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US Bank Credit Spreads during the

Financial Crisis.

Peter Spencer¤

University of York

Abstract

This paper argues that …rst passage time models are likely to better than

a¢ne hazard rate models in modelling stressed credit markets and con…rms their

superior performance in explaining the behavior of Credit Default Swap rates

for the major US banking groups over the period of the …nancial crisis. A¢ne

models …nd it hard to deal with periods of exceptionally high or low default

risk given their assumption of a constant rate of mean reversion in the hazard

rate. In contrast, …rst passage time models are speci…ed in terms of the distance

to default rather than the hazard rate. The persistence of shocks varies with

the distance to default, allowing the default curve to invert sharply (compress)

when the distance to default is low (high). I use an empirical version of the

Collin-Dufresne et al. (2003) model, which contains a smoothing parameter

that allows it to control the relative e¤ect of these shocks on the short spreads

and can be interpreted as an information lag.

¤Department of Economics and Related Studies; ps35@york.ac.uk. This paper has bene…tted
from conversations on this subject with Karim Abadir, John Campbell, Laura Coroneo, Alex
Kostakis, Menno Middeldorp, Alistair Milne, Gulcin Ozcan, Tuomas Peltonen, Marco Realdon,
Yongcheol Shin, Jacco Thijssen and Mike Wickens. I am also grateful to participants at the 2013
Southampton Conference on the Global Financial Crisis; the 2013 European Financial Management
Association conference; the 2014 In…niti conference and two referees of this Journal for helpful
comments and suggestions.

1



1 Introduction

The global …nancial crisis provided a stark reminder of the importance of understand-

ing and pricing bank default risk. This paper develops a non-linear econometric model

which is designed to capture both the compressed hazard rate structures seen in the

run up to the crisis and the strongly inverted structures seen during the crisis itself.

The econometric speci…cation is used to model risk-neutral default probabilities im-

plied by the Credit Default Swap (CDS) market for six of the largest US banking

institutions since the turn of the millennium1 .

CDS and other credit spreads can be analyzed using structural models, which use

accounting information about factors such as pro…tability and leverage to explain the

price of default risk. However, it is di¢cult to explain the pricing of default risk on

a company using accounting data if only because there are many management and

economy-wide factors that a¤ect the viability of its business and are not re‡ected

in its accounts. Studies of industrial company spreads suggest that these data can

account for only about 60% of the variance (Huang and Huang, 2003). It is necessary

to allow for additional factors such as the e¤ect of the business cycle (Collin-Dufresne,

Goldstein and Martin, 2001).

Banks are excluded from these studies since they have very high leverage ratios

and their capital and other balance sheet ratios are subject to regulatory require-

ments. Indeed, once the crisis unfolded and liquidity in banking markets evaporated,

it became very di¢cult to value many of the assets in the balance sheet. Asset value

uncertainty and the associated counterparty risk caused the interbank deposit market

to become extremely stressed over this period (Afonso, Kovner and Schoar, 2011).

In view of these di¢culties, I use a reduced form approach to model bank credit

1These have been classed as ‘globally systemically important’ institutions. The CDS data for
two other important US banks, State Street and Bank of New York Mellon were too sparse to be
used in this study.
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risk. The standard reduced form model assumes that under the risk-neutral measure,

the instantaneous default or hazard rate  follows a di¤usion similar to that followed

by the spot rate in an A¢ne Term Structure Model (ATSM).2 This provides an

exponential-a¢ne speci…cation of the cross-section of default probabilities in terms

of the hazard rate, which is the analogue of the spot interest rate in an ATSM

(Du¢e and Singleton, 2003). The hazard rate is modeled as a latent variable that

can be estimated using a Kalman …lter or simply by assuming that a particular

maturity in the cross section of default probabilities is measured without error. A

major advantage of the reduced form approach is that it allows me to employ latent

variable and other techniques developed in the term structure literature.

A¢ne hazard rate models usually provide a good empirical explanation of the

term structure of credit risk on a particular entity, one that is ‡exible enough to …t

a variety of upward sloping, inverted and hump shaped term structures. However, I

…nd that the extremes exhibited by the default curves seen in the US banking sector

since the turn of the millennium cannot be replicated using this approach. These

extremes are shown in …gures 1 and 2. The …rst of these …gures shows the 1-, 5- and

10-year senior CDS spreads, essentially the cost of insurance against default by these

six banks (in percent per annum).3 The second shows the implied term structure

of annual forward default probabilities.4 It shows that these default curves typically

exhibit a gradual upward slope, but became compressed in 2006 before inverting

sharply during the crisis.

Figure 3 illustrates the di¢culty that a¢ne models have in replicating the ex-

2Appendix A in Du¢e and Singleton (2003) shows that a¢ne models can also be obtained using
jump di¤usions and other speci…cations of the hazard rate process.

3Strictly speaking these are the probabilities of a ‘credit event’, not just default. Besides outright
bankruptcy, the 1999 ISDA agreement de…ned the other credit events that trigger compensation
payments under a CDS contract: failure to pay an obligation; obligation acceleration: repudiation,
and debt restructuring.

4The annual forward default probabilities are calculated as ln(+¡12+) where +
is the survivorship probability for maturity  = 12 24  120 in months.
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tremes seen in December 2006 and March 2009, which bound the observations of the

sample. It shows the results for Citigroup, which was the most heavily impacted

by the Lehman default and JPMorgan which was the least severely a¤ected. While

…gure 2 shows forward rates (to distinguish the default probabilities in the time series

more clearly), …gure 3 shows the average default rates over di¤erent time horizons.

These default rates are the analogue of the discount rates employed in the analysis of

the Treasury bond market and are computed as the negative of the log of the prob-

ability of survival divided by maturity5 . The a¢ne models are represented by the

well-known model of Cox, Ingersoll and Ross (1985), henceforth CIR and an unre-

stricted Ordinary Least Squares (OLS) model suggested by recent work on the term

structure of interest rates by Hamilton and Wu (2012). The panels on the left show

the very poor explanation provided by the a¢ne models in the case of Citigroup.

The panels on the right show that the a¢ne models provide a reasonable explanation

of the curve seen in December 2006 for JPMorgan, but underestimate the degree of

inversion seen in March 2009.

The basic problem with these models lies in their linear structure. This makes

them highly tractable but means that shocks to the hazard rate, which have a one for

one e¤ect on the short end of the default curves, always have the same proportionate

e¤ect on the longer maturities. This re‡ects the assumption that the degree of mean

reversion is constant. To explain the low and ‡at CDS term structure prior to the

crisis the model would need the hazard rate to be low and very persistent. Yet to

explain the steeply inverted structure seen during the crisis it would have to be high

but much less persistent. Clearly, we need to …nd a non-linear model that allows the

degree of persistence to vary with the initial hazard rate in this nonlinear way.

5This calculation gives the maturity-average of the forward default rates shown in …gure 2. They
are calculated as ¡ ln + where + are the survivorship probabilities.
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This is a characteristic feature of First Passage Time (FPT) models, which specify

the risk-neutral dynamics in terms of the distance to default rather than the hazard

rate. They assume that the …rm’s asset value follows a Geometric Brownian Motion

and that the …rm defaults the …rst time this reaches a default boundary. Black

and Cox (1974) showed that the default probabilities are then given by standard

FPT formulae. Consequently, if the initial asset value is close to the boundary, the

immediate default probability is very high. However, the forward default probabilities

fall back sharply with maturity in this case since the longer the …rm survives, the

more likely it is that its asset value has di¤used away from the boundary. This

‘survivorship e¤ect’ causes the term structure to invert sharply. On the other hand,

if the initial distance to default is high, it is likely to remain so for some time,

compressing the default probability structure.

The basic full information version of the FPT model is very sensitive to the initial

value of the distance to default, which makes it unsuitable for modelling short credit

spreads. However, Du¢e and Lando (2001) modi…ed the FPT model by assuming

that the investors observe the …rm’s asset value with a lag. They showed that in this

situation, it is important to condition the default probabilities on the observation

of no prior default. They allowed the market estimate of the …rm’s current asset

value to be informed by additional signals like credit downgrades. The risk-neutral

expectations describing security prices then involve integrals, making it very hard to

test this model empirically. Collin-Dufresne, Goldstein and Helwege (2003) showed

that if these additional signals are not informative, this simpli…es the model consid-

erably. They also abstracted from the e¤ect of the tax system, using the structure of

the Black and Cox (1976) model rather than the more complex structure of Leland

(1976) that underpins the model of Du¢e and Lando (2001). They reported a closed

form expression for the conditional probability of default over any future horizon.
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I use this basic deferred …ltration (DF) speci…cation to model market percep-

tions of bank default risk during the recent crisis, developing a reduced form model

that treats the distance to default as a latent variable. This model also provides

a convenient closed form for the instantaneous hazard rate which can be compared

with that implied by an a¢ne hazard rate model. It could be …tted to overnight

and other inter-bank rates. However, in view of the well documented doubts about

the liquidity of the inter-bank markets and the veracity of Libor quotes, I model US

bank credit risk using spreads from the CDS market, which were much more liquid

over this period. The use of CDS also circumvents the problem of specifying the tax

regime (Houweling and Ton Vorst, 2005) and allows me to follow Collin-Dufresne

et al. (2003) in using the structure of Black and Cox (1976). In their model, the

parameter  is added to the maturity in the default rate formulae and has the e¤ect

(like maturity) of damping the e¤ect of the distance to default on the default rate

structure.

I back out the implied risk-neutral default rates from CDS spreads and data for

non-defaultable bond prices and …t them using rival econometric models, based on

the principle of risk-neutral pricing. Comparing the …t of the DF model with that of

the full information FPT model of Black and Cox (a special case with no information

lag), shows that this lag parameter is of crucial importance, allowing the model to

capture the relative sensitivity of the short spreads. The performance of the DF

model is also superior to that of the a¢ne hazard rate model for …ve out of the six

banks studied in this paper, the exception being JPMorgan.

Figure 4 illustrates this model’s non-linear hazard rate reversion e¤ects using some

of the empirical results. The central panel shows how the distance to default indicator

a¤ects the theoretical value of the default rate across the maturity range using the

parameter estimates obtained for Citigroup. With a distance to default of  = 8
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standard deviations, the (Gaussian) probability mass is well away from the default

barrier at all horizons up to 10 years, so the default risk is compressed, as it was

prior to the crisis. As the distance to default reduces to one standard deviation, the

probability of a near-term default becomes very large and the curve inverts sharply.

(The right-hand panel uses the high  value estimated for the RBS, which have the

e¤ect of ‡attening the default curves, making them much less sensitive to maturity.)

In contrast, the left-hand panel shows that shocks in the a¢ne hazard rate model

are quite persistent, making it very di¢cult for it to …t the extremes in the data for

Citigroup.

The paper is set out along the following lines. The next section describes the basic

Black and Cox (1976) model structure and the deferred …ltration setting of Collin-

Dufresne et al. (2003). It also reviews the two a¢ne models. Section 3 describes the

CDS data set and empirical methodology. Section 4 describes the econometric models

and reports the empirical results. Section 5 o¤ers a conclusion and suggestions for

future research.

2 Theoretical approaches to modeling default risk

This section sets out the various theoretical models that I use to analyze default risk,

starting with the FPT model of Black and Cox (1976) and the deferred …ltration

model of Collin-Dufresne et al. (2003). I then give a brief review of the a¢ne model

of Cox et al. (1985), henceforth CIR.

2.1 The model of Black and Cox (1976)

Consider the structure of the model of Black and Cox (1976) (henceforth BC):

Assumption 1: All agents observe the value of the bank  () at time ;

Assumption 2: The logarithm of this value  = ln () follows a Brownian Motion
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under the risk-neutral measure:

 = +  (1)

where:  = ( ¡ );  is the expected logarithmic return common to all assets

and  the percentage cash ‡ow return to the equity owners;

Assumption 3: The bank has perpetual debt with a face value of . This value

is …xed and cannot be used to …nance coupon and dividend payments;

Assumption 4: Interest, dividends and other payments are made continuously;

Assumption 5: There are no taxes;

Assumption 6: Protective covenants or legal restrictions prevent the bank trading

with a negative net asset value. In this case, default occurs as the net asset value

…rst reaches zero, or equivalently when the logarithm of the distance to default ratio

() = ln( ()) …rst reaches zero;

Assumption 7: In the event of bankruptcy, the banks assets fetch the liquidation

value () =  ()  2 [0 1]

This model can be regarded as a simpli…ed version of the model of Leland (1994),

which relaxes assumptions 4 and 5 to allow for a lower default trigger value

    6 and for a non-zero corporate tax rate. My empirical version of

the model uses latent variable techniques to estimate the log distance to default

() = ln( () ) and does not impose a particular value for   as a model

based on accounting information would. This model is consistent with the geometric

Brownian motion used for the …rm’s net asset value in equity pricing models, allow-

ing comparisons of default risk and asset value across CDS, bond, money and equity

6Leland (1994) shows that this simply adjusts the trigger value whilst preserving the mathemat-
ical structure of the model.
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markets. Implied probabilities of default can be obtained from the equity market in

the full information setting using the Black-Scholes formula if we view an equity on

a leveraged …rm as a call option on the …rm’s assets with a strike price equal to the

debt ( Merton, 1974). My use of default swap spreads rather than corporate bonds

in the empirical model means that I can abstract from the tax regime, which has a

neutral e¤ect on this market (Houweling and Ton Vorst, 2005).

2.2 Default behavior

In this model the probability of default during an investment period of length  and

a starting value of  =  is the probability  of a …rst passage from  to default at

zero during the period, which is given by:

(  ) = 1¡©
·
 + 


p


¸
+ exp

·
¡2

2

¸
©

·
¡ + 


p


¸
¸ 0;   0 (2)

(Du¢e and Singleton, 2003), where ©[] is the standard normal distribution function

and [] its density function:

() =
1p
2
exp[¡2

2
]

The probability of survival from time  to  =  +  given the observation () = 

of the distance to default is thus :

(  ) = ©

·
 + 


p


¸
¡ exp

·
¡2

2

¸
©

·
¡ + 


p


¸
¸ 0;   0 (3)

The survivorship function plays a role in the defaultable bond markets that is

similar to that played by the discount function in the non-defaultable markets. If the

short term interest rate is independent of the default probability structure as in the
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standard FPT model, then the price  at time  for a defaultable payment at time

   can be written as the product of non-defaultable discount bond  and the

risk-neutral expectation of the payout. If  is the rate of recovery in default and 

the probability of the …rm surviving from period  to  conditional upon the relevant

information set or …ltration, then:

 = [ + (1¡ )] (4)

Inverting this relationship allows the risk-neutral survival probability to be deter-

mined as  =(¡)(1¡). These survival probabilities are in principle

tradeable securities.7

My empirical model (see section 3) uses latent variable estimation methods that

allow the ratios  and  but not the separate e¤ects of   and  to be identi…ed.

Therefore the rest of this paper uses the normalization  = 1 The latent variable

 driving the cross section is interpreted as the number of standard deviations to

default. The drift parameter  plays the key role in this model, having a positive

e¤ect on the survival probabilities (Spencer, 2013).

As noted in the introduction, this model must be modi…ed to allow it to provide

a realistic description of the short spreads. For example, discrete jump processes can

be added to the Brownian motion to make the default intensity and short spreads

signi…cant when the asset value is within jump-range of the boundary (Baxter, 2007).

The Levy distribution can be used to analyze default intensity in this situation and

has been used to develop structural default models. Unfortunately, solutions for these

distributions are not available in closed form and, in practice, numerical approxima-

7A position in the ¡horizon default probability can be established by buying an -year de-
faultable bond and shorting an ¡year non defaultable bond like a Treasury with the same face
value.
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tions have to be employed, making them di¢cult to use in econometric work8 .

Finger, Finkelstein, Lardy, Pan, Ta and Tierney (2002) deal with these problems

by assuming that investors observe the balance sheet of the …rm but do not know

precisely where the default barrier is. This model is extensively used by practitioners

like RiskMetrics. The default barrier is related to the observed debt by a lognormally

distributed multiplier exp[2+2] which has the value exp[2] at  = 0 at the outset

and increases with the time horizon . Unfortunately this device is problematic

because it only conditions the forward default rates on balance sheet variables, not

the informative observation that there have been no previous defaults. This means

that the algebra is not valid for forward maturities  less than 22 (see Finger et

al., (2002) Re‡ecting this problem, it is not possible to model the hazard rate or

short spreads using this speci…cation.

2.3 The Deferred Filtration model

Du¢e and Lando (2001) assume instead that the …rm’s asset value is uncertain.

They deal with these short-maturity problems by conditioning the forward default

probabilities on the observation of no prior default as well as balance sheet variables.

Their approach is thus valid for modelling the default rate at all horizons. Speci…cally,

the investment decision is conditioned by a ‘deferred …ltration’ or a lagged information

set, which could re‡ect delays in …nancial reporting, for example. This lag damps

the e¤ect of accounting information on market prices and allows room for other risk

indicators to a¤ect them.

In a deferred …ltration model, the time of default is not a¤ected because the bank

manager still observes the net asset value precisely. So assumption 1 is maintained for

the bank manager, who declares bankruptcy when  attains zero as in the standard

8Moreover, as Du¢e and Lando (2001) note, the hazard rate (or instantaneous default intensity)
is not well de…ned in these models.
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FPT model. However, investors and other outsiders observe the value of the bank

with a lag of length  The time line is shown in …gure 5. Thus we adapt assumption

1 and assume that at time  investors get a lagged accounting signal  = () where

 =  ¡  (i.e. they have access to the deferred …ltration F). Suppose that the

only other information that they have is that the bank has survived until . Collin-

Dufresne et al. (2003) note that because survival from  until    implies survival

until , the joint probability of survival to  and then to  = +  + is simply the

probability of survival to : (  +). Using Bayes Law, it follows that the

probability of survival to  conditional upon survival to  is obtained by dividing this

by the probability (  ) of surviving to  = +  given () = :

+ =
(   +)

(  )
(5)

Substituting (3) with the normalization  = 1 then gives their closed form solution:

+ = (   +) =

©

·
+(+)p

(+)

¸
¡ exp [¡2] ©

·
¡+(+)p

(+)

¸

©
h
+p



i
¡ exp [¡2] ©

h
¡+p



i (6)

Taking the logarithm of this function gives the negative of the default probability

+ (since ln + = ln(1¡+) ' ¡+). Changing sign and dividing by the

time horizon or maturity then gives a model of + = ¡ ln + ' +

or the average default rate over the period, which is the analogue of the discount yield

in the Treasury bond market. This is the default statistic I use my empirical models

to explain. Du¢e and Lando (2001) show that although the hazard rate is identically

zero in the standard FPT model, this is not the case in the deferred …ltration model.

Equation (11) of Appendix 1 describes the forward rate function for the DFmodel.

Importantly, the information lag  adds to the forward maturity  in this formula,
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damping the e¤ect of the initial distance to default in the same way that forward

maturity does in the basic full information version of the model. This parameter

is crucially important in controlling the sensitivity of the instantaneous hazard rate

and the ultra-short spreads to the distance to default. The instantaneous hazard

rate, which I will compare with that of the a¢ne model, follows by taking the limit

of (11) as the forward maturity  goes to zero. Appendix 2 describes the likelihood

function.

This algebra can be used to represent a situation in which the default barrier

(the outstanding liabilities  in the Black-Cox framework) is also uncertain, as in

the model of Finger et al. (2002). Suppose, for example, that the default barrier

ln( ) as well as the asset value ln( ) follow a Brownian motion resembling (1) and

that at time  the investor observes an accurate but lagged value of the distance to

default () =  Then it follows that the ratio () = ln( ) representing the

distance to default also follows a model resembling (1) and that the unconditional

survivorship function is given by (3), where  and  now represent the combined drift

and volatility. The conditional survivorship function is given by (6) but unlike the

model of Finger et al., is conditioned by the observation of no prior default and valid

over the whole maturity range. Thus the model could capture the e¤ect of changes

in the resolution regime, such as the Dodd-Frank Act of 2010, as well as uncertainty

about the default barrier implied by the regulatory regime.

Deferred …ltration models provide an interesting way of formalizing the e¤ect

of accounting and other information lags on asset prices. To estimate my model

econometrically, I assume that the information lag  is constant. Formally, this

means that in each new period the investor receives a precise observation  of the

distance to default that is one period more up to date. However, in view of the

doubts about the relevance of accounting information in this area, I adopt an eclectic

13



view of the informational structure, regarding the model as a convenient non–linear

reduced form rather than adopting a speci…c structural interpretation. In addition

to accounting information, the information set is likely to include information on the

state of the credit and business cycle as well as the regulatory environment. Similarly,

I regard  as a smoothing parameter which determines the relative sensitivity of the

short spreads to this information, without necessarily representing an information

lag. This gives a non-a¢ne reduced form model of the cross section of default rates

with one latent variable () and two …xed parameters ( ) that need to be estimated.

2.4 The a¢ne hazard rate model

The standard reduced form representation models the instantaneous hazard rate 

directly. This model provides an exponential-a¢ne speci…cation of the default func-

tion in terms of the instantaneous hazard rate by assuming that under the risk-neutral

measure, this follows a di¤usion similar to that followed by the spot interest rate in

an exponential-a¢ne speci…cation of the term structure of interest rates (Du¢e and

Singleton, 2003). To keep default and survivorship probabilities non-negative the

reduced form approach typically adopts the CIR square root volatility model of the

risk-neutral dynamics:

 = ( ¡ )+ 
p
 (7)

This generates the familiar CIR negative exponential solution for the survivorship

function:

+ = (;  ) = [
22

( ¡ 1) + 2 ]
 exp[¡()] (8)

where () = 2(¡ 1)((¡ 1)+ 2);  =  + ;  = (()2+22)12;  =

22. This model represents the log survivorship function, and hence the default
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probabilities, as a¢ne functions of the hazard rate. Taking the logarithm of (8), using

ln + = ln(1¡ +) ' ¡+ and changing sign gives a linear representation

of the default probability Dividing by the time horizon, or term, then gives a linear

model of the average default rate + = ¡ ln + ' + given any time

horizon:

¡ ln +=



ln[

22

( ¡ 1) + 2 ]¡
()


 (9)

= () + ()

These a¢ne structures have been extensively used in modelling defaultable and

non-defaultable bond price structures. However, they are restrictive because they …x

the relative e¤ect of the instantaneous hazard rate on the default rates at di¤erent

maturities independently of the hazard rate. So, for example, the relative e¤ect on

the default rates at the respective horizons  and  years given the model (9) is

…xed in the ratio ()() We will see this is a serious handicap when using a

single factor model to analyze bank default during the crisis.9

3 The empirical models

This section describes the CDS data set and the empirical methods employed in this

paper. The empirical results are reported in the next section.

3.1 Data

Section 2 sets out several rival econometric models that are designed to explain

market data for the cross-section of default rates: ¡ ln +. These rates could,

9This restriction might be relaxed by using a multiple factor model, but empirical models of
credit risk typically use a single factor speci…cation. Work on the term structure of interest rates
reveals that three factor models also …t inverted curves relatively poorly (see for example Dai and
Singleton (2000) Table IV).
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in principle, be backed out from the prices of defaultable and non-defaultable bond

using (4). But in this paper, they are backed out of the maturity structure of CDS

prices. Since the swaps market was more active than the bond market over the period

of the crisis (being extensively used by hedge funds as a vehicle for speculation against

banks) this is the approach adopted here. Moreover, unlike bond prospectuses, those

for CDS contracts are standardized, facilitating liquidity. They are not a¤ected

by short-sale restrictions and there is evidence suggesting that they lead the bond

market in terms of price discovery (Blanco, Brennan and Marsh, 2005, Forte and

Pena, 2009).

The CDS data were provided by Markit Ltd. They have a panel structure, con-

sisting of daily observations on ten annual maturities of US bank debt CDS spreads.10

The CDS spreads for senior debt are available back to January 2001. Subordinated

debt CDS started to trade later, though before the money market crisis of 200711 .

I use end-month observations for the 6 largest US banking groups. These comprise

three large universal banks (Bank of America, Citigroup and JPMorgan), two invest-

ment banks (Goldman Sachs and Morgan Stanley) and Wells Fargo, a large regional

bank.

I back out the implied default probabilities + using standard recursion for-

mulae, given by eq2.7.4) of Hull (2003). These calculations require an assumption

about the value of the recovery rate. I use the values of 40% and 20%, respectively,

suggested by the calculations in the Markit spreadsheets for senior and subordinated

debt (respectively denoted + and +) These produce estimates for the

implicit default probabilities that align reasonably well, with no persistent di¤er-

10The Markit …les also contain some observations on 6 month, 15 year and 20 year CDS spreads.
However there are a lot of missing observations for these spreads and they were not used for esti-
mation, only for ex post out of sample checks.
11The dates of these samples are reported in table 1.
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ences, as shown by the observations in …gure 2.12 Table 1 shows that as in many

…nancial data sets, these observations are negatively skewed and have fat tails. They

are also persistent.

Figure 1 shows the basic spread data. They show that default risk was high at the

turn of the millennium as the dot-com boom ended but then fell to a very low level

during the ‘search for yield’ that preceded the crisis.13 This compression began to

unwind in 2007 after the problems with the Bear Stearns hedge funds emerged. The

inter-bank liquidity crisis then followed when problems with the Paribas hedge funds

came to light in the …rst week of August. The implicit one-year default rate moved

up to around 2% for many large US banks as the money markets became stressed

(Afonso, Kovner and Schoar, 2011), with the …ve-year rate moving higher in many

cases. Then, following the Lehman default in September 2008,14 the one-year rate

spiked up to 9% and 20%, respectively, for the investment banks Goldman Sachs and

Morgan Stanley. They were hit most severely by the default, but converted to banks

in order to get support from the Fed very soon afterwards, which seems to have has

the e¤ect of calming the market’s worries.

The e¤ect on the universal banking groups Citigroup and Bank of America was

more gradual and did not peak until March 2009, when their one-year default rates

reached 11% and 14%, respectively. The impact of the Lehman default on JPMorgan

and Wells Fargo was less pronounced, but all six forward default curves inverted

sharply during this crisis. Worries about the viability of Goldman Sachs and Morgan

Stanley lingered until the end of the year but worries about the other four institutions

eased as the Fed’s unconventional monetary policies and the Treasury’s Troubled

12Further work at the estimation stage indicated that the …t of these models could not be signif-
icantly improved by adopting di¤erent assumptions about recovery rates.
13Risk premia also fell back in the Treasury bond market over this period, helping to explain the

‘conundrum’: an episode in which long rates were stable in the face of rinsing short-term rates.
14The Bank of America acquired Merrill Lynch in that month (having acquired the mortgage

lender Countrywide in August 2007).
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Assets Relief Program took e¤ect (see Krosner and Melick, 2010, Mc Andrews and

Wang,2008 and Wu, 2009). The behavior of the spread and default curves was

idiosyncratic. At one extreme, Citigroup was badly impacted by the Lehman default

while at the other, JPMorgan was less severely a¤ected.

Another high-risk episode began in the summer of 2011 as the European sovereign

debt crisis escalated, raising questions about the exposure of US banks to Europe.

These worries seem to have been more persistent than in the Lehman crisis since the

slope of the forward default curve was broadly ‡at for most of the major banks. Yet

in the case of the Bank of America, worries about the mortgage problems emerging

over this period at its subsidiaries Countrywide and Merrill Lynch were an added

concern over this period, keeping its forward curve inverted.15

3.2 The yield factor method

These default probabilities are then used to compute the respective survivorship

probabilities and hence the default rates (+ = ¡ ln(1 ¡ +) and

+ = ¡ ln(1 ¡ +)) that are the dependent variables in the models

tested in this paper. I follow the yield factor literature (Du¢e and Kan, 1996), which

assumes that the prices and yields of some individual bonds or portfolios of bonds

are observed without error. Speci…cally I assume that the …rst principal component

of the ten rates derived from the senior CDS prices (which can be considered to

be a portfolio of senior CDS contracts) is observed without error. I …rst use this

as regressor in an unrestricted OLS regression that explains the 1-, 2-, 3-, 5-, 7-

and 10-year default rates implied by the senior spreads and where available the 1-,

2-, 3-, 5-, 7- and 10-year rates implied by the subordinated spreads. This gives a

15The CDS spreads for JP Morgan appear to be high over this period, but this e¤ect is exaggerated
by the scale of the chart, which re‡ects the market’s relatively low default risk assessment during
the earlier episode. Wells Fargo remained relatively immune to default risk during both episodes.
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dozen cross-sectional observations for months in the sample when both senior and

subordinated CDS data are available. As Hamilton and Wu (2012) note in the the

context of the term structure literature, this OLS model is a useful starting point

and provides a benchmark for evaluating a¢ne models such as CIR, since these are

of the same linear form but with non-linear restrictions across their coe¢cients.

To estimate the CIR model, I follow the procedure used in a principal component

based yield factor model, backing out a time series for the hazard rate  from the

time series for the …rst principal component (PC) and substituting this back into

the relationships (9) used to …t the cross section. Similarly, to estimate the FPT

models I back out the log distance to default indicator  from the time series for

the …rst PC and substitute this back into the relationships (6) used to …t the cross

section. Appendix 2 derives the likelihood of the various cross-section models using

this PC-based yield factor approach and outlines the estimation procedure.

4 The empirical results

This analysis began with a preliminary investigation of the data using principal

components analysis and the two linear models of the cross section (OLS and CIR).

Next, I estimated the two FPT models of the cross section (DF and BC).

4.1 A¢ne models

Table 2 shows the likelihood statistics and parameter estimates for the a¢ne models.

The …rst PC for each bank typically explains 90-95% of the variance of the cross

section of its senior default rates. Re‡ecting this, the OLS regression model also

provides a reasonable …t. However, it does this by generating signi…cant negative

default probabilities during the pre-crisis period. The CIR models are designed to

prevent this, but badly fail a Hamilton and Wu (2102) likelihood ratio test.
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This test is based on the fact that because the CIR model is nested within the

OLS model, (twice) the di¤erence in their loglikelihood values has a 2 distribution.

However, the large number of observations in large data sets such as this strongly

biases this test towards the rejection of the restricted model. The Bayesian Informa-

tion Criterion (BIC) provides a better performance indicator in this situation since

it is asymptotically unbiased. The Schwarz Approximation (SCA, Appendix 1) is

based on the di¤erence between the BIC values of two nested models and also has

a 2 distribution (with 9 = 12 ¡ 3 degrees of freedom in this case). This test sta-

tistic is reported as SCA in the table. The ¡values of the statistics shown in the

table are e¤ectively zero, indicating that the CIR model is mis-speci…ed. Moreover,

the parameters of these CIR models are problematic. The positive estimates of the

autoregressive coe¢cient  indicate that the risk-neutral dynamics are unstable and

the negative values of  re‡ect the di¢culty the CIR model has in explaining the

period of yield compression.

4.2 FPT models

Table 3 shows the likelihood statistics and parameters for the FPT models. With

the exception of JPMorgan, the loglikelihood and BIC values for model DF are much

higher than for the two a¢ne models. Re‡ecting this, the Vuong (1989) test statistic

(Appendix 2), which can be used to compare the performance of non-nested models,

such as the CIR and DF model, favours the latter. This statistic has a standard

normal distribution in large samples. Table 4 shows how well the DF model …ts the

senior and subordinated default rates at di¤erent maturities. Clearly, this model has

problems …tting the very volatile short rates, it but does well at the longer end.

The negative values of the drift parameter  shown in table 3 indicate investor

pessimism about long-term default risk. (Wells Fargo is the exception, in having a
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positive drift term.) This increases the level of default risk and gives an upward bias

to the slope of the term structure of default rates, consistent with the term structure

of the mean sample values reported in table 1. The slope is nevertheless negative

(i.e. curve inverted) when the value of  is depressed following the Lehman default.

The parameter  is highly signi…cant, showing that it is very important to smooth

the e¤ect of the distance to default indicator on the short maturity spreads. This is

con…rmed by the very poor likelihood values shown in the lower panel of table 3 for

the Black-Cox model16 .

If we interpret this parameter strictly in terms of the deferred …ltration model,

this suggests that investors price these default risks as if they observed the distance

to default with a lag of between two and four years. However, given the reduced form

nature of this literal speci…cation this interpretation may not be appropriate. This

parameter acts as a damping factor, re‡ecting investor uncertainty more broadly.

For example, as noted, it may re‡ect uncertainty about the default barrier.

Figure 6 shows the estimates of the distance to default measures for the six

banks. These are highly correlated, suggesting the presence of a common risk factor

as proposed by Collin-Dufresne et al. (2001). The …rst PC explains 94% of the

variance, although as in the case of the default rates shown in …gure 2, the indicators

for the two investment banks di¤er from the rest immediately following the Lehman

default. Further linear regression tests were conducted on these estimates to check

the lag structure. Stacking the six estimates into a vector and modelling them using

…rst- and second-order Vector Autoregressions (VAR) con…rmed that a …rst order

model was appropriate on the basis of the BIC. The o¤-diagonal elements of this

VAR response matrix were insigni…cant, suggesting that none of these default risk

16The SCA statistics are not reported but again e¤ectively have zero ¡values, providing a decisive
rejection of the zero lag restriction.
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indicators Granger-caused the risks to other banks. In other words, any contagion

e¤ects occurred within the monthly time frame of this analysis and the shocks were

in that sense contemporaneous.

4.3 Model comparisons

How does the non-linearity of the DF speci…cation allow it to outperform the linear

models in explaining the default risk in stressed institutions like Citigroup? Further

analysis of the model residuals reveals that both approaches provide a good expla-

nation of the regular observations found in the centre of the distribution. These are

characterized by upward sloping curves. However, the DF model outperforms in the

extremes of the distribution. Re‡ecting this, the a¢ne models perform tolerably well

in the case of JPMorgan, which was not as seriously stressed as the other banks.

Figure 7 contrasts the behavior of the hazard rates in the DF and CIR models over

time. The CIR model models the hazard rate like the spot rate in an a¢ne term

structure model and appendix 1 derives the hazard rate function for the DF model.

These are similar in the case of JPMorgan (as are the model residuals). For the

other institutions, the DF hazard rates tend to be more pronounced than they are in

the CIR model. The thin tails of the Gaussian distribution allow the DF model to

replicate the very low default rates seen before the crisis by increasing the distance

to default until the distribution of future values is su¢ciently far from the default

boundary.17

The central and lower panels of …gure 3 show how the two approaches attempt

to explain the extreme values of the default curves that are shown for Citigroup and

JPMorgan in the top panel and discussed in the introduction. As noted there, these

17The default rate becomes negligibly small as the distance to default increases beyond six stan-
dard deviations, allowing the DF model to replicate the period of compressed default rates with
ease.
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extremes occurred in late 2006 as yields were compressed and in March 2009 following

the Lehman default. These two curves bound the observations of the sample for these

two banks. The panels on the left show that JPMorgan was relatively immune to

these developments and the a¢ne models …t tolerably well in this case. However the

panels on the right show that they hit Citigroup harder, making it di¢cult for the

a¢ne models to …t these periods using parameters that are largely determined by

the need to …t the centre of the distribution. The linear …t tends to pivot around the

seven-year time horizon, with large positive residuals at the short end in December

2006 and negative OLS residuals in March 2009.

The DF speci…cation models these extremes relatively well. To see how it is able

to do this, the right-hand panel of …gure 4 shows how the distance to default indicator

() a¤ects the theoretical value of the default rate across the maturity range. This

panel uses the parameter values for Citigroup shown in tables 2 and 3. With a

distance to default of  = 8 standard deviations, the risk distribution is well away

from the default barrier at all horizons up to 10 years, so the default risk is negligibly

low. As the distance reduces to  = 4, the risk begins to increase. The e¤ect is

felt across the range, not just at the longer horizons, pushing the whole curve bodily

upwards, replicating the yield curve shapes seen in the centre of the distribution.

As the distance to default reduces to two and then one standard deviation, the

probability of a near-term default becomes very large.18 However, the long-term risk

is less severe because if the institution survives the near-term crisis, the odds are

that the balance sheet will recover (the survivorship e¤ect). It allows the model to

generate the strongly inverted curve shapes seen during the Lehman crisis.

The a¢ne models …nd it very hard to explain these extremes. The bold line in

the left-hand panel of …gure 4 shows the intercepts () in (9). These are the default

18This e¤ect would obviously be much greater in the absence of the information lag.
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rates at  = 0 used by the model to generate the CIR estimates shown in the lower

left-hand panel of …gure 3. Positive hazard rates increase the default term structure

but as noted in section 2.4, the relative impact at di¤erent horizons is …xed in an

a¢ne model. The need to …t the persistent hazard rate shocks that characterize the

centre of the distribution means that the compromise e¤ect () is felt fairly evenly

across the term structure. But this restricts the ability of the model to explain the

inverted curve seen in March 2009. The empirical model selects a value of  = 017

which allows it to …t the 7- and 10-year rates quite well, but seriously underestimates

the shorter rates.

5 Conclusion

This paper reports the …rst attempt to take the deferred …ltration variant of the

FPT model to the data. The results con…rm the superiority of this model over the

standard a¢ne speci…cation, which …nds it hard to deal with periods of exceptionally

high or low default risk given its assumption of a constant rate of mean reversion

in the hazard rate. The dynamics of the FPT model are speci…ed in terms of the

distance to default rather than the hazard rate. This means that the persistence of

shocks varies with the distance to default, allowing the default curve to invert sharply

(compress) when the distance to default is low (high). The DF version of the model

uses a smoothing parameter to control the relative e¤ect of these shocks on the short

spreads.

I have developed a reduced form variant of the DF model, which treats the dis-

tance to default as a latent variable, without specifying the precise information struc-

ture. However, the structure of the model is consistent with the view that asymmetric

information played a key role in the breakdown of the banking markets during the

recent crisis. Investors in the CDS market behaved as if they observed the distance
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to default with a lag of two to four years.

The success of this approach opens the way to a more reliable and rigorous ap-

proach to regulatory issues concerning the banking sector. For example, the barrier

uncertainty model of Finger et al. (2002) has been employed by Schweikhard and

Tsesmelidakis (2011) to estimate the value of government guarantees implicit in eq-

uity prices and …ve year CDS spreads. However, unlike the deferred …ltration model,

this model is not conditioned on the observation of no prior default and does not

handle near-term risk19 . As we have seen, most of the movement in the recent crisis

took place in the short spreads, which the deferred …ltration model handles nicely,

allowing the whole maturity range to be used to inform estimates of the distance to

default and the value of guarantees, rather than just the …ve year spread. Estimates

from the deferred …ltration model could also be used to obtain fair value deposit

insurance rates (Acharya and Dreyfus, 1989) and throw light on the optimal bank

closure decision (Fries and Perraudin, 1997).

Recent US banking sector data may unduly favor the deferred …ltration model,

which clearly has a comparative advantage in handling stressed credit markets. This

feature makes it likely that it will o¤er a good explanation of other stressed credit

markets such as those of the periphery of the Euro area, which experienced default

curves similar to the extremes seen in the US banking markets. It might also pro-

vide a useful structural interpretation of the data for entities that are less stressed,

comparable in terms of …t to that of the standard reduced form approach. However

that remains on the agenda for future research and remains to be seen.

Given the simplicity of deferred …ltration model used in this study, these results

are very encouraging. Moreover, Collin-Dufresne et al. (2003) suggest several exten-

19Other papers on this topic by Acharya, Anginer and Warburton (2013) for example, have
avoided these problems by using linear regression models to explain spreads in terms of equity-
based measures of bank default and other relevant regressors.
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sions that would be interesting to pursue in future empirical work. Du¢e and Lando

(2001) show that the deferred …ltration approach can allow for other signals of asset

value like credit downgrades and defaults of other banks, which become potentially

relevant once there are doubts about the accuracy of accounting information. Allow-

ing for these shocks could improve the performance of the model used in this study

and provide further insights into the informational structure of the banking markets

during the recent …nancial crisis.
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Appendix 1: The hazard rate in the Deferred Filtration model

The inter-bank market trades funds at very short maturities, making it important

to analyze the behavior of hazard rate (or default arrival intensity). Similarly, the

forward default intensity + at time  and forward maturity  is the probability

of default at any instant  + conditional on no prior default until then and the

information set available to investors at time  Du¢e and Singleton (2003) showed

how this is related to the survivorship value ¡. Providing that this value is

di¤erentiable, then:

+ = ¡
1

+

+


, + = exp[¡
Z 

0

+] (10)

To specify the forward default intensity structure for the DF model we thus di¤er-

entiate (6) with respect to  and divide by (6) to get:

+ = (   +) =
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The instantaneous hazard rate at time  follows by taking the limit as  tends to

zero20 :
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(12)

20This formula can also be obtained from Du¢e and Lando’s equation (A1) using the normaliza-
tion ~ =  and ~ =  (which specializes this to the Black-Cox model) and taking the limit in which
the variance (2) of the additional signal goes to in…nity and thus becomes uninformative.
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Appendix 2: The likelihood function and the estimation pro-

cedure

This appendix sets out the form of the likelihood function and associated test statis-

tics for the models discussed in section 3 and outlines the optimization procedure.

First we use the default function to obtain an estimate of each implied value of

the default rate given the relevant model parameters and (depending on the model)

the distance to default or the hazard rate. For the FPT model we use (6) to get.

(   +) = ¡ ln (   +)

(For the a¢ne model we replace this by (9) in what follows.) The senior observations

+ = ¡+ are stacked in the vectors: rsn = f+1 +2 +3

+5 +7 +10g0;  = 1   We next de…ne the conformable vectors of

estimates and measurement errors:

r̂ = r̂(  ) = f(  +1)  (  +10)g0; esn = f+1  +10g

to get the econometric relationship:

rsn = r̂(  ) + esn;  = 1   (13)

where esn is a vector of . measurement and mispeci…cation errors:

esn »  (0D)

and where 0 is a 6£1 zero vector and D is a 6£6 diagonal covariance matrix. The

principal component  is a weighted average of these rates:  = w
0
rsn where w is

a 6£1 vector of loadings. We follow the yield factor approach and assume that  is
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observed without measurement error:

 = (  ) = w
0
r̂(  )

This allows  to be obtained by numerical inversion:

 = (  ) = ¡1(  ) (14)

Substituting this back into (13) gives the model:

rsn = r̂((  )  ) + esn

= f̂ + esn;  = 1  

Thus the loglikelihood for the senior rates in period  can be written as:

 = ¡
1

2
ln(jDj)¡ 1

2
(rsn ¡ f̂)0D¡1(rsn ¡ f̂) (15)

(neglecting the intercept 3 ln(2) for simplicity). Summing this over  periods gives

the loglikelihood for the senior rates over the full estimation period:

¡

2
ln(jDj)¡ 1

2

X

=1

(rsn ¡ f̂)0D(rsn ¡ f̂) (16)

Similarly, we de…ne a conformable vector of subordinated default rates for the shorter

period ( =   ) in which these are available: rsb = f+1  +10g0;

the loglikelihood for the subordinated rates in period  can be written as:

 = ¡
1

2
ln(jDj)¡ 1

2
(rsb ¡ f̂)0D¡1(rs ¡ f̂) (17)
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we obtain the loglikelihood for the entire cross section over the estimation period:

( D) = ¡(2 + 1¡)

2
ln(jDj)¡1

2

X

=1

(rsn¡f̂)0D(rsn¡f̂)¡
1

2

X

=

(rsb¡f̂)0D(rsb¡f̂)

(18)

Optimizing D (Hamilton (1994)) gives the concentrated function:

¤( ) = ¡2 + 1¡

2
ln

Ã
1

2 + 1¡

"
X

=1

(rsb ¡ f̂)0(rsb ¡ f̂) +
X

=

(rsb ¡ f̂)0(rsb ¡ f̂)
#!



(19)

This is optimized by minimizing (with respect to  and ) the double sum in the

square brackets. I do this using the FindMinimum numerical optimization package

on Matlab. Standard errors and other diagnostics are obtained using the Hessian

generated by FindMinunc. I initially used a grid of starting values but soon realized

that they always converged to the same optimum which was a unique (for each

bank). This is clear from graphs of the likelihood showing how it depends upon its

two parameters, revealing that it is essentially quadratic in nature. The likelihood

for the CIR model is similar, but uses (9) to de…ne f̂ in (19). This is optimized with

respect to the parameters   and .

The statistics used for testing the competing models are based on these optimized

likelihood ratios. The Vuong (1989) test framework is based on the optimized likeli-

hood for each observation ((15) plus (17)). It can be used for testing two non-nested

models such as the CIR and DF models (Vuong, 2002, section 5). This statistic

can be computed by calculating the relative loglikelihood of the two models for each

observation and regressing these values against a constant. The Vuong non-nested

test statistic is equal to the t-statistic in this regression and has a standard normal

distribution in large samples. (Strictly speaking, this should be adjusted by a multi-

plier that depends upon the sample size but this is very close to unity in these large
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samples and can be neglected here.) The test is naturally two-sided and reported in

table 3. In this application a positive value favours the CIR model and a negative

one the DF model.

Tests of nested models are more straightforward and Vuong shows that under

standard assumptions classical test statistics are valid. These are based on ratios

of optimized likelihoods (or di¤erences of loglikelihoods) for the full sample (19).

These likelihood values can be adjusted to take account of the sample size and the

number of parameters in competing models. For example, the Bayesian Information

Criterion shown in tables 2 and 3 is computed as  = 2 ¡ ln ( ), where

 is the number of model parameters and  the number of observations. The

Schwarz test is based on di¤erences in these values. In table 2 for example  =

(¡)2 is used to test the CIR against the encompassing OLS model.

This test has a 2 distribution, with = 10 being the di¤erence in the parameters of

the OLS and CIR models. The probability of observing these test values is e¤ectively

zero, indicating that the CIR model restrictions are not accepted by the data.

Tables
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Table 1(a) Summary statistics for CDS based default probabilities
Type: Senior Subordinated

Term: 1 2 3 5 7 10 1 2 3 5 7 10

Bank of America January 2001-July 2014 August 2001-July 2014

Mean 1.022 1.156 1.289 1.555 1.656 1.764 1.196 1.326 1.448 1.694 1.780 1.872

Std.Devn. 1.591 1.517 1.481 1.497 1.454 1.400 1.854 1.763 1.732 1.725 1.685 1.603

Skewness 2.875 2.445 2.065 1.487 1.311 1.160 2.957 2.513 2.211 1.753 1.599 1.455

Kurtosis 8.791 6.450 4.624 2.152 1.583 1.022 9.848 6.856 5.371 3.422 2.822 2.331

Auto. 0.890 0.910 0.922 0.936 0.939 0.941 0.884 0.908 0.917 0.929 0.928 0.924

ADF -3.070 -2.762 -2.389 -1.869 -1.697 -1.539 -3.170 -2.780 -2.540 -2.170 -2.020 -1.900

Citigroup January 2001-July 2014 June 2001-July 2014

Mean 1.210 1.328 1.469 1.732 1.835 1.902 1.364 1.472 1.597 1.831 1.893 1.932

Std.Devn. 2.063 1.864 1.774 1.730 1.643 1.111 2.321 2.122 2.010 1.886 1.778 1.625

Skewness 3.525 2.837 2.302 1.646 1.293 1.025 3.452 2.974 2.636 1.923 1.619 1.354

Kurtosis 15.234 10.307 7.022 3.648 1.904 0.952 14.290 11.163 9.187 5.131 3.501 2.450

Auto. 0.910 0.906 0.913 0.902 0.867 0.780 0.921 0.923 0.929 0.920 0.883 0.801

ADF -2.744 -2.613 -2.378 -1.977 -1.790 -1.673 -2.580 .2.393 -2.419 -2.110 -2.014 -1.922

JPMorgan January 2001-July 2014 September 2001-July 2014

Mean 0.587 0.719 0.855 1.133 1.257 1.403 0.692 0.803 0.920 1.159 1.253 1.363

Std.Devn. 0.594 0.582 0.602 0.669 0.678 0.677 0.638 0.645 0.652 0.705 0.698 0.685

Skewness 3.049 2.024 1.367 0.689 0.437 0.353 2.140 1.685 1.315 0.804 0.546 0.437

Kurtosis 14.509 6.859 2.931 0.030 -0.768 -0.999 7.281 4.489 2.825 0.723 -0.213 -0.580

Auto. 0.840 0.868 0.886 0.914 0.920 0.917 0.889 0.918 0.918 0.932 0.941 0.930

ADF -2.936 -2.813 -2.541 -2.128 -1.945 -1.682 -2.306 -2.399 -2.305 -2.103 -2.056 -1.872



Table 1(b) Summary statistics continued
Type: Senior Subordinated
Term: 1 2 3 5 7 10 1 2 3 5 7 10

Goldman January 2001-July 2014 March 2006-July 2014

Mean 1.264 1.384 1.504 1.737 1.849 1.968 2.172 2.059 2.232 2.483 2.539 2.598
Std.Devn. 1.632 1.517 1.460 1.401 1.335 1.245 1.489 1.516 1.446 1.322 1.246 1.170
Skewness 2.343 1.961 1.698 1.306 1.125 1.040 1.111 1.068 0.966 0.748 0.662 0.476
Kurtosis 5.781 3.754 2.515 1.119 0.673 0.491 0.230 0.272 0.084 -0.026 0.133 0.035
Auto. 0.883 0.892 0.907 0.925 0.923 0.920 0.873 0.869 0.878 0.873 0.845 0.845
ADF -2.842 -2.769 -2.590 -2.237 -2.102 -2.001 -2.518 -2.792 -2.654 -2.674 -2.776 -2.735

Morgan Stanley January 2001-July 2014 June 2004-July 2014

Mean 1.844 1.876 1.925 2.110 2.177 2.265 2.145 2.180 2.253 2.465 2.454 2.498
Std.Devn. 3.188 2.542 2.202 2.010 1.859 1.696 2.860 2.471 2.190 2.081 1.897 1.783
Skewness 4.768 3.165 2.261 1.808 1.630 1.466 2.854 2.169 1.422 1.236 1.091 0.950
Kurtosis 33.872 15.371 7.090 4.364 3.532 2.576 12.588 7.162 1.990 1.772 1.378 0.806
Auto. 0.667 0.777 0.846 0.863 0.868 0.877 0.745 0.782 0.864 0.850 0.858 0.867
ADF -2.846 -2.686 -2.499 -2.266 -2.174 -2.117 -2.520 -2.475 -2.392 -2.175 -2.168 -2.022

Wells Fargo January 2001-July 2014 October 2002-July 2014

Mean 0.573 0.669 0.775 1.018 1.112 1.231 0.725 0.825 0.912 1.129 1.211 1.305
Std.Devn. 0.833 0.778 0.760 0.805 0.768 0.729 0.979 0.985 0.897 0.916 0.873 0.845
Skewness 3.835 2.954 2.276 1.351 0.900 0.630 3.597 3.192 2.180 1.534 1.228 1.277
Kurtosis 19.184 12.451 7.757 2.715 0.767 -0.122 18.198 14.818 7.539 4.244 2.996 3.676
Auto. 0.877 0.889 0.898 0.916 0.924 0.920 0.876 0.892 0.918 0.933 0.933 0.914
ADF -2.766 -2.578 -2.366 -1.898 -1.670 -1.643 -2.414 -2.368 -2.023 -1.809 -1.757 -1.789

This table shows the basic summary statistics for the default probabilities used in this study (as % p.a.) These are backed out from senior and

subordinated debt CDS swap rates provided by Markit. The implied default probabilities + for horizon or maturity  are obtained using

standard recursion formulae (Hull (2003)). The default rates shown in this table are calculated as ¡ ln + where + = (1¡ +)
are the survivorship probabilities. Mean denotes sample arithmetic mean; Std.Devn standard deviation and Auto. the …rst order monthly

autocorrelation coe¢cient. Skewness & Kurtosis are standard measures of skewness (the third moment) and excess kurtosis (the fourth moment).

ADF is the Adjusted Dickey-Fuller statistic testing the null hypothesis of non-stationarity. The 10% and 5% signi…cance levels are -2.575 and

-2.877 respectively.



Table 2: A¢ne model estimates (t-statistics in parentheses)

Model/Bank
Loglike
-lihood

BIC SCA
Param
-eters

OLS
Bank of America 9795.9 19501.2

Citigroup 9903.9 19717.0

Goldman Sachs 8027.4 15966.9

Morgan Stanley 8492.4 16895.5

JPMorgan 10995.0 21899.1

Wells Fargo 10267.0 20443.9

Cox Ingersoll Ross   
Bank of America 9691.0 19291.4 104.9 0.1002 -0.0123 0.1590

(5.77) (0.13) (45.60)
Citigroup 9727.9 19365.0 176.0 0.0290 -0.0633 0.1464

(3.78) (3.57) (47.31)
Goldman Sachs 7977.5 15867.1 49.9 0.0676 -0.0262 0.1602

(4.39) (1.03) (46.71)
Morgan Stanley 8372.1 16654.9 120.3 0.0007 -3.4201 0.1395

(0.12) (8.90) (41.44)
JPMorgan 10955.0 21819.1 40.0 0.2407 -0.0027 0.1770

(12.39) (1.63) (34.99)
Wells Fargo 10142.0 20193.9 125.0 0.1719 -0.0059 0.1933

(11.49) (2.17) (39.13)

The …rst panel of this table shows the results of estimating an unrestricted OLS benchmark model and

the second the results of imposing non-linear parameter restrictions implied by the model of Cox et al

(1985) across the parameters of this model. The BIC reports the value of the Bayesian Information

Criterion SCA reports the Schwarz test statistic for nested models (appendix 2).



Table 3: First Passage Time model estimates (t-statistics in parentheses)

Model/Bank
Loglike
-lihood

BIC SCA
Vuong test:
DF versus:

Parameters

Deferred Filtration OLS CIR  
Bank of America 9823.5 19631.9 -1.01 -4.86 -0.0810 3.4839

(73.63) (90.02)
Citigroup 10271.0 20526.9 -8.07 -10.32 -0.0300 2.2857

(25.00) (103.43)
Goldman Sachs 8028.2 16041.7 -0.04 -1.80 -0.0924 4.3668

(30.02) (78.90)
Morgan Stanley 8579.6 17144.3 -2.08 -3.61 -0.0472 2.2831

(23.51) (56.71)
JPMorgan 10864.0 21712.8 +3.86 +2.96 -0.0322 3.3660

(2927) (13304)
Wells Fargo 10370.0 20725.0 -2.65 -4.94 0.0305 2.4358

(21.11) (64.33)
Black-Cox


Bank of America 9380.0 18752.4 439.8 0.1254

(39.88)
Citigroup 9742.3 19477.0 524.9 0.1299

(36.51)
Goldman Sachs 7575.9 15144.5 488.6 0.1231

(41.00)
Morgan Stanley 8088.7 16170.0 487.2 0.1024

(31.01)
JPMorgan 10375.0 20742.4 485.2 0.1671

(38.98)
Wells Fargo 9913.8 19820.1 452.5 0.1976

(42.12)

The …rst panel of this table reports the results for the DF model. This has a much higher likelihood

than the standard full information BC model reported in the second panel, re‡ecting the signi…cance

of the accounting lag parameter  in the …rst panel. Indeed, the BC model is rejected against the DF
model on the SCA test. This reveals a very signi…cant degree of investor scepticism about accounting

information. The Vuong (1989) non-nested test statistic is used to compare the DF model with the

CIR model of table 2. This statistic has a standard normal distribution in large samples (Appendix 2).

The positive value shown for JP Morgan favours the CIR model and the negative values for the other

banks favour the DF model.



Table 4: DF model …t at di¤erent horizons

Type: Senior Subordinated

Term: 1 2 3 5 7 10 1 2 3 5 7 10

Bank of America January 2001-July 2014 August 2001-July 2014

ESE 0.7100 0.5379 0.3865 0.1875 0.0313 0.1442 0.8992 0.7208 0.5873 0.4334 0.3883 0.4033

2 0.8009 0.8743 0.9319 0.9843 0.9995 0.9894 0.7648 0.8328 0.8850 0.9369 0.9469 0.9367

Citigroup January 2001-July 2014 September 2002-July 2014

ESE 0.6240 0.4571 0.3421 0.1614 0.0451 0.1346 0.7700 0.5678 0.4599 0.3000 0.2468 0.2847

2 0.9085 0.9399 0.9628 0.9913 0.9992 0.9853 0.8899 0.9284 0.9476 0.9747 0.9807 0.9693

JP Morgan Chase January 2001-July 2014 September 2001-July 2014

ESE 0.4197 0.3500 0.2814 0.1546 0.0400 0.1057 0.4254 0.3739 0.3036 0.1983 0.1193 0.1294

2 0.5007 0.6383 0.7815 0.9466 0.9965 0.9756 0.5555 0.6640 0.7832 0.9209 0.9708 0.9643

Goldman Sachs January 2001-July 2014 December 2006-July 2014

ESE 0.7717 0.5449 0.4056 0.1841 0.0495 0.1460 0.6951 0.5444 0.4612 0.2562 0.1926 0.2400

2 0.7764 0.8710 0.9228 0.9827 0.9986 0.9862 0.7821 0.8710 0.8983 0.9624 0.9761 0.9579

Morgan Stanley January 2001-July 2014 June 2004-July 2014

ESE 1.2916 0.7624 0.5119 0.2127 0.0460 0.1994 0.8760 0.6417 0.5565 0.3730 0.2614 0.2719

2 0.8359 0.9101 0.9460 0.9888 0.9994 0.9862 0.9062 0.9326 0.9354 0.9679 0.9810 0.9767

Wells Fargo January 2001-July 2014 October 2002-July 2014

ESE 0.3762 0.3038 0.2445 0.1190 0.0460 0.0902 0.4225 0.3957 0.3028 0.2248 0.1753 0.1950

2 0.7960 0.8475 0.8965 0.9782 0.9964 0.9847 0.8137 0.8386 0.8860 0.9398 0.9597 0.9467

See notes to table 3. ESE denotes the equation standard error and 2 the coe¢cient of determination.



Figure 1: CDS spreads on senior debt

These CDS spread data were provided by Markit Ltd. They have a panel structure, consisting of daily

observations on ten annual maturities of US bank debt CDS spreads. This …gure shows end-month

observations for one-year (red) …ve-year (black) and ten-year (blue) spreads on the senior debts of three

large universal banks (Bank of America, Citigroup and JPMorgan), two investment banks (Goldman

Sachs and Morgan Stanley) and Wells Fargo, a large regional bank.



Figure 2: Forward default rates implied by CDS spreads
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The continuous lines in this …gure show one-year (red) …ve-year (black) and ten-year (blue) forward

default rates backed out from the senior spreads shown in the previous …gure. The equivalent values

from the subordinated spreads (where available) are shown by broken lines. These forward rates

are calculated as ln(+¡12+) where + is the probability of the bank surviving for 
months. December 2006 sees an exceptionally compressed rate structure, especially in the case of

Citigroup. These curves then move much higher and invert by March 2009. Again, this shift was

especially pronounced in the case of Citigroup.



Figure 3: Empirical default rates
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The two charts shown in the top panel of this …gure depict the cross section of the default rates for

Citigroup and JPMorgan during representative episodes. This …gure shows the average default rates

over di¤erent time horizons, computed as the negative of the log of the probability of survival divided

by maturity. December 2006 shows an exceptionally compressed rate structure, especially in the case

of Citigroup. These curves then move much higher and invert by March 2009. Again, this shift was

especially pronounced in the case of Citigroup. The middle and bottom panels of the …gure show the

di¢culty that two a¢ne models (CIR and OLS) have in replicating these two extremes. The panels on

the right show that JPMorgan was relatively immune to these developments and the a¢ne models …t

remarkably well in this case. Those on the right show that they impacted Citigroup harder, making it

di¢cult for the a¢ne models to …t these periods using parameters that are largely determined by the

need …t the centre of the distribution. However, the DF model is non-linear and gives a much better

representation of these extremes. See notes to the next …gure, which shows how it is able to generate

a range of di¤erent curve shapes.



Figure 4: Theoretical default rates
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The right-hand panel of this …gure shows how the DF speci…cation models the extremes of the data for

Citigroup and JPMorgan shown in the previous …gure. This …gure uses the parameter values shown in table

3. With a distance to default of  = 8 standard deviations, the risk distribution is well away from the

default boundary area, so the default risk is negligibly small at all horizons up to 10 years. As the distance

to default falls, the probability of a near-term default becomes very large but the survivorship e¤ect means

the longer term forward risk is much lower and the curve inverts sharply. In contrast, the a¢ne structure

of the CIR model shown in the left-hand panel means these curves all have a similar shape. They tend to

move up and down in a parallel fashion, with little more variation at the short end than at the long end.

Figure 5: The e¤ect of the deferred …ltration in the model of Collin-Dufresne at al.
(2003)

Accounting lag Maturity
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The ¡maturity survival probability  at  with the accounting lag  conditional upon no
prior default is equal to the probability  of survival from  to  and then  divided by the
probability  of survival from  to  in the absence of an accounting lag:  = 



Figure 6: Estimates of the distance to default in the DF model (z, in standard
deviations)

This …gure shows the estimates of the distance to default measures for the six

banks from the DF model. These are highly correlated, suggesting that a common

risk factor is at work. The …rst principal component explains 94% of the variance,

although as in the case of the default rates shown in the earlier …gures, the indicators

for the two investment banks di¤er from the rest following the Lehman default. The

previous …gure shows the associated estimates of the hazard rates in this model and

compares these with the estimates from the CIR model.



Figure 7: The estimated hazard rates
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This …gure contrasts the behavior of the hazard rates (instantaneous default intensities) in the DF

(continuous blue line) and CIR (broken black line) models over time. The CIR model models the

hazard rate like the spot rate in an a¢ne term structure model. Appendix 1 derives the hazard rate

function for the DF model. These rates are similar in the case of JPMorgan, but movements in the DF

hazard rates tend to be more pronounced for the other banks than they are in the CIR model. The

thin tails of the Gaussian distribution allow the DF model to replicate the very low default rates seen

before the crisis without di¢culty, but as noted in section 4.1, the CIR model has di¢culty handling

this.


