these cells in functional terms.
In fact we found that these dynamics did not convey substan-
tial (or any?) advantages in the MFR regime. The granule cells
proved to be equivalent to a very simple resonant IF neuron and
the synaptic properties seem if anything to reduce performance in
this context. Hence it seems likely that granule cells specialization
is related to the other aspects of function, possibly to the require-
ments of hybrid processing in the granular layer. In particular they
may subserve the need for fast and reliable processing of informa-
tion represented by short bursts of spikes (Gandolfi et al., 2013).
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