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Abstract

Recently, Clancy [6] has shown how SIR epidemics in which individuals’ infection

periods are not necessarily exponentially distributed may be modeled in terms

of a piecewise-deterministic Markov process. In this article, we present a more

detailed description of the underlying piecewise-deterministic Markov process,

from which we analyze the population transmission number and the infection

probability of a certain susceptible individual.

Keywords: number of secondary cases, piecewise-deterministic Markov

process, probability of infection, SIR epidemic model

1. Introduction

The SIR-model with general infectious period distribution has been recently

revisited by Clancy [6], who introduces a family of martingales that may be used

to determine the joint distribution of the number of survivors of the epidemic

and the area under the trajectory of infectives. The SIR-model in [6] was previ-

ously analyzed using special constructions by Ball [3], and Picard and Lefèvre
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[14], and it is related to the dynamics of disease epidemics in a population where,

at time t, individuals are classified into three categories: S(t) susceptibles, I(t)

infectives and R(t) removed individuals.

Kermack and McKendrick [11] analyzed in 1927 a general SIR-model for an

homogeneous closed population of N individuals, where the infection and re-

covery rates of a given infective individual depend on the total time that this

individual has been infected for. The analytical difficulties of addressing this

general model lead in [11] to the consideration of a number of special cases.

In particular, Special Case B in [11] addresses the particular situation where

infection and recovery rates are constant, becoming the origin of the standard

SIR-model; see [11, Equation (29)]. This model assumes that the population

is homogeneously mixed, and the only possible events (Table 1) correspond to

contacts between an infective and a susceptible, and the removal of an infective.

The infection rate function λi,s can be specified in infinitely many ways. For

instance, the general stochastic epidemic (Bailey [2, Chapter 6]) is linked to the

choice λi,s = λ�is, and it reflects that each infected individual makes contact

with susceptibles according to a Poisson process of rate λ� > 0, and the con-

tacted individual is chosen uniformly at random from amongst the susceptibles;

Models 1 and 2 in Neuts and Li [13] are specified from the respective infection

rates λi,s = λ�iαs and λi,s = λ�imin{s, �n}, where n is the initial number of

susceptible individuals, the value α ∈ (0, 1) quantifies the degree of interaction

between susceptibles and infectives, and the parameter � specifies the fraction

of susceptible population that is exposed to each infective; although an explicit

formula for the contact rate is only obtained in special cases, the paper by

Heesterbeek and Metz [10] shows how to derive, by a mechanistic approach, an

expression for the saturating contact rate of individual contacts, and it contains

applications to sexually transmitted diseases and marriage models; Saunders

[16] analyzes the transmission of myxomatosis among rabbits by selecting the

rates λi,s = (i + s)−1/2is; for other infection rate functions, see [6, Section 3]

and references therein.

In modeling infectious periods, the selection µi = ηi amounts to the assump-
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Events Transitions Rates

A new infection i → i + 1, s → s− 1, r → r, for i, s ∈ N λi,s

A removal i → i− 1, s → s, r → r + 1, for i ∈ N, s ∈ N0 µi = ηi, with η > 0

Table 1: Events, stochastic transitions and rates in the standard SIR-model (Kermack and

McKendrick [11]) with exponentially distributed infectious periods

tion that, when a susceptible becomes infectious, its infectious period is expo-

nentially distributed with expected value η−1, this period being independent of

all infectious periods associated with other currently infected individuals. This

distributional assumption is made purely for mathematical convenience since it

results in a time-homogeneous continuous-time Markov chain. In a more real-

istic setting, Clancy [6] shows how SIR-models in which individuals’ infectious

periods are not necessarily exponentially distributed may be described in terms

of a piecewise-deterministic Markov process (PDMP, Davis [8]), which is defined

on a general state space rather than a discrete state space. Specifically, Clancy

[6] uses the general theory of PDMPs (Davis [8, 9]) as an alternative to the

approach of Ball [3], and Picard and Lefèvre [14] in the study of the final out-

come of SIR epidemics, including a variant in which the infection rate function

λi,s depends in a quite general way upon the current susceptible population

size. The aim of this article is to present a description of the PDMP used by

Clancy [6], which reflects the dynamics of SIR epidemics more transparently. It

is also shown how this description may be appropriately applied to the analysis

of the population transmission number and the infection probability of a marked

susceptible individual, prior to the first removal.

2. The piecewise-deterministic Markov process framework

The interest is in the SIR-model with general infectious period distribution

analyzed by Clancy [6, Sections 2-3], which is related to a closed, homogeneously

mixed population decomposed into S(t) susceptibles, I(t) infectives, and R(t)
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removed individuals, initially consisting of m ∈ N infectives and n ∈ N suscep-

tible individuals. Individual’s infectious periods are assumed to be distributed

as any non-negative random variable X with probability distribution function

F (·). This means that each infective remains so for a random time identically

distributed as X, and it is then removed. At any time instant, infectious periods

of all currently infected individuals are assumed to be mutually independent,

and they are independent of the contact processes. We let λi,s denote the in-

fection rate function in the case of i infectives and s susceptible individuals.

Under the assumption that X is almost surely finite, Clancy [6] writes the

state of the epidemic at time t by using the random variable (S(t), I(t), ξ(t)),

where ξ(t) = (ξ1(t), ..., ξI(t)(t)) and ξi(t) is the time remaining until the removal

of infective i, for i ∈ {1, ..., I(t)}. It is then seen that the domain of the extended

generator of the resulting PDMP may be characterized from [9, Theorem 26.14],

and the extinction times are almost surely finite regardless of the initial numbers

of infectives and susceptible individuals. The objective here is to present a more

detailed description of the underlying process analyzed in [6], which might be

regarded as a more appropriate way to proceed for practical purposes; see [15,

Section 2] for an alternative construction of the PDMP X from independent

and identically distributed sequences of uniform random variables and a related

simulation solution. For later use, we introduce some notation. In particular,

the σ-algebra of Borel sets on the interval (a, b) ⊂ (0,∞) is denoted by β(a, b),

and β�

k is the Borel σ-algebra on the set E(k) = {(z1, ..., zk) ∈ (0,∞)k : z1 <

... < zk}, for k ∈ N. The Kronecker delta is denoted by δa,b, and the function

1A(z1, ..., zk) equals 1 if (z1, ..., zk) ∈ A, and 0 otherwise.

To begin with, we reformulate the state at time t in terms of the simpli-

fied random variable (S(t); ξ1(t), ..., ξI(t)(t)), which leads us to a PDMP X =

{(S(t); ξ1(t), ..., ξI(t)(t)) : t ≥ 0} defined on the state space

S(m,n) = C0(n) ∪ C(m,n) ∪ ∂C(m,n),

where states in C0(n) = {s : 0 ≤ s ≤ n} correspond to the ultimate extinction

of the epidemic, and the sets C(m,n) and ∂C(m,n) are given by ∪m+n
i=1 l(i;m,n)
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and
�m+n

i=1 ∂l(i;m,n), respectively, with l(i;m,n) = {(s;x1, ..., xi) : 0 ≤ s ≤

min{n,m + n − i}, 0 < x1 < ... < xi} and ∂l(i;m,n) = {(s; 0, x2, ..., xi) : 0 ≤

s ≤ min{n,m + n− i}, 0 < x2 < ... < xi}, for 1 ≤ i ≤ m + n.

Differing from Davis [8], we characterize the dynamics of X by means of

two transition measures K1(y; ·) and K2(y; ·) that govern transitions associated

with the contact processes (states y ∈ C(m,n)) and the removal of an infective

(states y ∈ ∂C(m,n)), respectively, and a flow function Φt(·). To be concrete, the

PDMP X changes deterministically according to a flow function Φt(·) between

two successive basic transition1 instants, with Φt(y) = (s;x1 − t, ..., xi − t), for

states y ∈ C(m,n) with y = (s;x1, ..., xi), and time instants 0 ≤ t ≤ x1. For

states y ∈ C(m,n) with y = (s;x1, ..., xi), the transition measure K1(y; ·) is

specified as follows:

(i) For sets A ∈ β(0, x1) and B ∈ β�

i,

K1(y; {s− 1} ×A×B) = PF (A)1B(x1, ..., xi).

(ii) For 1 ≤ k ≤ i− 1 and sets A ∈ β�

k, B ∈ β(xk, xk+1) and C ∈ β�

i−k,

K1(y; {s− 1} ×A×B × C) = 1A(x1, ..., xk)PF (B)1C(xk+1, ..., xi).

(iii) For sets A ∈ β�

i and B ∈ β(xi,∞),

K1(y; {s− 1} ×A×B) = 1A(x1, ..., xi)PF (B).

The transition measure K1(y; ·) captures the transition y → y�, with y� =

(s�;x�

1, ..., x
�

i+1) and s� = s − 1, and it is thus related to a new infection re-

sulting in a new infectious period of length x –drawn from F (·)–, which has to

be added to the vector (x1, ..., xi) of remaining infectious times at the appropri-

ate position to obtain a vector (x�

1, ..., x
�

i+1) with ordered entries.

1A transition of X is said to be basic as either the number I(t) of infectives or the number

S(t) of susceptible individuals are appropriately modified.
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In a similar manner, for y ∈ ∂C(m,n) with y = (s; 0, x2, ..., xi) and sets

A ∈ β�

i−1, the transition measure K2(y; ·) has the form

K2(y; {s} ×A) = 1A(x2, ..., xi),

thus capturing the transition y → y�, with y� = (s�;x�

1, ..., x
�

i−1), s� = s and

(x�

1, ..., x
�

i−1) = (x2, ..., xi).

To emphasize the relevance of the above description of X , we next comment

on its practical limitation. To simplify the discussion, we focus on the transient

analogue to the final outcome of the epidemic (Clancy [6, Section 2]), and we

assume that F (·) is a continuous function. For the initial state y = (n;x1, ..., xm)

with 0 < x1 < ... < xm, let us define the time-dependent probabilities

P (t; y, {s}) = P
�

I(t) = 0, S(t) = s
�

�(S(0); ξ1(0), ..., ξI(0)(0)) = y
�

,

for values 0 ≤ s ≤ n, which correspond to the event that the epidemic will die

out before time t and the number of survivors will be equal to s. The reader

is alerted to the fact that, although we omit the pair (m,n) by notational con-

venience, the probabilities P (t; y, {s}) depend on the initial numbers (m,n) of

infective and susceptible individuals.

Theorem 1 The transient probability P (t; y, {s}) is given by P (t; y, {s}) = 0 if

t < xm, and it can be evaluated iteratively as

P (t; y, {s}) = P (n−s)(t; y, {s}), xm ≤ t, (1)

with P (0)(t; y�, {n�}) = exp
�

−
�m�

k=1 λm�+1−k,n�

�

x�

k − x�

k−1

�

�

as start values

for states y� = (n�;x�

1, ..., x
�

m�) ∈ C(m,n) if x�

m� ≤ t, and iterating by

P (r)(t; y�, {n� − r})

=

� x�

1

0

λm�,n�e−λ
m�,n�u

�

E(m�+1)

P (r−1)(t− u; y��, {n� − r})K1(y�; dy��)du

+(1 − δ1,m�)e−λ
m�,n�x�

1

�

E(m�
−1)

P (r)(t− x�

1; y��, {n� − r})K2(y�; dy��), (2)

for integers 1 ≤ r ≤ n�.
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The proof of (1)-(2) is based on the use of the final size n−s of the epidemic,

in such a way that the next event specifies how to update the dynamics of

the PDMP X in terms of the flow function Φt(·) and the transition measures

K1(y; ·) and K2(y; ·). More particularly, the value P (r)(t; y�, {n� − r}) in (2)

corresponds to the conditional probability that, given that the initial state is

y� = (n�;x�

1, ..., x
�

m�) ∈ C(m,n) with x�

m� ≤ t, the epidemic dies out before time

t with n�− r susceptible individuals (I(t) = 0, S(t) = n�− r) and the number of

infections taking place during (0, t] equals r. This means that a new infection

occurring at an arbitrary time u ∈ (0, x�

1) implies that r − 1 infections have

to be recorded in the residual interval (u, t], and the removal of an infective at

time x�

1 before any infection taking place implies that r infections have to be

registered during (x�

1, t]. Then, the use of Φt(·) and K1(y; ·) yields

�

E(m�+1)

P (r−1)(t− u; y��, {n� − r})K1(y�; dy��)

=

� x�

1−u

0

P (r−1)(t− u; (n� − 1; v, x�

1 − u, ..., x�

m� − u), {n� − r})F (dv)

+

� x�

2−u

x�

1−u

P (r−1)(t− u; (n� − 1;x�

1 − u, v, x�

2 − u, ..., x�

m� − u), {n� − r})F (dv)

+...

+

� x�

m�−u

x�

m�
−1

−u

P (r−1)(t− u; (n� − 1;x�

1 − u, ..., x�

m�
−1 − u, v, x�

m� − u), {n� − r})F (dv)

+

�

∞

x�

m�
−u

P (r−1)(t− u; (n� − 1;x�

1 − u, ..., x�

m� − u, v), {n� − r})F (dv), (3)

and, according to K2(y; ·), it is readily seen that

�

E(m�
−1)

P (r)(t− x�

1; y��, {n� − r})K2(y�; dy��)

= P (r)(t− x�

1; (n�;x�

2 − x�

1, ..., x
�

m� − x�

1), {n� − r}). (4)

At first sight, Eqs. (1)-(2) govern the dynamics of P (t; y, {s}) for the initial

state y = (n;x1, ..., xm) with 0 < x1 < ... < xm and values 0 ≤ s ≤ n, and

analytical expressions for P (t; y, {s}) might be naturally derived from them by

implementing two steps. Specifically, we should first define P (0)(t; y, {s}) as a

function of time t and remaining infectious periods x�

1, ..., x
�

m� , for every state
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y� ∈ C(m,n) with y� = (n�;x�

1, ..., x
�

m�) and integers 1 ≤ m� ≤ m + n − n� and

0 ≤ n� ≤ n; then, by increasing r from 1 to n, we should evaluate analytically

the probability P (r)(t; y, {s}) from (2), jointly with (3)-(4), as a function of t

and values x�

1, ..., x
�

m� , for every state y� ∈ C(m,n) with y� = (n�;x�

1, ..., x
�

m�) and

integers 1 ≤ m� ≤ m + n − n� with r ≤ n� ≤ n. Unfortunately, this approach

does not appear to lead us to analytical expressions in the case of concrete spec-

ifications of F (·), such as uniform, exponential, Erlang and gamma laws, among

others. Instead one may try to derive a numerical solution of (1)-(4) by using

numerical integration, but it is seen that general-purpose numerical integration

procedures do not perform well with regard to both accuracy and speed, with

the exception of small values of m+n. There are two reasons for this. First, the

number of function evaluations needed to compute the iterated integrals in (2)

increases as the 2nd power of the number needed to evaluate a one-dimensional

integral. Second, the upper and lower limits of the one-dimensional integrals in

(3) depend on the remaining infections times (x�

1, ..., x
�

m�) and the integration

variable u. Therefore, the underlying combinatorial explosion in (2)-(4) and

storage requirements turn the numerical integration problem into intractable

for practical use.

It is evident that, in solving (1)-(4), the computational load is inherently re-

lated to the definition of P (t; y, {s}), which at time t forces us to record the times

ξ1(t), ..., ξI(t)(t) remaining until the removal of all currently infected individuals,

and update appropriately these values between successive basic transition in-

stants (flow function Φt(·)), and according to either the contacts between an in-

fective and a susceptible (transition measure K1(y; ·), for states y ∈ C(m,n)), or

the removal of an infective (transition measure K2(y; ·), for states y ∈ ∂C(m,n)).

In this sense, it is important to point out that numerical integration is however

of particular interest when, in studying a specific descriptor, the underlying

arguments require the use of a single remaining infectious period ξi∗(t), for a

suitably chosen index i∗ ∈ {1, ..., I(t)}; in Section 3, this is related to the next

removal of an infective, which is linked to the case i∗ = 1.
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3. Number of secondary cases and probability of infection

The population transmission number Rp, as discussed in [1, Section 4], is

defined as the number of secondary cases produced by all currently infectives

prior to the first removal. An important feature of Rp is that, unlike the

basic reproduction number R0 which is related to the time of invasion (i.e.,

(I(0), S(0)) = (1, N − 1) and R(0) = 0 for a community of N individuals), the

descriptor Rp can be appropriately evaluated at every time instant and, more

importantly, it is defined as a random variable instead of an expected value.

The population transmission number plays an important role in the design

of control strategies, both preventive and responsive, in order to limit the spread

of an epidemic. In those situations in which healthcare decision makers become

aware of the epidemic after the first removal occurs (for example, once the

first death takes place), the analysis of Rp allows one to measure how fast the

disease propagates until its first detection. More concretely, let us consider an

invasion time and define T > 0 as the time until the first removal occurs. Then,

responsive strategies can be put in place from time T , affecting the spread

dynamics represented by (I(t), S(t), R(t)) for time instants t ∈ [T,∞), with

initial conditions given by I(T ) = Rp, S(T ) = N − Rp − 1 and R(T ) = 1.

Large values of Rp correspond to situations where responsive strategies can

be implemented only once a large number of individuals have been infected.

In these situations, preventive strategies that do not require for detection of

the disease should prevail; see, for example, the paper by López-Garćıa [12]

where the efficacy of preventive (room configuration design of the unit) and

responsive (isolation of patients) strategies is analyzed by means of a SIR-model

on an heterogeneous population for the spread of antibiotic resistant bacteria

in an intensive care unit. We refer the reader to the paper [4], where the

efficacy of responsive strategies (vaccination and isolation of individuals after the

first removal occurs) is analyzed for a SEIR-model in a population partitioned

into households; this analysis was extended by Ball et al. [5] by including

imperfect vaccination, latent individuals being also vaccine-sensitive and both

9



constant and exponential infectious and latent periods. It is also worth to

mention the work carried out in [7] where a SIR-model is considered under the

assumption that the infection transmission rate decreases after three days of

the first removal, representing the effect of the implementation of a responsive

strategy.

It is clear that the probability distribution of Rp depends on the initial

state y = (n;x1, ..., xm) with m,n ∈ N and 0 < x1 < ... < xm, but only in

terms of the numbers m and n of infectives and susceptibles, and the smallest

value x1 amongst remaining infectious periods. To simplify notation, we thus

reformulate states y = (n;x1, ..., xm) of the PDMP X in the form ŷ = (m,n;x1).

Theorem 2 The conditional probabilities

Pr(m,n;x1) = P (Rp = r|(I(0), S(0); ξ1(0)) = (m,n;x1))

can be expressed as P0(m,n;x1) = e−λm,nx1 and

Pr(m,n;x1) =

� x1

0

λm,ne
−λm,nu

�
� x1−u

0

Pr−1(m + 1, n− 1; v)F (dv)

+(1 − F (x1 − u))Pr−1(m + 1, n− 1;x1 − u)

�

du, (5)

for integers 1 ≤ r ≤ n. Moreover, under the assumption that initial sizes are

given by (I(0), S(0)) = (m,n) with initial remaining infectious periods 0 <

x1 < ... < xm, the conditional probability Q(m,n;x1) that a marked susceptible

becomes infective prior to the first removal satisfies

Q(m,n;x1) =
1

n
E[Rp|(m,n;x1)], (6)

where E[Rp|(m,n;x1)] =
�n

r=1 rPr(m,n;x1) is the expectation of Rp, condi-

tioned on (S(0); ξ1(0), ..., ξI(0)(0)) = (n;x1, ..., xm).

Proof It is first noted that, provided that a new infection occurs at time u

with u ∈ (0, x1), the first term in (5) corresponds to an infectious period v for

the new infective that is less than x1−u, which means that the smallest remain-

ing infectious period x1 − u has to be replaced by v in our further arguments.
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The second term captures the event that the infectious period v is greater than

the time instant x1 − u of the next removal. Eq. (6) can be analytically de-

rived by decomposing the infection rate function λi,s into two contributions

s−1λi,s +(1−s−1)λi,s, where the former amounts to the infection of the marked

susceptible, and the latter is related to the infection of another susceptible indi-

vidual. Similarly to (5), it is seen that, starting with Q(m, 1;x1) = 1−e−λm,1x1 ,

the probabilities Q(m,n;x1) with n ≥ 2 can be evaluated iteratively from

Q(m,n;x1) =
1

n

�

1 − e−λm,nx1
�

+

�

1 −
1

n

��
� x1

0

�

1 − e−λm,n(x1−v)
�

Q(m + 1, n− 1; v)F (dv)

+

� x1

0

λm,ne
−λm,nuQ(m + 1, n− 1;x1 − u)(1 − F (x1 − u))du

�

.

(7)

Then, Eq. (6) is readily obtained by multiplying (5) by r and summing over

the integer r ∈ {1, ..., n}, since Q(m, 1;x1) = E[Rp|(m, 1;x1)] and the resulting

expressions for n−1E[Rp|(m,n;x1)], for n ≥ 2, are identical to the iterative

scheme in (7). �

Probability Q(m,n;x1) is the individual counterpart of the population de-

scriptor Rp, and it represents the risk for an initially marked susceptible individ-

ual to become infected until the first removal occurs. In those scenarios in which

the first removal amounts to the detection of the disease, leading to the potential

implementation of responsive strategies, probability 1−Q(m,n;x1) needs to be

interpreted as the probability of the marked individual being susceptible once

these responsive strategies are put in place, becoming an individual measure of

the risk of infection until detection of the epidemic.

For illustrative purposes, we next focus on SIR-models at an invasion time

(i.e., I(0) = 1) with S(0) = 20 and x1 = E[X], and we assume the infection

rate function λi,s = λ�is, for states (i, s) ∈ C(1, 20). We consider three scenarios

defined by infectious periods distributed according to an Erlang law (with two

phases), an exponential law, and a gamma law (its shape parameter equals 0.5),
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with expected values E[X] = 1.0. In our examples, the exponential assumption

for infectious periods yields standard SIR-models, and it is a natural boundary

between the Erlang case (with squared coefficient of variation c2X = 0.5) and

the gamma case (c2X = 2.0), which are commonly considered low-variance and

high-variance, respectively.

Figure 1 illustrates the effect of the infectious period distribution on the mass

function of the population transmission number Rp for (from top to bottom) per

capita contact rates λ� ∈ {0.05, 0.1, 0.2}. It is seen that distinct infectious period

distributions result in identical values of the probability P0(1, 20;x1), since this

probability amounts to the probability of no infections occurring before x1 units

of time. It is also observed that, regardless of λ� and concrete specifications for

F (·), the mass function of Rp always exhibits a unimodal shape, but magnitudes

are noticeably distinct when λ� increases. More particularly, the gamma case

always leads us to probability distributions of Rp concentrated within smaller

values of r, whereas the distribution of Rp becomes heavy-tailed in the Erlang

case. This means that low- and high-variance assumptions for infectious periods

yield epidemics that, in comparison with standard SIR-models, spread faster and

slower, respectively; by (6), it is clear that Figure 2 corroborates this assertion

in terms of mean values.

Under a situation where detection of the disease amounts to the occurrence

of the first removal, our numerical results suggest that, for the parameter val-

ues under consideration, the Erlang distribution for the recovery times leads to

higher values of Rp, followed by the exponential and the gamma distributions;

note that E[Rp] = 1.2946, 1.1631 and 1.0230 for the Erlang, exponential and

gamma distributions, respectively, in the case λ� = 0.05 (Figure 1, top). This

translates into the fact that, if recovery times follow the Erlang distribution

analyzed in Figure 1, responsive strategies would be implemented once, in aver-

age, 1.2946 individuals have already become infected, while this number reduces

to 1.0230 under the gamma distribution. Thus, one should expect responsive

strategies to be more effective in the second case. Differences in E[Rp] signifi-

cantly increase with λ�, where E[Rp] = 6.9182, 4.7467 and 3.1020 for the Erlang,

12



Figure 1: The mass function of Rp at an invasion time, for SIR-models with infection rate

function λi,s = λ�is and (from top to bottom) per capita contact rate λ� = 0.05, 0.1 and 0.2.
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Figure 2: The conditional probability Q(m,n;x1) that a marked susceptible becomes infected

prior the first removal, at an invasion time versus the per capita contact rate λ�, for SIR-models

with infection rate function λi,s = λ�is.

exponential and gamma distributions, respectively, for λ� = 0.2 (Figure 1, bot-

tom). Thus, while responsive strategies might be effective under the gamma

distribution (these could be implemented once 3.1020 individuals have already

become infected in average), preventive strategies might be needed under the

Erlang case, where detection of the disease occurs once 6.9182 individuals have

already become infected in average.

Similar comments regarding the interpretation of our results in relation to

the time until the first detection of the disease could be made for descriptor

Q(m,n;x1) in Figure 2. Note that, in Figure 2, the interest is in the conditional

probability that a marked susceptible becomes infected prior to the first removal

which, as intuition tells us, behaves as an increasing function of λ�; for every

fixed λ�, its smallest and highest values are associated with the gamma and

Erlang cases, respectively. In terms of the coefficient of variation (Figure 3),

the variability of Rp in the Erlang and gamma cases is not essentially different

from standard SIR-models, regardless of λ�. In Figure 3, it is observed that

the variability of Rp increases as λ� tends to zero, which is associated with the

situation when the number of contacts between an infective and a susceptible,

taking place before the smallest remaining infectious period expires, becomes

negligible.
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Figure 3: The variation coefficient of Rp at an invasion time versus the per capita contact

rate λ�, for SIR-models with infection rate function λi,s = λ�is.

4. Conclusion

In this article, we have relaxed the standard assumption of exponentially

distributed infectious periods in SIR-models and, similarly to Clancy [6], we have

translated the resulting SIR-model into a PDMP X . The key elements (Section

2) have been a flow function describing how X changes deterministically between

basic transition instants, and two transition measures updating states of the

process X when either an infective makes contact with a susceptible individual

or the removal of an infective occurs. An advantage of these elements lies in their

straightforward use when, in studying a descriptor, a single infectious period is

required from an analytical perspective, which is the case of the population

transmission number Rp and the infection probability of a marked susceptible,

prior to the first removal (Section 3).

Descriptors Rp and Q(m,n;x1) represent population and individual alter-

natives, respectively, for measuring the propagation potential of the epidemic.

A particular feature of Rp is that it is defined as a random variable, instead

of the usual definition of the basic reproduction number, R0, as an average

value; see the paper [1]. In the particular situation in which detection of the

disease occurs after the first removal [4, 5], the analysis of Rp carried out here

is crucial in order to identify the number of infectives present in the population

once responsive strategies can be put in place, while Q(m,n;x1) is an individual
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measure of the risk of a susceptible individual to become infected before these

responsive strategies can be implemented.

In a more general setting (specifically, when computing time-dependent prob-

abilities in Theorem 1), the effectiveness of our approach has been shown to be

limited as a result of the amount of latent information imputed in the underly-

ing analysis; in showing this practical drawback, we have focused on a transient

version of the final outcome of the epidemic, whose analytical treatment needs

all remaining infectious periods. Some aspects of this intricate problem have

been outlined in the present work, but arguably more research is required in

this area.
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