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Temporal Control of Gelation and Polymerization Fronts Driven by an
Autocatalytic Enzyme Reaction
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Abstract: Chemical systems that remain kinetically dormant
until activated have numerous applications in materials
science. Herein we present a method for the control of gelation
that exploits an inbuilt switch: the increase in pH after an
induction period in the urease-catalyzed hydrolysis of urea was
used to trigger the base-catalyzed Michael addition of a water-
soluble trithiol to a polyethylene glycol diacrylate. The time to
gelation (minutes to hours) was either preset through the initial
concentrations or the reaction was initiated locally by a base,
thus resulting in polymerization fronts that converted the
mixture from a liquid into a gel (ca. 0.1 mmmin¢1). The rate of
hydrolytic degradation of the hydrogel depended on the initial
concentrations, thus resulting in a gel lifetime of hours to
months. In this way, temporal programming of gelation was
possible under mild conditions by using the output of an
autocatalytic enzyme reaction to drive both the polymerization
and subsequent degradation of a hydrogel.

There is much interest in the design of functional and
adaptive polymer systems by the use of reaction networks
under kinetic control.[1] Recent strategies for the spatial and
temporal control of gelation were inspired by the dissipative
structures that form far from equilibrium in natural systems,
such as actin filaments. Hence, gel lifetime has been
controlled by tuning the timescale of competing self-assembly
and disassembly processes by using enzyme catalysts, the
in situ formation of gelators, or the injection of promotors for
self-assembly and/or deactivators for self-destruction.[2] In
these systems, gelation began immediately after the addition
of the catalysts/fuel.

Many materials-chemistry applications, such as adhesives,
coatings, sealants, and injectable biomedical formulations,
require an initial slow reaction followed by rapid curing. For
injectable biomedical formulations, subsequent degradation

of the gel for drug release is also desirable. An induction
period before the rapid reaction can be introduced either
through the consumption of an inhibitor that prevents the
accumulation of products, for example, time-lapse polymer-
ization was possible in a base-catalyzed thiol-Michael addi-
tion reaction by the use of acid inhibitors,[3] or as the result of
an initial slow evolution of a chemical species or heat. In free-
radical polymerization, the exothermicity of the reaction can
lead to an increase in the rate as the reaction progresses
(thermal feedback); however, it may result in thermal run-
away.[4] Other rate-acceleration processes are also difficult to
control, such as the lag phase that occurs in supramolecular
polymerization as a result of slow initial nucleation steps[5]

and the Trommsdorff–Norrish gel effect with a decrease in the
rate of termination as gelation proceeds.[6]

One advantage to the presence of thermal feedback in
polymerization is the ability to create cure-on-demand
systems in which the formulation does not react until the
external application of localized heating and then propagates
as a constant-velocity (cmmin¢1) polymerization front.[7]

Adhesives, for example, can be readily applied as a liquid or
paste and then rapidly cured even in inaccessible locations by
the propagation of the front from the initiation site.[8] Frontal
polymerization has also been used to create intricate endo-
skeletons in flexible materials.[9] However, thermal frontal
polymerization requires relatively thick layers and/or surfaces
that are poor thermal conductors lest heat loss quench the
propagation. It also involves large temperature changes
(> 100 88C).

Other techniques for initiating polymerization, such as
irradiation with UV light, have also been used for generating
fronts. Photofrontal polymerization typically requires a con-
stant input of light for propagation.[10] Isothermal fronts can
be initiated from a polymer seed to produce gradient-index
optical materials, but these fronts are limited to free-radical
systems that exhibit the gel effect and whose polymers are
soluble in their monomers.[11]

We have developed a method for time-lapse gelation and
polymerization fronts for cure-on-demand applications under
mild conditions. Rather than exploiting intrinsic rate accel-
eration in the polymerization process, we used the product of
an aqueous-phase autocatalytic reaction to drive the forma-
tion of a thiol–acrylate hydrogel. The time to gelation can be
controlled through the initial concentrations. Furthermore,
gel lifetime can be tuned, as the gel is susceptible to hydrolytic
degradation, the rate of which also depends on the initial
composition.

Autocatalytic reactions are frequently exploited for the
design of complex dynamic behavior in systems chemistry and
synthetic biology.[12] There are many autocatalytic systems
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that show induction periods and
propagating fronts, including inor-
ganic systems,[13] self-replicating
organic reactions,[14] and biological
and biopolymeric systems, such as
the propagating fronts of RNA rep-
lication[15] and small DNA oligonu-
cleotides.[16] Although fascinating
systems, they do not readily lend
themselves to practical applications,
as they either involve harsh, oxida-
tive chemicals or cannot easily be
coupled to other processes.

To create a system that operates
under mild conditions, we used an
autocatalytic enzyme-catalyzed
reaction: the urea–urease reaction.
Urease is a well-studied enzyme that
is present in many natural systems,
including various plants, soil, and
microorganisms, such as the bacte-
rium Helicobacter pylori, which uses
the reaction to raise its local pH,
thereby protecting itself against the
acidic environment of the stomach.
The urease-catalyzed hydrolysis of urea has been exploited in
enzyme-based logic gates,[17] biocement for crack healing,[18]

and chitosan gels for cell delivery;[19] its autocatalytic nature,
however, was not used in these applications.

The urea–urease reaction displays rate acceleration as
a result of its bell-shaped rate–pH curve coupled with the
production of a base (Figure 1 a). If the initial pH value is low
(pH� 4), a slow increase in pH occurs, followed by a rapid
conversion to the high-pH state (pH� 9), because the
formation of ammonia leads to an increase in the rate of
production of ammonia. The induction period of the reaction
can be taken as the time for the reaction to reach pH 7 and has
a well-defined dependence on the initial concentrations of
urease, urea, and acid, as well as the temperature.[20] The
reaction displays useful features inherent to autocatalytic
reactions, including the ability to respond to a small amount
of base with a transition from the low-pH “off” state to the
high-pH “on” state, and the potential for oscillations and
propagating pH fronts.[21]

The high-pH state of the urea–urease reaction can be used
to drive a base-catalyzed thiol-Michael addition reaction
(Figure 1b). Thiol–acrylate chemistry has a wide range of
applications, owing in part to the mild conditions the reactions
need, the presence of thiols in biological systems, and the
great variety of monomer options.[22] We used water-soluble
monomers, ethoxylated trimethylolpropane tri(3-mercapto-
propionate) (Thiocure ETTMP 1300) and poly(ethylene
glycol) diacrylate (PEGDA 700), to create a one-pot aque-
ous-phase system. A similar reaction was previously charac-
terized in phosphate buffers and displayed an exponential
dependence of the gelation rate on the pH value with
a gelation time of seconds when the pH value was above 8
at T= 25 88C.[23]

When a solution of urease was added to a solution of urea/
ETTMP/PEGDA (Figure 2 a), the initial pH value was
around 4 as a result of the small amount of 3-mercaptopro-
pionic acid (3-MPA) present in ETTMP (see the Supporting
Information for further details) and increased to more than 8
after an induction period (Figure 2 a). The sigmoidal charac-

Figure 1. a) The reaction of urea and urease (1,2) produces a base that drives b) thiol–acrylate (3,4)
gelation after an induction period. Sketched graphs show the dependence of the urea–urease
reaction rate on the pH value, the resultant pH–time curve, and the dependence of the thiol–
acrylate gelation rate on the pH value.

Figure 2. Temporal control of thiol–acrylate gelation with the urea–
urease reaction. a) Typical pH–time curve with the induction period,
initial pH value after mixing, and final pH value indicated. Gelation
occurred rapidly above pH 8. The inset shows the experimental set-up
(see the Supporting Information). b) Series of pH–time curves with
decreasing urea concentration (0.05 (top), 0.03 (middle), 0.01m
(bottom)). c) Average final pH value as a function of the initial
concentrations. d–f) Induction periods and average initial pH values
after mixing. The fixed initial concentrations were [urea]0 = 0.03m,
[ETTMP]0 = 0.05m, and [urease]0 =0.5 mgmL¢1 (17 unitsmL¢1); the
ETTMP/PEGDA molar ratio was 2:3; T = 25 88C. Standard deviations
from three repeat measurements are shown.
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teristic of the pH–time curve was preserved with different
initial concentrations (Figure 2b). The Michael addition
reaction had no discernible effect on the change in the
pH value, as determined in control experiments performed
with water in place of the PEGDA. Gelation took place
rapidly above pH 8 and was accompanied by a cessation in
motion of the magnetic stirrer.

The final pH value ranged from 8.5 to 9.5; lower values of
about 7 are also possible for smaller urea concentrations
(Figure 2c).[21a] The final pH value was determined by the
ammonia/ammonium ratio, which depended upon the initial
amount of urea and the acid. Thus, the final pH value
increased as the concentration of urea increased and
decreased as the concentration of ETTMP or 3-MPA
increased, but remained approximately constant with changes
in enzyme concentration. The initial pH value after mixing
was determined by both the pH value of the ETTMP stock
solution and the production of ammonia during the mixing
period. Hence, the initial pH value decreased with increasing
ETTMP concentration and increased with increasing urea
and enzyme concentrations, even though the pH value of the
ETTMP stock solution remained the same in the latter cases
(Figure 2d–f).

The induction period depended upon the rate of produc-
tion of ammonia and increased with decreasing concentra-
tions of urea and urease. The time to reach pH 7 was thus
inversely correlated with the initial pH value after mixing.
The trends of the dependence of the induction period on the
initial concentrations agree well with those found in our
earlier study without ETTMP when the pH value of the stock
solution was adjusted with sulfuric or acetic acid.[21a] The
induction period depends on the nature of the
acid, as weak acids can buffer the pH change,
thus reducing the reaction rate. A different
acid (or base) could be added to the stock
solution to tune the induction period inde-
pendently of the ETTMP concentration.

Thus, the time before gelation can be
controlled by tuning the initial composition of
the reaction mixture with three variables: the
substrate, enzyme, and acid. Reproducible
induction times of several minutes to hours
were observed under the conditions specified.
Theoretically, induction times of months are
possible in a one-pot system, but in practice
the reaction is limited by the eventual loss of
enzyme activity in solution (days to weeks, see
the Supporting Information). Increased
enzyme stability and longer induction times
are possible at lower temperatures.

An additional degree of control over the
time to gelation is made possible by the ability
of the reaction to support propagating pH
fronts. In a thin layer (1 mm) in a petri dish,
the enzyme-catalyzed reaction was initiated
locally by the addition of a base, thus giving
rise to a reaction–diffusion front that con-
verted the medium from acid (yellow) to base
(blue), as visualized by the use of a pH

indicator. The increase in pH locally catalyzed the Michael
addition reaction, thus resulting in polymerization fronts that
converted the mixture from a liquid into a gel before the
corresponding induction period in a well-stirred mixture was
complete. The polymerization front was imaged by shadowg-
raphy (see the Supporting Information for further details).[24]

With this technique, the position of the polymerization front
was visible as a dark band surrounding an expanding blue disk
(Figure 3a).

The intensity profiles along a horizontal slice in images at
three different times are shown in Figure 3b. Unlike diffusive
processes alone, in which a chemical becomes progressively
more dilute in space, the amplitude of chemical change
associated with autocatalytic fronts is constant.[21a,25] In this
case it corresponds to the pH change observed in the
experiments with well-stirred mixtures. Thus, at each point
in space the rate of increase in pH, the final pH value, and the
rate of conversion from a liquid into a gel is the same, but
there is a phase lag between points corresponding to the time
at which the front passes.

Autocatalytic reaction fronts propagate with constant
velocity; hence, a linear space–time plot was obtained for the
polymer front (Figure 3b). Fronts propagated with speeds
that ranged from 0.02 to 0.2 mmmin¢1, depending on the
initial concentrations (Figure 3c). The velocity of autocata-
lytic reaction–diffusion fronts is dictated by the reaction rate
and diffusion coefficient of the autocatalytic species, in this
case, the base. Thus, the front speed can be related to the
induction period of the well-stirred reaction: a shorter
induction period resulted in a faster front (Figure 3c). The
fronts observed in this study were slower than corresponding

Figure 3. Frontal polymerization. Experiments with a pH indicator (bromothymol blue)
in a–c) a thin layer in a petri dish and d–g) two 4 mL vials with identical reaction
mixtures. Fronts were initiated with NaOH (pH 8). a) Image taken by shadowgraphy
(see the Supporting Information) showing the position of the polymerization front (dark
band) and the pH front (yellow to blue). b) Intensity profiles along a slice (red line in
(a)) in images at three different times (high intensity: yellow; low intensity: blue; spike:
dark band) and position of the front with time (circles with a straight-line fit). c) Front
speed in the petri dish as a function of the induction period in a well-stirred mixture. d–
f) Images of ascending and descending fronts. g) Front position as a function of time
(black: ascending fronts; green: descending fronts). Component concentrations:
[ETTMP]0 = 0.17m, [PEGDA]0 =0.24m, [urease]= 29 unitsmL¢1; T =20 88C; [urea] = 0.11
(a,b), 0.04–0.27 (c), 0.09m (d).
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fronts obtained in the absence of polymerization in earlier
aqueous-phase experiments, probably as a result of the
increased viscosity of the reaction mixture.[21a]

Convective effects can lead to front speeds that depend on
the orientation of the reaction vessel and enhance mixing or
even extinguish the front, thus limiting cure-on-demand
applications.[26] To determine whether the fronts were subject
to convective effects, we compared the velocity of ascending
and descending fronts in small vials. In two vials with identical
reaction mixtures, a drop of NaOH (pH 8) was added to the
side of the vial, which was then slowly tilted until the drop of
NaOH met the surface of the liquid containing compo-
nents 1–4. A gel immediately formed where the base was
added. One of the vials was inverted, and the thin gel layer
was able to support the liquid above it (Figure 3d). The
polymerization fronts propagated with a constant velocity
until the entire reaction mixture switched to a high pH value
at the end of the induction period (Figure 3d–f). Ascending
fronts (Figure 3 g, black line) had a slightly higher speed than
the descending fronts (Figure 3g, green line).

Thus, the liquid can be injected into a cavity in any
orientation, and a reaction can be initiated to form a plug at
the open end and is then propagated as a front to cure the rest
of the mixture. The coupling of the base-catalyzed thiol-
Michael addition reaction with the autocatalytic enzyme
reaction results in a new method for frontal polymerization
that does not require a constant external perturbation to be
maintained or involve large temperature gradients.

Considerable interest in PEG–acrylate hydrogels revolves
around their use as degradable biomaterials, for example, in
drug and cell delivery and as scaffolds in tissue repair.[27] A
similar PEG-based hydrogel to the one constructed in this
study was demonstrated to undergo hydrolytic degradation
over the course of weeks, thus resulting in controlled drug
release.[23] More recently, a method for the pH control of the
self-assembly and disassembly of peptide hydrogels was
proposed for fluidic guidance in channels and self-erasing
rapid prototyping.[28]

The thiol–acrylate hydrogels formed in this study have
both an inbuilt time to gelation and an inbuilt time before
complete degradation (Figure 4a). Degradation proceeded
slowly, and the mixture returned to the liquid state. Base-
catalyzed ester hydrolysis provides a convenient method for
the control of gel degradation. While the time before gelation
is mainly governed by the components of the urea–urease
reaction, the degradation time also depends on the gel
strength and hence the precursor concentrations. Gel strength
was followed by dynamic rheometry. A rapid increase in the
storage modulus G’ was observed after a lag phase (Fig-
ure 4b). With an increase in the ETTMP concentration, the
maximum G’ value increased (Figure 4b, black and red
curves), and the degradation time increased. An increase in
the ETTMP concentration increases the cross-linking density
but also decreases the final pH value, thus additionally
slowing the rate of base-catalyzed hydrolysis. A decrease in
urea concentration also resulted in an increase in G’ and
a slower degradation rate (Figure 4b, red and green curves)
because of the lower final pH value and higher polymer
conversion associated with the longer induction time.

The time for the gel to return to the liquid state varied
from 5 h to over 20 weeks (Figure 4c,d). Fast degradation
times were favored by a high final pH value and low gel
strength: hence, high urea and low thiol concentrations. In the
examples shown, the degradation time was correlated with
the induction period; however, it may be possible to
independently vary these characteristic timescales through
simultaneous variations in two of the control variables:
enzyme, substrate, and acid.

Herein we have shown how the amplification of a chemical
signal might be translated into a physical response: an
autocatalytic enzyme reaction was used to drive time-lapse
gelation and frontal polymerization. The gel lifetime was also
controlled through the initial concentrations of the compo-
nents of the enzyme reaction and the thiol. The coupling of
autocatalytic reactions with physical processes has generated
pulses of precipitates,[29] bioinspired chemomechanical devi-
ces,[30] thiol–acrylate microparticles,[31] and periodic nano-
particle aggregation;[32] however, these systems involved
harsh chemicals that limit their use in applications. We used
an enzyme-catalyzed reaction with a water-soluble thiol and
acrylate to create a gelation process that operates under
ambient, aqueous-phase conditions.

Our system does not require radical initiators or a high
temperature but operates on the basis of an inbuilt pH switch.
Other autocatalytic enzyme reactions, such as the glucose–
oxidase reaction, involve base-to-acid switches that might be
used in conjunction with acid-catalyzed polymerization.[33]

This systems-chemistry approach to transient gelation has
numerous attractive features for bioinspired, biocompatible
materials applications.

Figure 4. Hydrogel degradation. a) Series of images showing the
return of the thiol–acrylate gel to the liquid state, in which
[urea] =0.09m, [urease]= 0.85 mgmL¢1 (29 unitsmL¢1),
[ETTMP]0 = 0.06m, and [PEGDA]0 =0.08m. b) Dynamic rheology with
storage modulus G’ as a function of time. c,d) Time to return to the
liquid state as a function of the urea (c) and ETTMP concentrations
(d). Concentrations of other components: [ETTMP]0 = 0.1m,
[urea]0 = 0.03m, [urease] =0.5 mgmL¢1 (17 unitsmL¢1); the ETTMP/
PEGDA molar ratio was 2:3; T =23 88C.
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