
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 143.167.30.213

This content was downloaded on 28/06/2016 at 10:41

Please note that terms and conditions apply.

A GaAs-based self-aligned stripe distributed feedback laser

View the table of contents for this issue, or go to the journal homepage for more

2016 Semicond. Sci. Technol. 31 085001

(http://iopscience.iop.org/0268-1242/31/8/085001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0268-1242/31/8
http://iopscience.iop.org/0268-1242
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


A GaAs-based self-aligned stripe distributed
feedback laser

H Lei1, B J Stevens2, P W Fry2, N Babazadeh1, G Ternent3, D T Childs3 and
K M Groom1

1Department of Electronic & Electrical Engineering, The University of Sheffield, Nanoscience &
Technology Building, North Campus, Broad Lane, Sheffield, S3 7HQ, UK
2EPSRC National Centre for III-V Technologies, Department of Electronic & Electrical Engineering, The
University of Sheffield, Nanoscience & Technology Building, North Campus, Broad Lane, Sheffield, S3
7HQ, UK
3 School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, UK

E-mail: k.m.groom@sheffield.ac.uk

Received 23 March 2016, revised 12 May 2016
Accepted for publication 26 May 2016
Published 23 June 2016

Abstract
We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB)
laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the
p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic
confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to
atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility
in upper cladding design, which proved necessary due to limitations imposed by the grating infill
and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing
with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The
experimentally determined optical profile and grating confinement correlate well with those
simulated using Fimmwave.
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(Some figures may appear in colour only in the online journal)

GaAs-based distributed feedback (DFB) lasers provide a
robust, portable and low cost solution to enable a broad range
of applications in spectroscopy, gas sensing, THz generation,
and display. DFB lasers are typically available on GaAs as
ridge lasers, with either laterally loss-coupled gratings [1] and
more recently using buried index-coupled grating approaches
incorporating combinations of GaAs, AlGaAs and InGaP
[2, 3]. Buried heterostructures allow small lateral sizes, low
threshold currents, good thermal management, and excellent
fundamental mode stability compared with ridge waveguides,
which can also suffer surface recombination, carrier spreading
and poor fibre coupling efficiencies. They are typically used
in directly modulated InP telecoms lasers. As with DFB

lasers, buried heterostructures are commonplace on InP,
where DFB gratings are incorporated within the buried het-
erostructure laser to realise rapidly modulated telecoms lasers.
However, they are not commonly available on GaAs and
approaches to their realisation include regrowth over poten-
tially oxidised aluminium-containing layers, etch/regrowth in
the same reactor [4], or use of InGaP cladding [5]. We have
previously reported use of a GaAs/InGaP regrowth process to
enable self-aligned stripe (SAS) lasers to be manufactured on
GaAs [6]. In our GaAs-based SAS process, no aluminium is
exposed to atmosphere prior to regrowth. Furthermore, since
AlxGa1−xAs is lattice matched to GaAs for all compositions
of x, this permits a significant amount of flexibility in
waveguide design, and provides attractive benefits for future
GaAs based photonic integrated circuits.

Our previous DFB [2] and SAS [6] laser reports describe
structures realised with a single overgrowth and not specifi-
cally designed to be integrated together. In this paper, we
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demonstrate the realisation of a SAS–DFB laser emitting
∼1000 nm, based on a three-stage growth process (i.e. 2
overgrowths). Following resolution of the competing
requirements of epitaxial planarisation and optical confine-
ment, basic device characteristics are demonstrated. We dis-
cuss the design considerations governing operation of the
laser, imposed by limitations to the regrowth process.

Planar growth and first overgrowth

A schematic diagram of our SAS–DFB laser is shown in
figure 1, together with figure 2(a) showing a transmission
electron micrograph (TEM) taken along a cross-section run-
ning parallel to the stripe. Figure 2(b) shows the guided mode
profile simulated using Fimmwave software, by Photon
Design. An n-doped Al0.42Ga0.58As lower cladding layer was
grown using metal-organic vapour phase epitaxy above a
500 nm GaAs buffer layer on an n-doped GaAs substrate
which was mis-oriented by 3° to the (110) direction.

Above this, partially strain-balanced quantum wells (QWs)
emitting ∼990 nm were grown within a waveguide structure
comprising 4 × 7.6 nm In0.17Ga0.83As QWs separated by 10 nm
Ga0.9AsP0.1 strain balancing layers. 50 nm GaAs was grown on
either side to complete the waveguide core. 300 nm p-doped
Al0.42Ga0.58As was grown above the core prior to growth of the
grating layer. The first order DFB grating layer comprised a
7.5 nm thick GaInP layer (lattice matched to GaAs) sandwiched
between 15 and 10 nm thick GaAs layers. Following patterning
by electron beam lithography, gratings were formed by first dry
etching through the GaAs top layer using an argon reactive ion
etch process, before wet etching through the GaInP using HCl/
H3PO4. A reactive ion etch process was used to prevent undercut
of the GaAs associated with wet chemical etching. The wet etch
is highly selective and terminates abruptly at the lower GaAs
layer, whose role is to protect the underlying p-doped

Al0.42Ga0.58As layer from being exposed to atmosphere. This
etch is laterally pinned by the previous GaAs dry etch process
and can be performed either with or without removal of the
patterned PMMA, using the upper GaAs layer as the etch mask.
Compared to dry etching the complete grating, it is expected that
the wet chemical etch will result in less ion-induced surface
damage and the large separation between grating and active is
advantageous in minimising damage to the underlying QWs.

Following etching, the PMMA was removed and a simple
clean process was performed, including O2 plasma ash, and a
wash in 1% diluted HF. The wafer was then returned to the
reactor for overgrowth. 100 nm p-doped GaAs was overgrown
to infill and planarize the index-coupled DFB grating, before
600 nm n-doped GaInP (lattice-matched to GaAs) opto-electro-
nic confinement layer, and 20 nm of GaAs completed the
overgrowth. Planarization of the gratings is important to ensure
high quality GaInP can be grown upon the grating, to prevent
corrugation of the waveguide and to simplify grating coupling
calculation. In order to infill and planarize the grating, the GaAs
layer was grown at a higher temperature than is typically used
for GaAs. This imposes a minimum thickness limitation on the
GaAs layer in order to adequately planarize the surface prior to
GaInP growth. Thinner GaAs layers, such as those used pre-
viously [2] and incorporated in our initial design, were defective
in planar areas on test overgrowth samples. Although higher
quality overgrowth was observed in the grating areas, this would
not be suitable for future integrated devices, which would require
components to be processed within these planar areas. Over-
growth quality was significantly improved by using a thicker
GaAs planarization layer. A dark-field 002 TEM, recorded for a
cross-section along the grating, is also shown in figure 2(a),
demonstrating high quality infill and planarization of the InGaP
grating with subsequent n-doped InGaP growth above, using the
modified thickness of GaAs for infill and planarization.

Simulation and design

The SAS–DFB laser was originally designed to incorporate
both upper and lower Al0.42Ga0.58As cladding layers. Optical
confinement in the grating was designed for KL = 1 whilst
also maintaining strong optical confinement with the QWs.
Fimmwave software was used to simulate the optical profile

Figure 1. Schematic diagram of the layer structure that defines the
self-aligned stripe DFB laser.

Figure 2. (a) TEM cross-section through the grating (i.e. section
taken parallel to the ridge, along the stripe) and (b) Fimmwave
simulation of mode profile.
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and calculate overlaps in the structures, using refractive
indices at 1000 nm of 3.5 for GaAs, 3.3 for Al0.42GaAs, 3.14
for Al0.7GaAs, and 3.17 for GaInP. Table 1 outlines the
optical confinement and optical far-fields simulated for this
design with 45 nm of infill and planarization GaAs grown
above the GaInP grating, in column (1).

Essentially, this design is an amalgamation of the GaAs
DFB laser in [2] with the GaAs SAS laser structure in [6],
placing the grating layers immediately below the n-doped
GaInP opto-electronic confinement layer. In order to achieve
high quality gratings, the requirement to grow 100 nm GaAs
in the first regrowth stage results in an inevitable change in
the simulated optical mode profile, which now also resides in
an additional guided mode some distance above the active
region, as illustrated in figure 3(a), when using the same
cladding layer composition. This therefore required a re-
design of the layer structure to ensure that appropriate optical
confinement can be achieved in both the grating and in the
QWs. One strategy could be a re-design of both the upper and
lower cladding compositions, and therefore growth of a new
planar wafer. Another strategy would be to make use of the
tailorability of AlxGa1−xAs, which is virtually lattice-matched
to GaAs for all compositions, x. We are therefore afforded full
flexibility in our choice of Alx composition for use in the
upper cladding layers. Additionally, we may also change the
thickness of GaAs that is grown first in the second regrowth
step. Therefore, it is entirely feasible that sufficient mod-
ification to the optical waveguiding can be achieved by
changing only the layers in the subsequent 2nd regrowth step,
rather than necessitating growth of a new starting wafer with
different lower cladding composition.

The ability to tune the Alx composition in the overgrown
cladding layers is a unique attribute of the GaAs/GaInP SAS

design as compared to alternative strategies for buried
waveguides, such as Al-free approaches. Full tailoring of the
optical mode is possible through optimisation of two main
variables in the subsequent second overgrowth stage: the Alx
composition and the GaAs thickness. Figure 4(a) plots the
optical confinement factor in both the grating and in the QWs,
simulated as a function of Alx composition with the GaAs
thickness fixed at 60 nm (as per our original design). This
demonstrates that confinement in the grating can be reduced
towards our target value through use of higher composition
Alx in the upper cladding layers. Above x ∼ 0.4, optical
confinement in the QWs is sufficiently high and approxi-
mately constant. An Alx composition of x = 0.7 was deemed
to be an appropriate upper limit for ease of device fabrication
and also taking into account the potential reliability issues
associated with higher Al compositions.

Figure 4(b) plots the same simulation as a function of the
thickness of GaAs grown in the second regrowth stage but
with the composition of Alx fixed at x = 0.7, as decided from

Figure 3.Waveguide simulation (Fimmwave) of increased GaAs from 45 to 100 nm showing: (a) additional guided mode in the thicker GaAs
planarization layer and (b) single fundamental mode profile enabled using new parameters.

Table 1. Parameters used in the original and modified design
together with the expected resultant optical properties.

(1) Intended 45 nm
GaAs planarisation

(2) Now with 100 nm
GaAs planarisation

Upper
AlxGa1−xAs

x = 0.42 x = 0.7

2nd GaAs in-fill 60 nm 40 nm
ΓGrating 0.0033 0.0031
ΓQWs 0.0526 0.0531
Far-field
FWHM-slow

9.7° 6.9°

Far-field
FWHM-fast

43.1° 46.1°
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figure 4(a). At 40 nm thick GaAs, our target value of optical
confinement factor in the grating is reached whilst also
exhibiting a reasonably high optical confinement factor in
QWs. With these parameters included in the design, an optical
far-field of 46.1°, 6.9° is simulated, as shown in column 2 of
table 1. These values are similar to those achievable using our
original design (43.1°, 9.7°). The narrower horizontal (slow
axis) divergence is a result of a change in the shape of the
mode as it interacts with the SAS, but is not expected to
present any obvious change in device performance. There-
fore, as a direct consequence of the thicker GaAs grating in-
fill and planarization layer, necessary for high quality GaInP
growth, the use of thinner GaAs and higher Al composition
AlGaAs in the upper cladding layer is viewed as a positive
solution to regain the required optical confinements.

Second overgrowth and fabrication

3μm wide SASs were defined using standard UV optical
lithography and transferred to the n-doped GaInP layer by first
dry etching through the top GaAs layer using a SiCl4/Ar based
ICP process and then wet etching through the GaInP layer, down
to the lower GaAs etch stop layer, again using HCl/H3PO4.
Following photoresist removal and a simple HF clean, a second
overgrowth of 40 nm p-doped GaAs, 1500 nm p-doped
Al0.7Ga0.3As and a 200 nm GaAs contact layer completed the
structure. Following the 2nd regrowth, 600 μm long lasers were
processed using standard techniques, aligning a AuZnAu Ohmic
contact above the SAS and wet etching isolation trenches
through the cladding down to the n-doped GaInP layer to create
100 μm wide electrically isolated devices. TiAu bondpads were
deposited above windows etched within a 500 nm thick SiN
layer and an InGeAu Ohmic contact was applied to the back of
the thinned substrate. Following the application of anti-reflection
coatings (R = 0.1%) to one facet only (the other facet remained
as-cleaved), devices were mounted epi-side upon Al2O3 ceramic
tiles for characterisation.

Device characterisation

The performance of a 600 μm long SAS–DFB laser with a
150 nm period grating is demonstrated in figure 5(a) for con-
tinuous wave (CW) operation. The laser is kink-free over the
temperature range 30°–70°. In practical operation of the DFB
laser, a red-shift in the spectral position of the gain peak is
unavoidable due to Joule-heating when pumping with high CW
current or when operating without adequate heat-sinking pro-
vision. In order to ensure that the gain is resonant with the DFB
mode when pumped with CW current to achieve relatively high
output power, the grating period was designed to be on the long
wavelength side of the gain peak in this material to ensure high
injected current and high temperature operation. At 20 °C the
device reaches lasing threshold at ∼65mA with a kink exhibited
in the power versus current (P versus I) characteristic at 110mA.
Examination of the electroluminescence spectrum revealed an
expected transition from lasing on multiple Fabry–Perot modes
below 110mA to lasing via the single DFB mode above
110mA. The current–voltage characteristic is also plotted in
figure 5(a), demonstrating a resistance of 5.6Ω.

At elevated substrate temperatures (30 °C–70 °C) lasing
proceeded via the DFB mode from threshold. The device
exhibits kink-free single mode operation with more than
30 dB side mode suppression ratio (SMSR) from 1.5×
threshold current. Figure 5(b) plots both the SMSR and the
lasing wavelength between 90 and 170 mA, extracted from
the high-resolution electroluminescence spectrum recorded at
30 °C, using an Advantest Q8384 optical spectrum analyser
with 0.01 nm resolution. The laser is observed to operate on a
single mode with a SMSR of 36.9 dB at 100 mA (∼1.5×
threshold) rising up ∼45 dB at 130 mA (corresponding to
>30 mW output power). The P versus I data in figure 5(a)
shows that the threshold current rises from 65 to 100 mA over
the temperature range 20 °C–70 °C. The spectrum recorded at
150 mA is shown in the inset to figure 5(a) over the same
temperature range. A single mode is exhibited, shifting from

Figure 4. Simulated optical confinement factor in the grating and
quantum wells as a function of (a) Alx composition in AlxGa1−xAs
for fixed 2nd regrowth GaAs thickness of 60 nm, (b) thickness of
2nd regrowth GaAs for fixed Alx composition of Al0.7Ga0.3As.

Figure 5. (a) Power versus current characteristic, recorded over a
range of substrate temperatures from 20 °C to 70 °C with the inset
showing the corresponding lasing peak at 150 mA CW over the
range, and (b) the SMSR and wavelength plotted as a function of
CW current at 30 °C.
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1006.9 nm at 20 °C to 1011.7 nm at 70 °C. This corresponds
to a thermal tuning of ∼0.1 nm °C−1, maintaining
SMSR > 43 dB throughout the temperature range.

Validation of simulation

The optical far-field profiles were measured for our lasers
using a standard far-field goniometer with InGaAs detector.
The measured horizontal (slow-axis) and vertical (fast-axis)
profiles are plotted in figure 6(a). The experimental profiles
correlate well with the simulated far-fields, which are shown
by the dotted lines superimposed upon the experimental data
in figure 6(a). The experimental full-width-at-half-maximum
(FWHM) divergence is measured as 49.4° in the fast axis and
6.6° in the slow axis, verifying both the simulation (46.1° and
6.9°) and the origin of emitted light (i.e. via the fundamental
lateral mode of the confined SAS). Small differences between
the experimental and simulated far-fields are attributed to the
effect of gain guiding in the structure and the approximation
to a vertical profile of the SAS (i.e.: the shape of the etched
stripe) in the simulation, rather than the angled planes pro-
vided by the etch process (described in earlier work [6]).

Further correlation between the fabricated device and the
simulated optical profile is provided by derivation of the
grating coupling coefficient in the SAS–DFB and comparison
with the simulated coupling coefficient. By measuring the
wavelength spacing ( )Dv between two adjacent sub-threshold
DFB modes either side of the Bragg wavelength and the
longitudinal mode spacing ( )Dv ,long the coupling coefficient
can be deduced from [7]:

p
=

´ D
´ ´ D

K
v

L v2
,meas

long

where L is the cavity length of device.
Care must be taken for non-zero facet reflectivity since this

facet phase relative to the DFB grating distorts the subthreshold
emission spectra [8]. However, a good approximation can be

derived either by fitting the measured curve for a single laser,
or by measuring many devices along the bar (which will have
differing facet phase) and selecting the one with the ideal
spectrum. The ideal spectrum is one without any residual peaks
in the stop band, equal strength peaks either side of the stop
band, and these two peaks are stronger than the higher order
modes [8]. A range ofDv was measured across a laser bar.Δλ

between 0.24 and 0.26 nm were measured. With Δνlong = 5 ×
107 cm−1, coupling coefficients, Κ, were calculated between
20.1 and 21.8 cm−1, implying optical confinement factor in the
grating, Γgrating between 0.003 and 0.0033, which closely
matches that obtained in our simulations (0.0031).

Further simulation for future work

The device reported above was realized through modification
to the design of the upper cladding layers due to the emer-
gence of a specific growth requirement for a thicker GaAs
layer in the first overgrowth step for planarization. This was
enabled through the high level of flexibility offered by our
design, and our approach provides a demonstration of this
important attribute. However, further simulation has been
carried out with the aim of designing a structure appropriate

Figure 6. (a) Comparison of simulated (dotted line) and experimental
optical far-field for our modified laser. (b) Experimentally measured
DBF stop-band with longitudinal mode spacing.

Table 2. Parameters used in the modified design together with the
expected resultant optical properties.

Modified design (symmetric)

AlxGa1−xAs x = 0.42
2nd GaAs in-fill 40 nm
1st GaAs in-fill 100 nm
Grating 32 nm
Separation 540 nm
ΓGrating 0.0033
ΓQWs 0.0415

Figure 7. Simulation of mode profile.
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for use in future integrated designs, with a symmetric com-
position of Alx in upper and lower cladding, and lower Alx
composition in the upper cladding. Table 2 shows a modified
design with x = 0.42. Instead of increasing the Al composi-
tion of the upper cladding, this structure is based on a 32 nm
thick grating layer and an increased thickness of AlGaAs
spacer layer between the grating and the active region of
540 nm. These modifications provide nearly identical con-
finement factor for the grating and QWs as before, but also
with an improved optical mode profile, as shown in figure 7.

Conclusion

We have demonstrated a GaAs-based DFB laser incorporat-
ing a first order GaInP/GaAs index-coupled DFB grating
built within a SAS buried waveguide structure. Single mode
emission was demonstrated at a wavelength of ∼1 μm with
>40 dB SMSR over the temperature range 20 °C–70 °C. We
have compared the measured far-field and grating coupling
with that simulated for a SAS–DFB incorporating an asym-
metric cladding scheme, which demonstrates the flexibility to
tailor the optical profile afforded by the SAS approach.
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