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Many motile microorganisms are able to detect chemical gradients in their surroundings in order 

to bias their motion towards more favorable conditions. In this study, we observe the swimming 

patterns of Caulobacter crescentus, a uni-flagellated bacteria, in a linear oxygen gradient produced 

by a 3-channel microfluidic device. Using low magnification dark field microscopy, individual cells 

are tracked over a large field of view and their positions within the oxygen gradient are recorded 

over time. Motor switching events are identified so that swimming trajectories are deconstructed 

into a series of forward and backward swimming runs. Using this data, we show that C. crescentus 

displays aerotactic behavior by extending the average duration of forward swimming runs while 

moving up an oxygen gradient, resulting in directed motility towards oxygen sources. Additionally, 

motor switching response is sensitive to both the steepness of the gradient experienced and 

background oxygen levels, exhibiting a logarithmic response. 
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Introduction 

 Swimming motility plays an integral role in bacterial life as it allows cells to colonize new 

environments and acquire nutrients. For flagellated bacteria, motility is achieved by the rotation of 

helical flagella, which generate propulsive forces that are balanced by the viscous drag acting on a 

moving cell body. Each flagellum is powered by a motor at its base, embedded in the cell membrane. 

The motor can rotate in both the clockwise (CW) and counterclockwise (CCW) directions and 

periodically switches between the two states. Multi-flagellated bacteria such as Escherichia coli, which 

is often studied as a model swimmer, follow a two-step swimming process known as “run and tumble” 

(1). A run occurs when all flagella motors rotate in a single uniform direction (CCW for E. coli) so that 

the flagella form a rotating bundle that propels the cell forward through the surrounding medium. A 

tumble occurs when one or more motors switch their rotation direction so that the bundle unravels and 

the cell rapidly reorients. A cell's swimming trajectory is simply a series of relatively straight runs 

separated by large changes in direction due to tumbling. Uni-flagellated bacteria cannot tumble. Instead, 

a cell can either swim forward with the cell body leading or backward with the flagellum leading 

depending on the direction of motor rotation. Specifically for Caulobacter crescentus, CW and CCW 

motor rotations result in forward and backward swimming, respectively, due to the right handed helical 

structure of the flagellar filament (2). The cell can reorient itself, however, through a recently discovered 

process known as a flick (3). At the start of a forward run, the flexible flagellar hook buckles due to 

compressive force (4) and the cell body is rotated by a variable angle before the flagellum realigns with 

the central axis of the body and straight swimming is resumed. The probability a flick will occur 

depends on the swimming speed of the cell and the average turning angle depends on cell body size (5). 

As a result, a uni-flagellated cell's swimming trajectory is actually composed of three steps. The cell 

swims forward some distance; it swims straight backwards some distance; it then reorients itself through 

a flick before starting another forward run. The net displacement of the cell over each cycle depends on 

both the forward and backward run times. 

 The ability to direct their motion towards more favorable conditions through a well-known 

process called chemotaxis is critical to the survival of individual cells and the success of the species as a 

whole. In the presence of a spatial chemical gradient, a moving cell experiences a changing chemical 

concentration depending on its swimming trajectory. Through chemical signaling, the cell can alter the 

length of individual runs, resulting in directionally biased motility. If a cell senses increasing levels of an 

attractant, the motor(s) continue(s) to rotate in the same direction for a longer period of time, resulting in 

a longer run, both in terms of time and distance, before a tumble or flick reorients the cell. This behavior 

biases the cell’s motion up gradients of chemical attractants. Chemical repellents have the opposite 
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effect and will cause the cell to stop the run sooner in order to reorient. Thus, the length of individual 

runs depends on the swimming direction relative to surrounding chemical gradients. Again, uni-

flagellated swimmers have two different types of runs, forward and backward, either of which or both, 

can be potentially altered to achieve directed motility. 

 Many different experimental methods have been utilized to study chemotactic response in 

microbes, each of which has important advantages and disadvantages. A soft agar swimming assay, in 

which a petri dish filled with cell medium contained in a low percentage agar, displays the motility of a 

colony of microbes as they reproduce and spread (6). Introducing an attractant or repellent by mixing it 

into the agar will enhance or diminish this spread (7) as cells attempt to reach or avoid the surrounding 

region. This approach, however, is crude in spatial resolution and only the behavior of a large group of 

cells can be directly observed. In order to study chemotaxis at cellular scale, the local concentration of 

an attractant or repellent must change in a controlled manner over time while the behavior of the cell is 

observed. Chemicals of interest can be introduced into the cell medium either a quick pulse-like change 

(8, 9) or in continuous manner (10). Alternatively, a spatial gradient can be established in the cell 

medium so that the local concentration a cell senses varies due to its own swimming motion. The 

simplest method is to introduce the attractant or repellent through a pipette injection (11), creating a 

steep, radially directed gradient. Cells will swim towards and cluster around the pipette tip when an 

attractant is introduced. One difficulty with this design, however, is that the chemical gradient is highly 

variable both in magnitude and direction, especially near the source where most cells are clustered. In 

contrast, stable and uniform gradients can be established with the use of microfluidics. One simple 

design is a three parallel channel device, where the two outside channels act as a source and a sink. If the 

experimental chemical can diffuse between channels, a linear gradient is established across the width of 

the middle channel (12-15). One technical challenge is that the device must be made with a material that 

is permeable to the chemical of interest. More complex microfluidic devices have also been designed to 

mix multiple media and establish a uniform gradient (16). In addition to observing the swimming 

behavior of individual cells, techniques such as Forster Resonance Energy Transfer can be utilized to 

measure the internal response of the cells (17) and high throughput chemotaxis assays can provide 

population-scale time resolved chemotaxis measurements (18). 

 Aerotaxis, much like chemotaxis, enables cells to bias their motion based on local oxygen levels 

in order to reach ideal environmental conditions. A classic experimental demonstration is to suspend the 

cells in an open ended capillary tube and observe accumulation (19, 20). As the cells deplete the oxygen 

in their medium and new oxygen diffuses in from the end of the tube, an oxygen gradient is established. 

Cells then form a visible band as they cluster in the region with the optimal oxygen concentration. 
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Alternatively, air bubbles can be trapped in a sample, resulting in accumulation near the air-water 

interface (21). One limitation of these methods, much like the soft agar assay, is that only collective 

behavior of many cells is observed. Utilizing microfluidics techniques, similar experiments can be 

performed where the oxygen gradient can be controlled and well defined (22), allowing for the study of 

aerotactic response in a specific range of oxygen concentrations. 

 In this study, we utilize microfluidics to establish a linear oxygen gradient in order to 

characterize the aerotactic response of C. crescentus cells on the single cell level. To establish a constant 

linear oxygen gradient in the cells’ swimming media, we utilize a three channel microfluidic device 

recently developed by the Stocker group (23, 24) that utilizes the oxygen permeability of PDMS  (25). 

By observing many cells, we acquired a large data set consisting of forward and backward runs of 

variable length that traverse a wide range of local oxygen levels. We find that C. crescentus cells display 

an aerotactic response by prolonging the length of forward runs directed towards the oxygen source. 

Furthermore, the average run time varies roughly linearly with the ratio of the steepness of the gradient 

experienced by the cell and the background levels of oxygen present. This “logarithmic response” has 

previously been observed in the chemotactic response of other cells (13). 

 

Materials and Methods 

 We made a microfluidic device with a three parallel channel design using PDMS. Using standard 

photolithography techniques, we produced a mold with a three parallel channel design (figure 1). PDMS 

was poured over the mold, hardened, and then peeled off. The resulting PDMS slab has three grooves 

indented on one face, corresponding to the channels from the mold. The middle channel is 1mm wide, 

and the side channels are each 600 μm wide. All three channels are 100 μm high. In between the 

channels is 200 μm of PDMS, which allows for the diffusion of oxygen between channels. The PDMS 

was adhered to a glass slide through oxygen plasma bonding (26) to prevent fluid from leaking out of 

the channels. Additionally, a glass coverslip was bound on top of the PDMS device to prevent the 

diffusion of ambient air into the channels from above. Holes were punched through the PDMS at both 

ends of each channel, providing an inlet and an outlet. The finished device was mounted on a 

microscope stage for observation. Two 5 mL glass syringes were filled with either pure nitrogen or 

atmospheric air with a partial pressure of oxygen (ppO2) of 0 or 21 kPa, respectively. Polyethylene 

tubing was used to attach each syringe with a side channel inlet. Using a syringe pump (Harvard 

Apparatus), 50 μL/minute of each gas was flowed through the side channels in order to maintain a 

constant local ppO2. For all experiments, the device was allowed to equilibrate for 30 minutes before 

observation in order to ensure that the gradient of oxygen across the middle channel was fully 
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established and steady.  

 We measured the oxygen levels in the device using an oxygen sensitive fluorescent dye, 

ruthenium-tris (4,7 diphenyl-1, 10-phenanthroline) dichloride (Ru(dpp)3CL2 or Rudpp) (Fluka). Oxygen 

quenches the fluorescence of the dye such that the observed intensity when the dye is at 21 kPa partial 

pressure of oxygen (ppO2) is half of that as would be observed when the dye is in an oxygen depleted 

environment (27, 28). The Rudpp is not water soluble, but can be suspended by incorporating individual 

molecules in phospholipid micelles, which also renders the dye biologically inert (29). The concentrated 

dye was then loaded into the middle chamber of the microfluidic device. The entire width of the channel 

was imaged at 10x magnification, once the oxygen gradient was established. The dye was also imaged 

with atmospheric air flowing through both side channels so the entire middle channel was saturated at 21 

kPa ppO2 for the purpose of calibration. By comparing the fluorescence intensity from the two sets of 

images, the oxygen level can be calculated across the profile of the channel (see supplemental material). 

Moving from the oxygen source channel to the sink channel, the local oxygen concentration 

monotonically decreases. The gradient is approximately linear, which is expected given the nature of 

diffusion and the geometry of the device. The ppO2 ranges from 6 to 16 kPa over the 1 mm width of the 

channel such that it rises at a constant rate of 0.01 kPa per micrometer. 

 Experiments in this report were performed using Caulobacter crescentus strain CB15 Δpilin, a 

mutant that lacks pili normally protruding from the cell body near the base of the flagellum, in order to 

reduce the number of cells adhered to the PDMS and glass surfaces of the microfluidic device. 20 mL of 

PYE (peptone yeast extract) growth medium (2 g/L Bacto peptone, 1 g/L Bacto yeast extract, 1.2 mM 

MgSO4, and 0.5 mM CaCl2) in a plastic petri dish was inoculated with the strain and incubated at 30°C 

on a shaker plate at 30 rpm for 24 hours (30). The depleted media along with suspended cells were 

emptied from the dish and replaced with fresh medium. Stalked cells attached to the bottom surface, 

which were not removed when the medium was replaced, were allowed to repopulate the new medium 

for an additional 24 hours during incubation. After this time, a thick carpet of stalked cells was present 

on the dish surface. The growth medium was replaced for the last time and, after several hours, enough 

free swimming cells had divided off so that there was sufficient density of cells for observation. Using a 

syringe, the middle channel of the microfluidic device was filled with the bacterial sample. Pieces of 

glass coverslip were then placed over both the inlet and outlet holes in order to plug the channel at both 

ends and prevent fluid flow. The central chamber was observed at 10x magnification using a dark field 

condenser so that only scattered light was collected by the objective and cells appeared as bright spots 

against a dark background. The microscope was focused on the top surface of the bacterial chamber (the 

PDMS side) in order to reduce the appearance of non-motile cells, which tended to sediment to the glass 
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slide at the bottom of the chamber. Additionally, this focal plane enabled us to differentiate between cells 

at the top and bottom of the channel, which are in and out of focus, respectively. Videos were taken of 

the middle channel at 20 frames per second with a large field of view that covered the entire 1mm width 

of the channel. These videos were cleaned digitally by removing background and enhancing contrast in 

order to isolate swimming cells.  

 Cells that were initially in the middle third of the chamber at the start of the video were manually 

tracked. The time and location of motor switching events, which can be identified by the cell’s near 

instantaneous stopping and reversal in direction, were recorded (figure 2). In between every consecutive 

pair of switches is a run, either forward or backward and strictly alternating. We were able to 

differentiate between forward and backward runs due to the presence of the reorienting flick events, 

which occur at the start of some forward runs (figure 2B). When the cell started swimming backwards, 

in contrast, the swimming direction always reverses 180 degrees (figure 2A). The forward or backward 

runs can also be discerned by the handedness of circular swimming near the top or bottom surfaces. For 

example, when swimming near the top surface, backward runs follow a counterclockwise trajectory 

(figure 2D). Swapping either the swimming direction or the nearby surface also swaps the handedness. 

Backward runs tend to remain close to surfaces longer so that the curvature is more pronounced (30) 

whereas forward runs often leave the surface quickly so that the curvature is very localized and the 

average curvature over a run is close to zero with most reorientation due to rotational Brownian motion. 

Since forward and backward runs strictly alternate, the direction of every run could be determined using 

just one individual run’s direction. We use additional flicks and curved swimming segments, however, as 

additional checks to insure high accuracy in differentiating run direction. For every forward or backward 

run, we determined the run time and the initial and final positions. Cells were followed for as long as 

possible, usually until the end of the recorded movie or their path intersected with another cell such that 

the two could not be reliably differentiated. Additionally, some cells (less than 5% of runs) left the field 

of view, due to a large net displacement over many runs. While this technique may fail to record some 

longer run times (which are already inherently rare), it reliably captures most runs and has no systematic 

bias dependent on swimming orientation that would skew results. 

 Combining the length of the runs with the knowledge of the oxygen concentration at all locations 

throughout the channel enables us to calculate the average rate of change in ppO2 for each cell over 

time. Since the spatial oxygen gradient is stable over time, a cell's change in local oxygen level depends 

only on its displacement across the width of the channel due to swimming. Displacement, in turn, 

depends on swimming speed and direction. Cells swim at approximately 40 micrometers per second, 

though the speed of the fastest and slowest cells can vary by over a factor of two. The low magnification 
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and spatial resolution of this apparatus limits the precision of measurements of instantaneous swimming 

speed, however, previous experiments have shown that both swimming speed and motor rotation rates 

remain constant for a single cell over multiple runs (31, 32). The directions of individual runs are 

roughly isotropically distributed. Cells swimming directly towards the oxygen source experience the 

steepest increase in oxygen level while the opposite is true for cells swimming directly towards the 

oxygen sink. As a result, while the spatial oxygen gradient is constant in our experiment, the observed 

runs cover a range of +/- 0.5 kPa ppO2 per second. 

 

Results 

 As an initial test for aerotactic response, we separate our data into runs directed up the oxygen 

gradient (swimming towards the air channel) and down the oxygen gradient (swimming towards the 

nitrogen channel). Specifically, we separate runs that result in a net increase or decrease in oxygen level 

based on the run’s start and end position in the channel. For each condition, we plot the distribution of 

run times and calculate the average run time for both forward and backward runs in order to check for 

aerotactic effects (figure 3). The distribution was created by binning the run times in 0.2 second 

intervals. All distributions have the same rough shape, with a peak slightly under one second 

representing the most probable run times and a long tail decaying to zero at longer times. The 

distributions can be approximated as inverse Gaussians which are provided as fit lines to highlight the 

underlying trend in each distribution. 

 

2

3 2

( )
( ) exp

2 2

t
P t

t t

  
 

  
  

 
  

 

P(t) is the probability density of run time given a mean value µ and a shape parameter λ. Similar 

distributions of run time have previously been observed under non-chemotactic conditions for both C. 

Crescentus (32) and Vibrio Alginolyticus (3), another uni-flagellated bacterium. While run time for non-

chemotactic cells can be fit exactly with an inverse Gaussian, here individual cells obey slightly 

different statistics due to the heterogeneous environment. Backwards swimming cells, both up and down 

the oxygen gradient, have short average run times of approximately 1.3 seconds. The distribution is also 

sharply peaked such that over 80% of runs last less than 2 seconds. In contrast, the average length of 

forward runs is significantly longer, with more runs lasting several seconds. Most notably, we find a 

significant difference in forward run time for cells moving up versus down the oxygen gradient. Cells 

experiencing increasing and decreasing oxygen levels have average run times of 2.2 and 1.8 seconds, 
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respectively. The aerotactic behavior can also be seen in the run time distribution for cells swimming 

towards the oxygen source, displaying fewer cells in the short time peak and more in the long time tail. 

We also plot our run time data as a cumulative distribution, which shows the probability that a run will 

end before a given time. Cumulative distributions also do not require binning and display less noise, 

making visual comparisons between conditions easier. It is clear that a motor is more likely to switch at 

an earlier time when the cell senses decreasing oxygen levels. Backwards runs, in contrast, were 

uniformly short regardless of swimming direction. As such, all further analysis is focused solely on 

forward runs. As a control, we also repeated our measurements with both channels of our device 

containing atmospheric air such that the bacterial chamber is saturated at 21 kPa ppO2. The results of 

this control experiment confirm that average run length is not correlated with swimming orientation in a 

medium without any spatial oxygen gradient. 

 A cell's sensitivity to changing oxygen levels may also depend on background levels of oxygen. 

For example, an increase of 1 kPa partial pressure of oxygen may elicit a different response in cells that 

are initially at a high or low oxygen level. When swimming in a steep gradient, the local oxygen level 

for a given cell is rapidly changing. Thus, every cell observed has a slightly different effective 

background oxygen level based on its current location and its previous positions in the gradient. To test 

for background dependent effects, we further separate runs based on the cell's oxygen level at the start of 

the run. This initial ppO2 also serves as an unbiased estimate of a cell’s past oxygen levels (see 

supplemental material). In previous studies on other cells, long timescale adaptation has been observed 

over the timescale of minutes (33). In this study, however, we instead focus on the fast time scale 

response of Caulobacter, as the steep gradient and the cell’s rapidly changing local oxygen level would 

severely inhibit long time scale adaptation. Additionally, we do not observe significant run time 

dependence between consecutive runs (see supplemental material). Since the middle of the channel is at 

11 kPa ppO2, we distinguish between runs that begin above or below this value. We once again compute 

the average run time and cumulative distribution of run times for cells moving both up and down the 

oxygen gradient (figure 4). For cells that begin a run above 11 kPa ppO2, the increase in run time for 

cells moving up the oxygen gradient is no longer statistically significant. For cells starting runs below 11 

kPa ppO2, however, the increase in run time is greatly augmented. The cumulative distributions for cells 

in the high oxygen region appear very similar, whereas there is a distinct shift to longer run time for 

cells initially at low oxygen levels that swim towards the oxygen source.  

 The rate at which a cell's local oxygen level rises or falls may also impact run time. We quantify 

the steepness of the oxygen gradient experienced by a cell over each run to test for this effect. Simply 

dividing the change in ppO2 over a run by the run time gives the absolute rate of change in ppO2. This 
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value, however, fails to take into account background oxygen level, which we have just demonstrated 

affects run time. Thus, for each run, we calculated the relative rate of change in oxygen, which is the 

absolute rate of change in ppO2 divided by the ppO2 at the start of the run.  
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For example, an increase of 0.1 kPa in a background of 1 kPa over 2 seconds is the same relative 

increase, 5% per second, as an increase of 1 kPa in a background of 10 kPa over 2 seconds. The runs in 

our data set have relative rates of change between plus or minus 8% per second. We separate runs into 4 

bins of equal width based on relative rate of change and again calculate average run time and run time 

cumulative distribution (figure 5). The four bins correspond to quickly decreasing, slowly decreasing, 

slowly increasing, and quickly increasing oxygen levels. We also calculate the average run time as a 

function of relative rate of oxygen increase using a moving bin of the same size (+/- 2% per second). For 

comparison, runs with a rate of change of less than 1% per second, last an average of 1.85 seconds. 

Average run time is positively correlated with relative rate of change and monotonically increases as the 

rate increases. Additionally, the increase in run time for cells experiencing increases in oxygen level is 

significantly larger than the decrease in run time for cells experiencing decreases in oxygen level. The 

cumulative distributions confirm this effect by displaying a larger shift in run time between slow and 

quick oxygen increases than between slow and quick oxygen decreases 

 

Discussion 

 The mechanics of how the flagellar motor switches between CW and CCW rotations are tightly 

coupled to the sensory regulation of the flagellar motor. Most important for directed motility is the 

ability of the cell to change the frequency of switching between the two rotational states. It is well 

established that CheY-P, the phosphorylated form of a signaling protein Che-Y, promotes CW rotation of 

the motor (34). That is, higher intracellular levels of CheY-P result in a larger CW bias, the fraction of 

time the motor is rotating in the CW direction. For example, CW bias values of 0, 1, and 0.5 indicate the 

motor is always rotating CCW, always rotating CW, and rotating in both directions for equal amounts of 

time, respectively. For Caulobacter, CW motor rotation results in forward swimming due to the right 

handed helicity of its flagellum (2). Thus, a chemical which induces an increased CW bias in 

Caulobacter acts as an attractant, as forward runs become much longer than backward runs, increasing 

net displacement of the cell towards the source over each complete motor switching cycle.  
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 Our results indicate that cells experiencing increasing oxygen levels increase their CW bias. 

Additionally, the degree to which CW bias is increased depends on both background levels of oxygen 

and the steepness of the gradient experienced. This behavior has been previously shown in the 

chemotactic response of multiple other bacterial species and is known as logarithmic sensing (13). 

Specifically, the response of the cell is not proportional to the gradient experienced, but rather the 

gradient experienced relative to the background concentration. In figure 5C, we observe the change in 

run time increases roughly linearly with respect to the ratio of the rate of change in oxygen 

concentration and the cell’s initial oxygen concentration before the start of the run. Thus, our finding 

confirms the logarithmic sensing.  

Logarithmic response to oxygen gradients has ecological implications for bacterial life. The 

ability to respond more sensitively to even shallow gradients when cells reside in an oxygen depleted 

environment is beneficial to their survival. Conversely, when at sufficiently higher oxygen levels, the 

cells would not require oxygen seeking behavior as direly. Additionally, while the cells display 

logarithmic response to both increases and decreases in oxygen, increases result in a larger change in 

average run time than decreases of equal magnitude. A similar behavior has been observed in E. coli 

where the cell prolongs runs substantially while swimming up chemical gradients and increases 

tumbling frequency only slightly when swimming down gradients (35). An asymmetrical response to 

attractant will have a substantial impact on the swimming patterns of a cell and should be taken into 

account when modeling cell motility. There are two possible origins of this asymmetry. Most directly, 

cell signaling may modulate intracellular levels of CheY-P by different degrees dependent on increasing 

or decreasing attractant levels. Alternatively, the flagellar motor switching mechanism itself may 

respond to variable CheY-P levels in a nonlinear manner. This would be consistent with measurements 

of CW bias in cells, which is a sigmoidal function of CheY-P concentration in E. Coli (34). Our recent 

CheY-P binding dependent model of motor switching in Caulobacter crescentus also shows this 

relationship (32).  

 While aerotaxis superficially resembles chemotaxis in that a cell biases its motion in response to 

changing chemical concentrations, there are important distinctions. Most importantly, aerotaxis is a 

metabolism dependent process while chemical signaling in response to attractants and repellents is not 

(36). Two different modes of response have been observed in cells responding to changing oxygen 

levels. Some studies on multi-flagellated bacteria have observed that increasing or decreasing oxygen 

levels can alter the tumbling (or switching) frequency of cells (20, 37).  This is achieved by altering the 

CW bias of the cell, much like chemotactic response. Other studies have observed that the proton motive 

force that powers the flagellar motor is altered by changing oxygen concentration (19, 38). This leads to 
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a different model of directed motility, in which the cells change their swimming speed in order to bias 

their motion. By swimming faster when approaching favorable conditions and slower when leaving, a 

cell can direct its motility without altering run time length. Alternatively, by swimming at a slower speed 

after reaching favorable conditions, cells can increase their dwell time in this region, resulting in 

population accumulation (39). We found no evidence, however, that the swimming speeds the cells in 

our experiment depend on either the local oxygen level or its change over time (see supplemental 

material). Thus, our results more closely resemble the first scenario in which cells change their tumbling 

or switching frequency in order to direct motility. By altering the CW bias of its flagellar motor, 

Caulobacter changes the ratio of forward to backward swimming durations in order to achieve directed 

motility. 

 While the average durations of CW and CCW motor rotation are often used as a quantitative 

measure of motor function, the distribution of motor run times is not trivial. If switching between 

rotation directions was controlled by a rate constant though Poisson statistics, the distribution of run 

times would simply be an exponential decay. Our results, however, show a markedly different, peaked 

distribution. Of particular note, we see very few runs near zero seconds, which should occur most 

frequently for Poisson switching. Interestingly, both exponential and peaked distributions have been 

observed for E. coli motors under different experimental conditions (40-46). While we have previously 

observed a similar distribution for Caulobacter under non-chemotactic conditions (32), we can now 

observe how this distribution changes as the average run length is increased. For Poisson switching, runs 

can be lengthened by simply decreasing the switching rate, which would result in a more gradual 

exponential decay in the distribution. In our results, we see the same basic shape in all distributions with 

the peak at the same value. The average run time can be shifted, however, due to a longer and fatter tail 

at long run times at the expense of run times in the peak region. This feature may provide key insights as 

to how directed motility for uni-flagellated swimmers may be controlled in a different manner than 

multi-flagellated swimmers. 

 The device and methods used in this study also provide some unique insights on results from 

previous works. In many aerotaxis experiments, oxygen is introduced into the system via air bubbles or 

pockets. Accumulation near these oxygen sources could be mistaken as proof of aerotaxis due to the 

following complicating factors. The air-water interface exerts physical forces on cells that alter 

swimming behavior. Most notably, high surface tension acts as a solid barrier on incoming cells, 

resulting in surface accumulation (47-49). Furthermore, depending on the chemical composition of the 

surface, the lateral movement of cells can be altered in unexpected ways. In our experiments, we avoid 

such complications by focusing only on the region where the cells do not encounter surfaces while 
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moving up and down the oxygen gradient. Additionally, many experiments rely on large scale 

phenomena, such as accumulation, in order to demonstrate aerotactic behavior. This can be difficult to 

achieve using Caulobacter for two reasons. Caulobacter has a two-stage life cycle, where swimming 

cells shed their flagella before reproducing. Thus, established colonies consist mainly of immotile cells, 

rendering experiments based on accumulation irrelevant. Also, Caulobacter swarmer cells are fast 

swimmers, traveling on average over 50 microns per second. The fast swimming speed, combined with 

the random swimming orientation of each run and the constraints of the chamber, greatly diminishes 

accumulation.  

 

Concluding Remarks 

 Our data show that Caulobacter crescentus swarmer cells clearly exhibit aerotactic behavior by 

altering the length of forward swimming runs in response to oxygen gradients. Additionally, this effect is 

most pronounced when the cell experiences large relative increases in local oxygen levels. This result is 

consistent with the logarithmic response exhibited by a variety of chemotactic cells. The manner in 

which run times are increased is not a trivial multiplicative factor. Instead, all run time distributions have 

the same general form with a peak at the same value. The average run time is dictated by the relative 

sizes of the peak and the decaying tail. Uni-flagellated bacteria not only follow a different swimming 

pattern than multi-flagellated bacteria, their bias in motion is also controlled in a distinct manner. 

Observation of other uni-flagellated swimmers has also seen asymmetric response for the two different 

flagellar rotation directions (50). Together, these new findings point to how rather differently 

monotrichous and peritrichous bacteria have evolved in their response to environmental cues.   
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Fig. 1. (Top) Diagram of the microfluidic device used for aerotaxis measurements. The width of the 

channels and the spacing between them are drawn to scale. The middle chamber, which holds the 

bacterial sample, is 1mm in width and is plugged at both ends with glass coverslip pieces during 

observation. The side channels are 600 μm in width and are constantly flowed through with air or 

nitrogen at a rate of 50 μL/min. The PDMS barrier between the channels is 200 μm in width, and the 

height of all channels is 100 μm. The glass slide and coverslip above and below the device prevent the 

ambient air from diffusing into the device so that the main sources of oxygen and nitrogen are the side 

channels. (Bottom) Partial pressure of oxygen measured across the width of the channel using 

fluorescent dye. Each blue dot is a calculated oxygen concentration for a row of pixels in the 

fluorescence image and the red line is a linear best fit. Oxygen levels range from 6 to 16 kPa such that 

the partial pressure of oxygen increases at a rate of 0.01 kPa per µm moving across the width of the 

channel. 
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Fig. 2. Representative trajectory of a cell swimming in the microfluidic device. In this perspective, the 

air channel is located below the graph and runs along the X coordinate direction, such that the local 

oxygen partial pressure increases as the cell moves down the image. Forward and backward swimming 

segments are marked as green and orange, respectively, and arrows indicate swimming direction. 

Features to note include: (A) an exact reversal in swimming direction at the start of a backward 

swimming, (B) a variable angle turn at the start of a forward swimming, (C) a prolonged run as the cell 

moves up the oxygen gradient, and (D) CCW circular backwards swimming trajectory near the PDMS 

surface. Each cell swims at a near constant speed, around 50 μm/s, so that the total displacement over a 

run is proportional to the run time. 



 16 

 

 

 

Fig. 3. Measurements of run time for cells moving in an oxygen gradient. (A) A bar plot shows the 

average forward or backward run time for cells swimming either up or down the oxygen gradient. Error 

bar shown is standard error of the mean. (B) Distributions of run times are plotted as triangles using bins 

of size 0.2 seconds. Each fit line follows an inverse Gaussian distribution with the mean parameter equal 

to the average run time for that condition. Each distribution peaks around 1 second and decays 
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exponentially at longer times. (C) Cumulative distributions for the same data show a distinct shift to 

longer run time both for forward swimming as compared to backward swimming, and forward 

swimming up the oxygen gradient as compared to forward swimming down the gradient. The integrated 

space above the curve is equal to the average run time. A total of 1026 backward runs and 942 forward 

runs were observed. 
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Fig. 4. Average run times (A) and cumulative distributions of run times (B) for forward swimming cells 

moving up or down the oxygen gradient and in high or low background oxygen environments (above or 

below 11 kPa partial pressure of oxygen, respectively). In low background oxygen environments, the 

difference in run time between swimming up or down the oxygen gradient is augmented. In high 

background oxygen environments runs up or down the oxygen gradient are similar in length. 
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Fig. 5. Average run times (A) and cumulative distributions of run times (B) for forward swimming cells 

based on the relative rate of change in local oxygen concentration. Note a consistent color scheme is 

applied to A and B. The dashed gray line in (A) marks the average run time for cells that experience 

negligible changes in oxygen level. Run length increases as the relative rate of change of oxygen 

increases. The average run time as a function of relative rate of change is also plotted using a moving 
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bin of size +/- 2 percent per second (C). The increase in run length for cells moving up the oxygen 

gradient is larger than the decrease in run length for cells moving down the oxygen gradient.  
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