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Abstract

This study aims to examine the effect of compressibility on unbounded and parallel shear flow

linear instabilities. This analysis is of interest for industrial, geophysical and astrophysical flows.

We focus on the stability of a wavepacket as opposed to previous single-mode stability studies.

We consider the notions of absolute and convective instabilities firstly used to describe plasma

instabilities. The compressible-flow modal theory predicts instability whatever the Mach number.

Spatial and temporal growth rates, and Reynolds stresses nevertheless become strongly reduced

at high Mach numbers. The evolution of disturbances is driven by Kelvin-Helmholtz instability

that weakens in supersonic flows. We wish to examine the occurrence of absolute instability,

necessary for the appearance of turbulent motions in an inviscid and compressible two-dimensional

mixing layer at an arbitrary Mach number subject to a three-dimensional disturbance. The mixing

layer is defined by a parametric family of mean velocity and temperature profiles. The eigenvalue

problem is solved with the help of a spectral method. We ascertain the effects of the distribution

of temperature and velocity in the mixing layer on the transition between convective and absolute

instabilities. It appears that, in most cases, absolute instability is always possible at high Mach

numbers provided that the ratio of slow-stream temperature over fast-stream temperature may be

less than a critical maximal value but the temporal growth rate present in the absolutely unstable

zone remains small and tends to zero at high Mach numbers. The transition toward a supersonic

turbulent régime is therefore unlikely to be possible in the linear theory. Absolute instability can be

also present among low-Mach-number coflowing mixing layers provided that this same temperature

ratio may be small, but nevertheless, higher than a critical minimal value. Temperature distribution

within the mixing layer also has an effect on the growth rate, this diminishes when the slow stream

is heated. These results are applied to the dynamics of mixing layers in the interstellar medium

and to the dynamics of the heliopause, frontier between the interstellar medium and the solar wind.

Inviscid Instabilities—Compressible—Free-Shear layers—Transition to Turbulence
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I. INTRODUCTION

The stability of parallel shear flows is a classic problem of fluid mechanics because it is

fundamental to many subjects, ranging from small scales in engineering to synoptic scales in

geophysics and meteorology up to astronomical scales in astrophysics. Velocity shear gener-

ates a dynamical instability and the most common and fastest one is the Kelvin-Helmholtz

(KH) instability which occurs in non-dissipative fluid and plasma shear layers. KH inter-

venes in many phenomena in fluid dynamics1−3, in space, astrophysical, and laboratory

plasmas4−7 when steep velocity gradients emerge. The most relevant examples are the gen-

eration of water waves by wind blowing over the surface of the sea water and the solar-wind

plasma transport across the terrestrial magnetopause at the interface between the solar wind

and the Earth’s magnetosphere.

The theory of the compressible-flow stability started from the analytical study of a discon-

tinuous flow generated by a vortex sheet. Landau8 proved the stability of this flow for Mach

number M >
√

2 with respect to two-dimensional disturbances whereas the basic formula-

tion of the theory of continuous compressible shear flows was given by Lees and Lin9. Since

then, many new results emerged. A strong interest stemed about fourty years ago from

research on hypersonic aircraft engines. The reader can consult the relevant litterature in

the monograph by Criminale, Jackson and Joslin10. Some important results deserve anyway

to be mentioned here. Blumen11, then Blumen, Drazin & Billings12 showed that the inviscid

and constant-temperature mixing layer whose mean velocity profile is a hyperbolic tangent

U(y) = tanh(y), is temporally unstable with respect to two-dimensional disturbances for

any value of M . Three unstable modes exist: one is stationary as M < 1 and two are

counter-propagating travelling modes as M > 1. The latter have growth rates one order

of magnitude less than that of the former. Drazin & Davey13 showed that, for M ∼ 1,

multiple modes could coexist. Ragab & Wu14 and Jackson & Grosh15 examined the spatial

instabilities of a free mixing layer with a hyperbolic-tangent-like velocity profile. In their

analysis, the mean temperature varies following Crocco relation linking mean velocity and

temperature in a compressible boundary layer. They observed two unstable modes and two

neutral modes. The so-called first modes, neutral and unstable modes, exist in the subsonic

régime when both convective Mach numbers (Mach number defined in the frame moving

with the mode) determined with respect to the slow and fast streams are subsonic; they are
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located in the domain 1 in the diagram (Mach number, phase speed) in Fig. 1. In that case,

the conditions at infinity are an exponential decay of the mode amplitude. Those are called

subsonic/subsonic modes and are vortex modes. At high Mach numbers, it is not always

possible for modes to have the exponential decay at the two sides of the mixing layer: one

or two conditions at infinity are radiative. As M becomes larger than the maximal value M∗

for which the exponential decay of neutral modes is possible at both sides, a second mode

appears. The first mode as soon as M . M∗ and the second mode are termed slow and fast

modes according to the amplitude of their phase speed. The so-called fast mode has the

larger phase speed; the neutral fast mode radiates in the slow stream whereas the unstable

fast mode may radiate but most often weakly decays in the slow stream and in a more slowly

way than in the fast stream. Fast modes are called subsonic/supersonic modes (domain 2

in Fig. 1). The slow mode has an opposite behaviour at infinity, it is a supersonic/subsonic

mode (domain 4 in Fig. 1). Slow and fast modes are again vortex modes11. No acoustic

modes exist in an unbounded mixing layer either. Acoustic modes appear whenever there is

an embedded region of locally supersonic flow relative to the phase speed of the instability

wave16. In both studies14,15, cooling the slow stream results in an increase of the spatial

growth rate for any M . An increase of the Mach number leads to a decrease of the temporal

growth rate12,17. In the same way, the spatial growth rate15 may be reduced by a factor of

5 to 10 up to M∗. In unbounded supersonic flows, instability growth rates become smaller

and mixing rates lower. At small M , parallel disturbances have the largest growth rates.

KH instability weakens as the convective Mach number increases while oblique disturbances

become more and more unstable and dominant. Finally, three-dimensional instabilities yield

the highest growth rates. As a result, the mixing layer becomes highly three-dimensional.

KH instability initiates the formation of coherent structures in a shear layer. Large-scale

structures are also observed in supersonic mixing layers. They exist but appear elongated in

the streamwise direction and tilted with the high-speed flow without evidence of vortex pair-

ing or other interactions. The transport of vorticity in a compressible and two-dimensional

flow is subject to dilatation and baroclinicity. Sandham and Reynolds17 observed that both

related terms in the vorticity equation are negative ahead of the vortex and positive behind,

which tends to elongate the coherent structures. These cannot entrain as much fluid as

the incompressible near-circular structures. Thus, the most amplified disturbance tends to

resist further growth since dilatation and baroclinicity remove vorticity from the location
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where vortex roll-up should occur. The disturbance growth rate is reduced by these two

compressibility effects which can be considered linear with a very good approximation17.

Moreover, vortices form on the subsonic side of the mixing layer perturbed by supersonic

unstable modes, which increases the asymmetry of the motion and subsequently, reduces

entrainment. Due to high Mach numbers, upstream and cross-flow communication paths

are suppressed. Acoustic interactions between different regions of the shear layer are in-

hibited, stabilizing the compressible flow18. Nonlinearity intervenes at a later stage. Initial

vortices grow and coalesce as they are advected downstream in a pairing process. Nonlinear-

ity engenders shocks and expansion fans on the supersonic edge of the layer. These shocks

are generated inside the shear layer as a result of the coalescence of compression waves.

Wall-confined layers are more unstable than free shear layers in supersonic motions; the

reflection of acoustic waves from the walls generates a new type of instability: wall-mode

instability19. Shock waves then form from compression waves on the walls. Such waves may

engender more intensified turbulent fluctuations and consequently, may lead to mixing en-

hancement, and are found responsible for the rapid growth of the confined supersonic mixing

layer. Shock waves thus form more easily in confined flows. As a result, unconfined mixing

layers show weak deviation from linearity20 and we will consider our linear approach still

valid at high Mach numbers. Moreover, Ragab & Wu14 reported that non-parallel effects

are negligible and, that the introduction of viscosity has a stabilizing effect at all frequencies

but, if the Reynolds number is greater than 1000, the eigenvalue problem can be solved very

accurately from inviscid theory, which justifies the assumption that the mean flow will be

chosen inviscid and parallel.

We here use again a normal-mode approach but we focus on the spatial development of

disturbances while they are advected by their group velocity. We do not examine the insta-

bility of a single mode but analyse the behaviour of a wavepacket. We therefore highlight the

important distinction between convective and absolute instabilities as initially emphasized

in shear flow instabilities by Huerre & Monkewitz21. This distinction is clearly dependent

upon the reference frame. A flow is said to be absolutely unstable if the response to a dis-

turbance in space and time with respect to an observer in a certain frame, is unbounded

everywhere for large time. A flow is said to be convectively unstable for the same observer

in the same frame, if the response decays to zero everywhere; the response is a wavepacket

propagating downstream from the source, the waves forming the packet nevertheless grow-
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ing. Spatially growing waves can then be only observed if the mixing layer is convectively

unstable, otherwise instability develops temporally. This theory therefore yields a refined

criterium to predict the location of the transition from a given laminar flow toward a turbu-

lent régime, that lies at the frontier between both instabilities21,22. This picture is clearly an

oversimplification of the actual flow development. Transition to turbulence occurs through

a sequence of instabilities on a succession of more and more complicated basic flows which

are the results of nonlinear equilibria23. For a better transition prediction, a stability linear

analysis should be therefore undertaken on an intermediary equilibrium state, for example

Kelvin-Helmholtz billows1 in the present study. Tracking this transition has a strong interest

in industry, since turbulence enhances for instance, mixing in engines, and so, favors com-

bustion. However, growth rates are reduced at high Mach number flows20, which may limit

aircraft engine performances. It is therefore important to ask what effect high compression

might have on this turbulence threshold. For an opposite reason, the absolute/convective

classification of an instability is also an important issue in flow controls. Local forcing of a

flow is indeed effective if and only if the motion is convectively unstable. In an absolutely un-

stable flow, the forcing is rapidly overwhelmed by the in situ growing instabilities. Pavithran

& Redekopp24 analysed the convective and absolute instabilities in a free mixing layer when

velocity and temperature fields have hyperbolic-tangent-like profiles. The parameters are

the Mach number and the ratios of velocities and temperatures of each stream. Jackson &

Grosch25 realised a similar study of a boundary layer flow with the same velocity profile but

the temperature is linked to the velocity by the Crocco relation. Both papers restricted to

the subsonic range. They noticed that the mixing layer became more convectively unstable

as the Mach number increased. On the other hand, cooling the slow stream extends the

domain of absolute instability. The shear layer can even become absolutely unstable when

both streams are coflowing. Terra-Homen & Erdélyi26 determined the absolute/convective

instabilities transition by following the development of a Gaussian-spatial-distribution per-

turbation of the hyperbolic-tangent-like velocity profile through the numerical simulation of

the set of complete nonlinear viscous hydrodynamic equations. Temperature was constant,

the Mach number was subsonic and the Reynolds number was chosen R = 103. With these

constraints, viscosity had a higher stabilizing effect than compressibility.

Our objective is to track the absolute/convective transition in a free inviscid mixing layer

when the Mach number evolves and can attain high supersonic values, to determine for which
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velocity and temperature ratios of each stream, this transition exists in spite a KH instability

reduction at large Mach numbers. Section 2 formulates the stability problem. Section 3

explicits the spectral method. Section 4 defines the absolute and convective instabilities

which occur in an initially perturbed system. Section 5 presents our numerical results.

Section 6 applies these results to astrophysical mixing layers, in a first example to the

interstellar medium, where two regions with strong differences in density and temperature

may interact through mixing layers, and in a second example to the heliopause, where the

hot and sparse solar wind encounters the cold and dense interstellar medium. At last, Section

7 offers our conclusions.

II. FORMULATION AND METHOD DESCRIPTION

We consider the linear instability of a two-dimensional compressible mixing layer with

zero pressure gradient, which separates two streams of a same gas but of different speeds

and temperatures. Temperature and density are related through the perfect-gas law. The

flow is unbounded, its direction is following the x-axis, the shear is y-orientated and z is

normal to the plane of the flow. We assume that the mean-velocity evolution over the mixing

layer is approximated by a hyperbolic tangent. We here assume that viscosity is negligible.

The velocity and temperature fields U and T are then uncoupled and we choose for the

temperature profile an identical profile to this of the velocity:

U =
1

2

[

1 + βU + (1 − βU) tanh(η)
]

, (1)

T =
1

2

[

1 + βT + (1 − βT ) tanh
( η

ηT

)]

. (2)

The equations of mean motion have been previously turned into their incompressible forms

with the help of the Howarth-Dorodnitsyn transformation which introduces a new cross-

stream coordinate η =
∫ y

0
1/T (y

′

) dy
′

, and have as a mean-flow solution the similarity so-

lution given by Lock15; ηT is the temperature shear layer half-thickness and will be taken

equal to one unless indicated otherwise. All quantities are nondimensionalized using the

velocity shear layer half-thickness and the magnitudes of the fast-free-stream velocity and

temperature, taken to be at η = +∞: U∞ and T∞. M̂ is the Mach number of the fast

stream; βU is the ratio of the speed of the slow stream to that of the fast stream and βT is
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the equivalent temperature ratio. These ratios satisfy

−1 < βU < 1 , βT > 0, and U → βU , T → βT , η → −∞.

In the case where viscosity is not negligible, in a boundary layer for example, the mean-

temperature profile is determined from the Crocco relation:

T = 1 − 1 − βT

1 − βU

(1 − U) +
1

2
(γ − 1)M̂2(1 − U)(U − βU) . (3)

Here, γ is the ratio of specific heats of the gas and is taken constant and equal to γ = 1.4

for a diatomic gas. We will use this profile for comparison purpose with previous stability

studies. Djordjevic and Redekopp27 derived necessary conditions for instability of inviscid,

compressible and two-dimensional shear flows through energetical considerations; the local

Mach number must be supersonic or

U
d

dy

( 1

T

dU

dy

)

< 0 over at least one zone of the mixing-layer.

The above profiles (1) & (2) indeed always allow for the second quantity being negative over

a certain η-range whatever βU and βT may be.

These mean fields are perturbed by introducing wave disturbances whose amplitude is func-

tion of η; for example, the pressure perturbation is

p = Π(η) exp[i(α̂x + β̂z − ω̂t)] ,

with α̂ and β̂ wavenumbers and ω̂ the frequency that are complex.

The equation governing Π is15

Π
′′ − 2U

′

Π
′

U − ĉ
− T [(α̂2 + β̂2)T − α̂2M̂2(U − ĉ)2] Π = 0 , (4)

where the streamwise wave speed is ĉ = ω̂/α̂ and where the prime denotes the derivative with

respect to η. Equation (4) is easily turned into an analogous two-dimensional disturbance

equation by Squire’s transformation

α2 = α̂2 + β̂2 , α̂ = α cos φ , β̂ = α sin φ ,

αM = α̂M̂ , ĉ = c , and ω̂ = ω cos φ .

Applying this transformation to (4) yields

Π
′′ − 2U

′

Π
′

U − c
− α2T [T − M2(U − c)2]Π = 0 . (5)
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We note that this transformation is not valid for the boundary layer temperature profile

because (3) depends on M̂ . The boundary conditions for Π are obtained by considering the

limiting forms of (5) as η → ±∞. The required solutions are exponentials of the form

η → ±∞ , Π → exp(∓Ω±η) ,

where Ω2
+ = α2[1 − M2(1 − c)2] and Ω2

−
= α2βT [βT − M2(βU − c)2] . (6)

From now on, ℜ and ℑ respectively denote the real and imaginary parts of a complex number

while the subscripts r and i respectively define the real and imaginary parts of the mode

features: frequency, wavenumber and wave speed. The properties of symmetry enable us

to restrict the domain of study. Indeed, whatever Π(α, c) solution of (5), Π(−α, c) and

Π∗(α∗, c∗) are also solutions, the asterisk indicating complex conjugate. We can therefore

restrict the studied (α, c)-domain to αr ≥ 0 and ci ≥ 0.

We consider weakly unstable oscillations characterizing damping waves escaping from the

shear layer. The non-radiation condition for unstable oscillations comes down to ℜ[Ω+] > 0

and ℜ[Ω−] > 0. A neutral mode with a subsonic convective Mach number Mc such as defined

in the Introduction is evanescent but radiates outward with a supersonic convective Mach

number. An unstable supersonic-Mc mode may have an exponential decay but this is slower

in comparison with subsonic modes.

As the profiles (U, T ) have constant “tails”, the unbounded-flow problem can come down

to a finite-boundary problem in the transverse range [η−, η+] such as |U − U(±∞)| ≪ 1 as

|η| ≥ max[−η−, η+] (Keller’s boundaries28). The boundary conditions are therefore

( d

dη
+ Ω+

)

Π(η+) = 0 and
( d

dη
− Ω−

)

Π(η−) = 0 . (7)

As the square-root function of a complex number has two branches, one with a positive

real part and one with a negative real part, we always consider from now on the first. The

forbidden domain or branch cut for Ω+ on the complex ω-plane for a fixed α is constituted

of the two semi-infinite intervals

ω = α ± M−1
√

α2 + a2, 0 ≤ a2 ≤ ∞,

corresponding to waves propagating in a transparent medium. The branch cut for Ω− has a

similar expression

ω = αβU ± β
−

1

2

T M−1
√

α2β2
T + b2 , 0 ≤ b2 ≤ ∞.
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If we factorize Ω by putting Ω = α ̟, the relation ℜ[Ω+] = 0 is equivalent to

αrℜ[̟+]2 − αiM
2(1 − cr)ci = 0. (8)

For a temporally unstable mode29, the phase speed is bounded such as βU < cr < 1; we

are seeking for solutions that belong to the same cr-range despite that α is complex. Only

in the case where βT is very small, cr was found to be slightly less than βU . We examine

the modes that spatially amplify downstream, their spatial growth rate αi being therefore

negative and we assume ci ≥ 0 for positive αr, the condition (8) is then satisfied provided

ℜ[̟+] = 0 and ci = 0 if αi 6= 0. The forbidden phase speed is thus

c+ = 1 − 1

M
. (9)

With αi = 0, neutral modes possess an infinity of branch cuts bounded by c+ such as

c ≤ c+. For the slower stream, we have two possibilities; indeed, ℜ[Ω−] = 0 yields the

following relation

αr ℜ[̟−]2 − αi βT M2 (βU − cr) ci = 0. (10)

This condition may be satisfied both for ci = 0 and ci 6= 0. In the first case, we have the

forbidden phase speed given by

c− = βU +
β

1

2

T

M
, (11)

and the related neutral-mode branch cuts given by c ≥ c−. The branch cuts c ≤ βU −β
1

2

T /M

concern very-low-phase-speed modes, so we will omit them from now on. The second case

yields the branch cuts

c2,− = βU ± β
−

1

2

T M−1
[

β2
T +

b2

α2

]
1

2

, (12)

where c2,−,i is determined by equation (10) with ℜ[̟−] being a function of c2,−,r and c2,−,i.

The imaginary wave speed c2,−,i admits two different solutions

c2,−,i =
1

2
(c2,−,r − βU )

(αr

αi
− αi

αr

)

±
[

(c2,−,r − βU)2 − βT

M2
+

1

4
(c2,−,r − βU)2

(αr

αi
− αi

αr

)2] 1

2

.

The related value of b can be computed through the imaginary part of (12),

b2 = −βT |α|4 c2,−,i M
2 c2,−,r − βU

αr αi
≥ 0. (13)

These branch cuts have not been until now mentioned in the relevant literature. In the

particular subset where ωi = 0 linked to a spatial instability or a mode giving the transition
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from convective instability to absolute instability, the expression of the cut frequency is

simplified to

ω2,− = αr βU

(

1 − βT

β2
UM2

)

, (14)

related to the branch cut parameter

b2 = (βT − β2
U M2)

(

α2
i βT +

α2
r β2

T

β2
U M2

)

defined on the range: M ≤ β
1/2
T /|βU |. For higher M , only the first cut (11) yields an

oscillating mode at −∞. After (13) and (14), we note that c2,−,r < βU and αrαi > 0

if βU > 0 and vice-versa. In that subset, the two first branch cuts (9) and (11) refer to

neutral modes contrary to the third branch cut (14). Figures 2 show the different branch

cuts at fixed values of βU , βT and ci. The curves c2,−,r as a function of M are plotted

at constant ratio αi/αr. The curve c2,−,r for which ωi = 0 starts at cr = 0 for M = 0,

increases with M if βU < 0 (decreases if βU > 0) and admits a maximum Mach number

M = β
1

2

T /[|βU |(|βU |+2ci)]
1

2 at cr = −sgn[βU ]ci. Let us find now the location of the unstable

modes with respect to the branch cut (14). Let be a spatial mode (α, c) located close to

this branch cut such as c = c2,− + δc; this mode is damped if ℜ[α̟−(c)] > 0 which comes

down to ℜ[α δc ∂̟(c2,−)/∂c] > 0 for |δc| ≪ 1. Using the second Eq. (6) and ωi(c) = 0,

and after simplifying, we get ℜ[α̟−(c)] = βT βU(αiM)2/(αr ℜ[̟(c2,−)]) δcr. As a result, if

βU < 0, then δcr < 0, the unstable and damped modes are located below the curve c2,−,r

[cf. Figs. 2(a) and 10(a)]; in the same way, their imaginary speed is smaller than c2,−,i. If

βU > 0, these modes are still below c2,−,r but their imaginary speed is higher than c2,−,i [cf.

Figs. 2(b) and 12 (only for M ≤ 0.99)].

The cross-stream group velocity is defined as vg,y = ∂ω/∂αy where the equivalent transverse

wavenumber is αy = ±i Ω±; the y-group velocities on each stream are thus

v+
g,y =

−i Ω+

αM2 (1 − c)
and v−

g,y =
−i Ω−

αβT M2 (c − βU)
.

Waves escaping from the shear layer satisfy: ℜ(v+
g,y) > 0 and ℜ(v−

g,y) < 0. That yields two

other boundary conditions

ci

ℜ[̟+]
[ℜ[̟+]2 + M2(1 − cr)

2] > 0 and
ci

ℜ[̟−]
[ℜ[̟−]2 + βT M2(cr − βU)2] > 0. (15)

These conditions are always satisfied provided ci 6= 0; else if ci = 0, three possibilities occur:

— if ℜ[̟±] 6= 0, no energy goes out of the mixing layer;
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— if ℜ[̟+] = 0, cr is then less than c+ and ℑ[̟+] must be positive if we wish that

ℜ[Ω+] = −αi ℑ[̟+] be positive. The wave amplitude hence decays at +∞ and energy goes

out of the mixing layer at +∞. If cr = c+, the wave radiates and no energy goes out at +∞.

— If ℜ[̟−] = 0, cr is then greater than c−, ℑ[̟−] is taken positive, so that the wave

amplitude may decay at −∞ but in this case ℜ[v−

g,y] > 0, and energy enters the shear layer

at −∞. If c = c−, the wave radiates and no energy goes in from −∞.

In the subset ωi = 0, ci = 0 is equivalent to αi = 0, waves radiate at ±∞ if ℜ[̟±] = 0 and

ℑ[̟±] can be chosen ≷ 0 so that energy may be exported outward.

In summary, the only modes having a zero imaginary wave speed that must be considered

are slow modes expelling energy from the fast stream with

cr < c− , cr < c+ ;

and subsonic/subsonic modes whose energy is trapped in the mixing layer with

cr < c− , cr > c+ ;

among neutral modes, only those being subsonic/subsonic must be considered.

III. THE SPECTRAL METHOD

Let us introduce a new cross-stream coordinate Z such as

η

η+
= µZ + (1 − µ)Z3, −1 ≤ Z ≤ 1, (16)

with η− = −η+ and 0 < µ < 1.

Equation (5) rewritten in terms of Z reads

d2Π

dZ2
− 2

[

3(1 − µ)
Z

E(Z)
+

dU
dZ

U − c

]dΠ

dZ
− α2 η2

+ E(Z)2 T [T − M2(U − c)2] Π = 0 , (17)

where E(Z) = µ+3(1−µ)Z2 and dU/dZ = (1−βU) η+/2 E(Z)[1− tanh(η)2]. Its solutions

have to satisfy the boundary conditions

( d

dZ
± αη+E(1) ̟±

)

Π(±1) = 0 . (18)

The problem comes down to the search for the eigenvalues λ = αη+E(1) (ℜ(λ) ≥ 0) and

eigenfunctions Π, the wave speed c being given. For neutral modes, there are singularity and
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branch cut related to the equality U(Z) = c, which inhibits integrating along the real Z-axis.

The profile (1) yields a single critical-layer singularity. In order to avoid such a singularity

and large denominators, we integrate along a straight line in the complex z-plane located

above or below the singularity, between z = η + iδ = −∞ + iδ and +∞ + iδ. The mean

velocity and temperature then become complex since tanh z can be written as

tanh η + i tan δ

1 + i tan δ tanh η
,

η being given by (16), and δ varies following the orientation of the viscous sector.

Two independent viscous solutions of the eigenvalue problem, that are solutions of the lin-

earised Navier-Stokes equations, admit an expansion following the small kinematic viscosity

ν, for example for the pressure disturbance

Π± ∼ e±ν−
1
2

R η(iα̂U−iω̂)
1
2 dη

[

Π(0) + ν
1

2 Π(1) + . . .
]

. (19)

We note that the compressibility assumption does not modify the expression of the expo-

nential factor in (19) compared with the incompressible solutions of the Orr-Sommerfeld

equation30. This factor is determined by substituing the leading terms of the expansion (19)

into the Navier-Stokes equations and solving a system of two equations for two unknowns u

and w, which are the x and z components of the velocity perturbations. The leading term

of the y-velocity perturbation v does not intervene because it has a smaller amplitude. If

ℜ[(iα̂U − iω̂)
1

2 ] is positive on the entire real η axis, ℜ[
∫ η

(iα̂U − iω̂)
1

2 dη] is then a strictly

increasing function on the η axis and Π± are exponentially large at η = ±∞. The general

solution of the eigenvalue problem then implies to discard these viscous solutions. Each

singularity characterized by its complex location ηc is in fact, on its vicinity, partitioned into

three Stokes sectors delimited by Stokes lines defined by ℜ[
∫ η

ηc
(iα̂U − iω̂)

1

2 dη] = 0. If in two

sectors, the general solution is given by inviscid solutions, then in one remaining sector, the

so-called viscous sector, it is dominated by a viscous solution. The imaginary part ηc,i being

defined modulo π, we then choose −π/2 < ηc,i < π/2 and δ is expressed by

δ = ηc,i + χ(π/2 − ηc,i) , for a viscous sector facing negative η′

is,

or δ = ηc,i − χ(π/2 + ηc,i) , for a viscous sector facing positive η′

is.

A compromise must be done to choose 0 < χ < 1. If |δ − ηc,i| is too small, resolution must

be high to correctly tackle the singularity, if tan δ is large with respect to tanh η, numerical
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oscillations may occur. The viscous sector is defined by30

π

6
− arg[α̂U

′

(ηc)]

3
< arg(η − ηc) <

5 π

6
− arg[α̂U

′

(ηc)]

3
,

and never includes the real axis, which allows for an integration contour along a horizontal

line. The orientation of the sector is here given by the sign of the real part of α̂ U
′

(ηc), that

is

α̂ [c(1 + βU) − c2 − βU ].

A Chebyshev collocation method is used to discretize the problem. The collocation points

in the interval [−1, 1] are chosen to be the extrema

Zj = cos
πj

N + 1
, j = 0, 1, . . . , N + 1 ,

of the (N + 1)-st degree Chebyshev polynomial TN+1(Z). If µ = 1, with such collocation

points, η clusters around the ends −η+ and η+. With µ 6= 1, the points are more equally

scattered in the range [−η+, η+]. We introduce the notation Πj = ΠN+1(Zj) , 0 ≤ j ≤ N +1 ,

ΠN+1 is the interpolation polynomial of Π of degree N + 1

ΠN+1(Z) =
1

2
a0 +

N+1
∑

n=1

anTn(Z).

The discrete version of the differential equation (17) evaluated at each Zi , i = 0, . . . N + 1

leads to N + 2 relations involving the discretised expressions of Π, dΠ/dZ and d2Π/dZ2

whose formulae are given in Peyret31. By taking the boundary conditions (18) into account,

the problem reduces to N linear relations, which in the matricial form can be written as

M Π̄ = 0, (20)

with M = [λ4M0 + λ3M1 + λ2M2 + λM3 + M4] and Π̄t = [Π1, Π2, . . . , ΠN ].

The companion matrix method32 enables us to obtain a standard eigenvalue system:

(A − λI)X = 0,

with X t = [λ3Π̄, λ2Π̄, λΠ̄, Π̄] and A, a 4N × 4N sparse matrix composed of the submatrices

Mi, i = 0, . . . , 4.
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IV. ABSOLUTE AND CONVECTIVE INSTABILITIES

The spectral method described in the preceding section gives the dispersion relation of

the eigenvalue problem, that are the roots α of D(α, c) = 0, c being given. We are now

going to focus on the double α-roots (α0, ω0) of the equation D(α, ω) = D(α, ω/α) = 0.

The general evolution for an initial perturbation can be formally expressed by a Laplace-

Fourier integral

q(x, y, t) =

∫ iσ+∞

iσ−∞

e−iωt dω

∫

∞

−∞

F (α, ω, y)

D(α, ω)
eiαx dα (21)

where σ is larger than the largest growth rate of any mode for real α. F is an analytic

function depending on external perturbations like initial conditions. The line along which

we integrate in the complex ω-plane is the Laplace or Bromwich contour. In the α-plane,

the integration path is the Fourier contour. The initial-value problem is well-posed. Indeed,

the temporal growth rate of an unstable mode in a two-dimensional inviscid compressible

shear flow is bounded29 by

ωi ≤
1

2
|U ′ |max . (22)

Double α-roots of the dispersion relation D determine the large-time behaviour of the initial-

value problem. The behaviour of the disturbance when t → ∞ is given by the double root

(α0, ω0) that has the largest imaginary part6 of the frequency ω0:

Π ∼ 1√
t
e−iω0t eiα0x .

These roots satisfy the equations

D = Det[M(α0, ω0/α0)] = 0 and
∂D

∂α
(α0, ω0) = 0 .

The second equation is equivalent to ∂ω/∂α = 0. The related root α0 is a saddle-point in the

complex α-plane, meeting point of upstream and downstream branches and ω0 is a branch

point in the complex ω-plane. The instability is absolute if the branch point is in the upper-

half plane, or convective if it is in the lower-half plane, provided that both the α-branches are

generated on opposite sides of the real α axis when ωi evolves from the Bromwich contour

ωi = σ up to ωi = ω0,i and such as ωr = ω0,r. This is the so-called pinching condition that

we have verified for each Mc-régime: subsonic, transonic and hypersonic. To do so, we have

used a Runge-Kutta scheme integration of Eq. (5) because we need have ω as independent

variable and α as dependent variable, and c expressed as ω/α.
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We now explain the procedure for evaluating the double roots of our dispersion relation. In

a reference frame moving with the constant speed V , the Doppler-shifted frequency becomes

ω̃ = ω−αV and a double root has this frequency which satisfies: ∂ω̃/∂α(α0) = 0. A standard

algorithm consists in determining α0,r for a given αi by solving ∂ωi/∂αr(α0,r, αi) = 0, next

one deduces V = ∂ωr/∂αr(α0,r, αi). The double-root in the laboratory frame is found out

while incrementing αi up to α0,i when V = 0. The approach must be here modified. Indeed,

c is now the independent variable and α is the dependent variable. The reference frame

saddle-point is hence determined while varying cr and fixing ci by computing the root cr of

ci

[(∂αr

∂cr

)2

+
(∂αi

∂cr

)2]

+ αi
∂αr

∂cr
− αr

∂αi

∂cr
= 0. (23)

The reference frame speed V is then given by

V = cr +
ci

∂αr

∂cr
+ αi

∂αi

∂cr

. (24)

All partial derivatives are calculated at constant ci by the finite-difference approximation.

According to Briggs-Bers criterion, the moving frame is absolutely unstable if ω̃i > 0

and convectively unstable if ω̃i < 0. We note that using c as independent variable is

in fact more convenient than using α. Indeed, after the semi-circle theorem valid for

two-dimensional compressible flows11,29, temporally unstable modes (ci > 0) have their

wave speed which is bounded in the complex plane and located within a semi-circle

centred at (Umin + Umax)/2 and of radius (Umax − Umin)/2. Though we here consider

complex-frequency-and-wavenumber modes, this result revealed to be mostly true for the

ranges of parameters considered and made our eigenvalue search easier.

V. NUMERICAL RESULTS

The spectral method was tested by solving the eigenvalue problem with a second method,

a fourth-order Runge-Kutta scheme straightforward integration of (5) after a Ricatti trans-

formation on the function P = Π
′

/Π and a change of variable η → Λ = tanh(η) in the same

way as Blumen11. Figure 3(a) shows the double roots of the dispersion relation giving the

transition from convective to absolute instabilities for βT = 0.5 (M varying from 0 to 1)

and βT = 1 (M varying from 0 to 5). These double roots, denoted from now on ACT, have
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already been computed by Jackson and Grosch25 in the subsonic range for the boundary

layer temperature profile (3). We have computed them both with the spectral method and

the Runge-Kutta scheme. The agreement is excellent. We notice that a strong departure

between the transitions with profiles (2) and (3) occurs as soon as −βU starts to decrease

and this difference increases with M . The boundary layer experiences an earlier transition

to absolute instability than the mixing layer in the supersonic range; the asymptotic be-

haviours as M ≫ 1 are respectively −βU = O(M−2) and −βU = O(M−1).

The resolution in number N of polynomials depends on which way the eigenfunctions behave

at η = ∞. As a result, let us have a look at the asymptotic behaviour of the coefficients

Ω± related to the ACT double roots as M → ∞. These behaviours have been obtained by

least-square fits on α and c:

ℜ[Ω+] ∼ (βT M)−1, ℜ[Ω−] ∼ (βT M9)−
1

4 , (25)

ℑ[Ω+] ∼ β−1
T , and ℑ[Ω−] ∼ (βT M7)−

1

4 .

The exponential decay decreases with M , N must therefore increase with M . If βT is small,

oscillations at ±∞ have a much higher frequency, so N must increase as βT decreases. On

the contrary, the smallness of βT plays in favour of the exponential decay at ±∞. As a

result, for small and large βT ’s, a high resolution in N is necessary. In those cases, the

Runge-Kutta scheme does not manage to follow the steep oscillations of the eigenmode at

infinity, how small the integration step may be chosen. The spectral method is therefore

required at βT 6= O(1) or M ≫ 1.

Figures 4 show isocontour levels ωi = const in the α-plane at the absolute instability thresh-

old, and obtained by the Runge-Kutta scheme. As ωi tends to zero, each pair of sets of

contours ωi > 0 and ωi < 0 pinches at the saddle point α0. As ωi > 0 increases, the related

pair recedes into their respective half-planes αi > 0 (branch α+) and αi < 0 (branch α−).

We note that the contours are not as accurate at M = 3 as at M = 0.5, which is an illustra-

tion of the above remark concerning the Runge-Kutta scheme. For the mixing-layer velocity

profiles studied here, there are three branches of spatial eigenvalues21: α+
1 (ω), α−

1 (ω) and

α+
2 (ω). The two first correspond to the first mode mentioned in the Introduction which

has two counterparts: upstream and downstream, and the third corresponds to the second

mode. The latter appears as soon as M = M∗. Only α+
1 /α−

1 and α+
2 /α−

1 pinchings are

relevant. Once a double root satisfying (23) and (24) is detected in our computation, we
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must check first, that this mode is the meeting point of upstream and downstream modes,

second that it is the mode with the largest Doppler-shifted growth rate γ = ωi − αiV . As

we focus on transition modes with ωi = 0 in the laboratory frame V = 0, we need check

that if one pinching mode was obtained for a certain value of −βU with ωi = 0 and V = 0,

then for a smaller value of −βU , one does not observe a similar second pinching. Figure

5(a) shows γ as a function of V for the M = 2-mixing layer. The left hump corresponds

to the first mode and the right hump to the second mode. In the isothermal mixing layer,

for βU = −0.3116 (M/M∗ ≃ 1.31) related to the absolute-instability threshold, γ = 0 at

V = 0. For βU = −0.1 (M/M∗ = 1.1), γ < 0 at V = 0, the motion is convectively unstable

in the laboratory frame. As −βU decreases, both humps come over and merge at βU = 0

(M = M∗). For βU ≥ 0, there exists a single hump related to the first mode. In practice,

the wavepacket thus parts into two packets, and the slower packet will give the convective

or absolute nature of the instability. The slow mode/slow hump relation is easily checked

as the phase speed uniformly increases with the real group velocity V (cf. Fig. 5b). The

unbounded-mixing-layer transition from a convective instability toward an absolute insta-

bility is thus given by the pinching of two slow modes which are two first modes. We observe

furthermore that the phase speed cr does not strongly vary with βT and βU and does not

depart too much from the propagation speed of unstable modes within the wavepacket. The

real group velocity V is all the smaller so since M/M∗ is large. For βT > 1, the faster hump

possesses a higher maximum than the slower and still characterizes the second modes in

spite of the fact that fast-mode spatial growth rates are always smaller than slow-mode ones

as we will check later on. For βT < 1, the slower hump possesses the higher maximum.

For βT = 0.02, this maximum attains γmax ≃ 0.103 which is more than 2000 times larger

than the fast-mode maximum and nearly 10 times the slow-mode maximum at βT = 0.5.

The maximum growth rate γmax increases as βT decreases but, γmax does not nevertheless

tend to infinity as βT tends to zero. The curves γ for βT = 0.02 (M/M∗ = 1.75), βT = 0.5

(M/M∗ = 1.39) and βT = 2 (M/M∗ = 1.24) are not complete. The gap between the smaller

and larger values of V corresponds to the domain where no decaying modes exist; ℜ[Ω+]

becomes negative in the decreasing part of the left hump and ℜ[Ω−] becomes negative in

the increasing part of the right hump.

Caillol and Ruderman33 showed that the absolute/convective instability diagram is quali-

tatively divided into two domains, one for the Mach number less than a critical value Mcr
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and the second for M > Mcr. Increasing M in the first domain makes the mixing layer

less absolutely unstable whereas an inverse behaviour occurs in the second one. We assume

that the critical Mach number Mcr is related to M∗, the Mach number for which the branch

cuts (9) and (11) from both streams intersect: c+(M∗) = c−(M∗) (cf. Fig. 1). Indeed, after

Jackson & Grosch15, this Mach number corresponds to a minimum of the maximum growth

rate for spatially growing modes and it is expressed by

M∗ =
1 + β

1

2

T

1 − βU
.

That number corresponds to the change of modes, from a subsonic/subsonic mode to a slow

supersonic/subsonic mode, from the domain 1 to 4 passing through the curve c+ in Fig. 1.

We then define a new convective Mach number by

Mc =
M

M∗

.

This number is of interest in experiments. Indeed, it enables one to diminish the number of

parameters describing instability. Normalized-growth-rate curves with different βT ’s collapse

onto a single curve34 for Mc < 1.

We now describe the results of our computations. Figure 3(b) shows the values of −βU for

the ACT branch point as a function of Mc for different values of βT . Increasing the Mach

number for M . M∗ makes the amount of backflow needed to cause absolute instability

higher, but as soon as M & M∗, the tendancy is inversed at such a point that the minimum

ACT velocity ratio is given for βT > 0.1 at the largest Mach number that the mixing layer

can attain; its asymptotic value is βU = 0 as M → ∞. The values of Mc related to the

maxima of −βU are for βT = 0.5, 1 and 2 quite close: 1.115, 1.008 and 0.910, which makes Mc

a good parameter. The asymptotic value βU = 0 corresponds to the most unstable mixing

layer profile when M tends to infinity. Indeed, the ACT double root asymptotes at high

M the double root possessing the highest imaginary part of the frequency; the absolutely

unstable zone is thus shrinking to zero. Figures (6) show these double roots for βT = 1

as a function of the convective Mach number. The maximum-shear state at βU = −1 only

yields the highest temporal growth rate in the subsonic régime. The amount of backflow

necessary to cause the highest instability decreases rapidly with M . Around M ≃ M∗, the

curves −βU and ωi experience a discontinuity while passing from a subsonic vortex mode to

a slow vortex mode, such a discontinuity is observed in the same passage of the maximum
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spatial growth rate15. The increase of the absolute-instability zone as soon as M ≥ M∗ is

linked to the βU,ACT curve evolution which cannot cross the maximum-ωi curve and must

asymptote it by inferior values. By interpolating the values of βU at high Mach numbers, we

find −βU ∼ β
1/2
T /M for the mixing-layer temperature profile (cf. Fig. 10 b). The constant

of proportionality is evaluated with an accuracy around 90% for M = 7.

The double root that is considered here is the first mode, since it exists whatever M

unlike the second mode which appears at M = M∗. It possesses the larger spatial growth

rate and becomes a slow mode as it comes into the domain 4 in Fig. 1. The slow or fast

nature of the mode is function of βU and βT . For negative or slightly positive βU as has

been encountered here, the ACT double root is always the slow and first mode, but with

βU = 0 and the temperature profile (3) as in Jackson and Grosch15 and in Ragab and Wu14,

the maximum-growth rate first mode becomes fast as βT > 1, and the second mode is the

most spatially unstable as βT < 1. A supersonic mode is termed respectively slow or fast if

cr < c− or cr > c+ when M & M∗; a typical example is illustrated in Figs. 7 where spatial

modes are displayed, (a) gives the phase speed plotted with respect to the frequency ωr

for Mc = 1.01 and βT = 1 at the absolute-instability threshold, the first mode being then

pinched. The first mode has its phase speed cr smaller than this of the fast mode. Their

phase speeds coincide at ωr = 0 and α = 0 and are equal to c−. The meeting point of the

cr-branches where a cusp occurs35 is a ACT mode. The cr-branch corresponding to α+
1 is

the upper branch. The phase speed range on the branch α+
1 lies between 0.140 and 0.333.

At Mc = 1.88, this range is reduced to 0.049 − 0.079. As Jackson and Grosch15 noticed,

unstable modes have a weak dispersion. In the (ωr,−αi) graph, the absolute frequency of

the maximum-spatial-growth rate mode on the lower branch α+
1 is smaller than the slow-

neutral-mode frequency ωN . This maximum becomes the ACT mode when it presents a

cusp while βU is varied. Figures 7(b) and 8(b) show that the fast-mode growth rate is not

negligible when M ∼ M∗ and when βT is of order one; on the contrary, when Mc ≃ 1.88,

the fast-mode growth rate is very small. For small values of βT , the fast mode also has very

small growth rates at Mc ∼ 1, as Fig. 9 shows at βT = 0.02 and βT = 0.1. Moreover, its

domain of existence is strongly reduced due to the condition: ℜ[Ω−] > 0.

The ACT-mode phase speed is smaller than the slow-neutral-mode phase speed. As

M → ∞, both phase speeds tend to c−. In Fig. 10(a) for βT = 1, the ACT and neutral

modes become quasi-identical for Mc ≥ 2, which justifies the use of the integration in the
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complex plane. The slow-neutral-mode curve experiences a sharp discontinuity while passing

on the curve c+, that corresponds to the passage from a regular mode to a singular mode.

The discontinuity of the ACT mode is much weaker, it is a small trough. The slow neutral

mode radiates at η = +∞ and is evanescent at −∞. The slow unstable ACT mode decays

both at ±∞ but with more difficulty in the fast stream than in the slow stream as the

leading-order imaginary parts of Ω− and Ω+ confirm in (25) in the case where M → ∞.

The domain of absolute instability is extended at any Mach number by cooling the slow

stream. This result may be linked to the increase of the spatial growth rate whatever M

as βT is decreased15 and is due to the effect of the baroclinic torque arising from base-

flow temperature gradients and from pressure perturbations Γ = −(∇T × ∇p
′

). When

the baroclinic torque is cancelled from the perturbation equations, the convective-absolute

transition in a compressible axisymmetric wake36 for instance, is nearly independent of βT .

As βT . 0.1, the ACT velocity ratio βU becomes positive for small M , the earliest AC

transition is therefore near the incompressible state. For βT and Mc sufficiently small, the

shear layer may become absolutely unstable even when the streams are coflowing. The

velocity ratio βU becomes positive for βT = 0.1 as Mc < 0.608 and reaches values of order

10−3 and for βT = 0.02 as Mc < 1.752, βU attains values of order 10−2. However, there does

not always exist ACT modes at small βT ’s and at subsonic régime. Indeed, the condition

ℜ[Ω−] > 0 is no longer satisfied owing to the high values of ci,ACT in that zone: ci ≫ |βU−cr|.
The graph in Fig. 1 is made by assuming ci negligible in front of 1 − cr and |βU − cr| and

is therefore inexact in the small-βT domain. This non-permitted domain had not been

discovered previously because larger values of βT had been examined; Jackson and Grosch25

reported the stiffness of the eigenvalue computation at small βT and restricted their study to

βT ≥ 0.15. The latter domain is bounded by the branch cut (14). The curve of the critical

minimum temperature ratio βT has been plotted in Fig. 11(a) by seeking for the smallest βT

for which it is still possible to find a ACT mode, at each M , possessing a positive ℜ[Ω−]. We

have superimposed to these numerical values the value of βT given by Eq. 14, βU , α and c

taking the numerical values of the ACT mode. βT,min slowly varies over the M-range [0, 0.9],

then it decreases sharply and at M = 0.99, βT,min = 0. The numerical values of α on the

branch cut do not converge rapidly as βT → βT,min, these values are all the more inaccurate

at small M so since αr → 0 for M → 0. Figure 12 shows that the existence of ACT modes

at βT = 0.02 is strongly reduced in the domain 1 of the graph in Fig. 1. The curve c2,−,r
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meets the cr,ACT curve at M ≃ 0.978. On the other hand, heating the slow stream decreases

the domain of absolute instability. As soon as βT > 4.662, absolute instability vanishes first

at M = 1.1, (Mc = 0.696) (cf. Fig. 11 a). For βT > 5.453, absolute instability ceases to

exist in the subsonic range from M = 0 up to M ∼ 1.74 (Mc ∼ 1.04). Figure 11 (b) displays

−βU as a function of Mc for ηT = 1 and ηT = 0.1 at βT = 2. When temperature evolves 10

times more rapidly over the mixing layer with respect to velocity, the passage to absolute

instability then occurs earlier. The departure vanishes at high M . The earliest passage is

therefore given by a true temperature discontinuity.

Figure 13(a) shows the ACT absolute frequency ωr as a function of Mc. When βT = O(1),

this decreases with Mc. When βT is small, ωr has a maximum at a certain Mc that is all the

larger so since βT is small. The hotter the slow stream is, the smaller the ACT frequency

is. The frequency decays rapidly toward zero at high Mach number as ωr = O
(

β−1
T M−7/2

)

.

The branch cuts c− and c+ are not intersected by the ACT double roots because ci,ACT = 0

is only reached asymptotically. In Fig. 13(b), we have represented the curves ωr, αrc− and

ω2,− as functions of Mc for βT = 0.5 and 2. The frequencies αrc− and ω2,− always have

higher values. ωr approaches asymptotically αr c− with ωr ≤ αr c−. The branch cut (14)

has a twice larger frequency than αr c− for M → ∞:

ω2,− ∼ 2αr

(

βU +
β

1

2

T

M

)

= 2αr c−.

Figures 14 display the absolute wavenumber as a function of Mc, its evolution is very similar

to that of the absolute frequency; αr reaches a maximum for βT . 1 strongly increasing

when βT decreases; αr reaches a maximum value of 2.539 at Mc = 1.412 for βT = 0.1 and

this value becomes 12.569 at Mc = 3.085 for βT = 0.02. As βT is divided by 5, the maximum

wavenumber is multiplied roughly by 5 which yields a viscous dissipation enhanced by 25. We

hence expect the high instability of the cooled-slow-stream mixing layers to be attenuated by

viscosity and thermal conduction. In the supersonic range, αr diminishes slowly toward zero

in the following way: αr = O(β−1
T M−1). Figures 15 give the spatial growth rate of the ACT

branch point. In the subsonic range, it decreases slighly for order-one βT and then more

rapidly in the supersonic range. At high M , αi tends to zero such as: −αi = O(β−1
T M−2).

The spatial instability is all the higher since the slow stream is cooled; −αi possesses a

maximum for very small values of βT . At βT = 0.1, we observe a small bump at Mc ∼ 1; at

βT = 0.02, this is substituted by a true maximum at Mc ∼ 2 with −αi = 12.147. Figures
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16(a) and (b) show the real and imaginary wave speed evolutions. They are very similar.

The cooler the slow stream is, the smaller the wave speed is at subsonic and supersonic

régimes. The decay toward zero at high Mach number does not however depend on βT ,

indeed for M ≫ 1, cr = O(M−
5

2 ) and ci = O(M−3). For very small βT , cr tends to zero at

small Mc.

The effects of a three-dimensional perturbation are reported on Figs. 17; −βU is plotted

as a function of the primitive Mach number M̂ = M/ cos φ for φ = 0, 30◦, 45◦, 60◦ and

75◦. Inclination tends to delay the evolution of βU with respect to M̂ . Consequently, for

nearly transverse cases, M̂ is mostly located in the first domain mentioned earlier since it

is practically always less than Mcr/ cos φ. Compressibility thus has a stabilizing effect, and

the higher φ is, the larger the domain of absolute instability is. The spatial growth rate −αi

of a oblique ACT mode seen by an observer moving with the mode along its wavenumber

direction decreases more slowly than this of a parallel mode. As a result, an oblique mode

is all the more spatially unstable so since φ is large. The absolute wavenumber αr behaves

in the same way.

All these results are related to hyperbolic-tangent-like mean-velocity-and-temperature

profiles. The choice of the latter comes from the good fits that such profiles have with

experimental data in the self-similarity zone37. Those profiles are therefore employed pre-

dominantly in numerical and analytical stability studies. The Error function is also often

employed because it is an approximate self-similar solution of the mean-flow equations38.

Qualitatively, identical behaviours are observed for mixing layers described by both func-

tions when they perturbed by wavelike disturbances39. We have compared in Fig. 18 (b) the

ACT velocity ratio −βU at βT = 0.1 and βT = 2 for both functions. The Error-function mix-

ing layer leads to an earlier absolute instability as the related shear-layer thickness is slightly

smaller than the Tanh shear layer’s at identical βU (cf. Fig. 18 a) for any −1 ≤ βU ≤ 1.

The vorticity thickness20 for the former layer is
√

π/2 smaller than this of the latter. The

asymptotic behaviours of α, c and ω are identical as M → ∞ for both profiles. We assume

that all profiles evolving exponentially outside the mixing layer qualitatively experience sim-

ilar absolute and convective transitions bounded by limiting values for βT as shown in the

Fig. 11 in the case of the Tanh profile. The instability transitions for other profiles, as alge-

braically decaying at infinity, are beyond the scope of the paper as the numerical procedure

presented here is not valid and are of small interest since those profiles are not mentioned
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in the literature.

VI. APPLICATIONS

The interstellar medium (ISM) is a very complex entity. ISM shows regions of distinct

physical conditions, which range from cold and molecular, to hot and ionized. Begelman and

Fabian40 realized that the interfaces between hot and warm media might well be dominated

by “turbulent mixing layers”. Though ISM is embedded in a dynamical magnetic field,

we neglect it as Esquivel et al.41 did in a part of their simulations when they modelled

turbulent mixing at the boundary between hot and warm materials in the ISM. They

indeed showed that its effects were found to be minimum at earliest times corresponding to

the linear stage of the perturbation evolution. In this section, we model the early evolution

of this perturbed boundary by assimilating it to the mixing layer described in the previous

sections. The fluid is a gas constituted by protons and electrons. Our model has however a

weakness; it does not take the radiative cooling into account. The turbulent-mixing-layer

model40 includes radiative cooling because, if energy were conserved, the mixing layer would

grow up indefinitely by constant production of turbulence at the interface of both plasmas.

A steady state then occurs subsequently due to a balance between a turbulent heat flux

into the mixing layer and radiative cooling. The latter makes the KH instability developing

faster41. Typical ISM conditions41 are Thot ∼ 5 105 K and Twarm ∼ 104 K (βT ∼ 0.02),

with a velocity Vhot in the hot medium and no mean motion in the warm medium (βU ∼ 0).

The thickness of the shear layer is of the order of a parsec (≃ 30.9 1012 km), L ∼ 1 pc

and hydrogen number densities are nhot ∼ 10−4 cm−3 and nwarm ∼ 5 10−3 cm−3. The

ratio of specific heats of this monoatomic-hydrogen gas is γ = 5/3. The Mach number

in the hot medium is then M = Vhot/cs, the sound speed being cs = (2γR/MpT )
1

2 with

R the universal gas constant and Mp the proton molar mass. Table I gives the state of

the mixing layer for different values of Vhot. The AC transition at βU = 0 is located at

Mc ∼ 1.75 corresponding to a velocity of the fast-stream gas Vhot = 240 km s−1. For a

velocity greater than 240 km s−1, the speed is so large over most of the mixing layer than

the disturbance is carried away and does not have enough time to develop anywhere, so the

mixing layer in that case is convectively unstable. Perturbations grow spatially with the

mode which possesses the largest spatial growth rate. For Vhot < 240 km s−1, the mixing
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layer is absolutely unstable and disturbance evolves with the mode which is the slow double

root of the dispersion relation. Its imaginary frequency yields its e-folding time τ , and its

real wavenumber, its spatial period L. τ does not decrease uniformly when Mc decreases.

L attains very large scales for small Mc. For Vhot > 240 km s−1, the e-folding length Le

is very small; as a result, strongly and spatially amplifying waves may exist in the mixing

layer. This amplifying effect is due to the strong temperature difference between both media

and is caused by the baroclinic torque. The turbulent-mixing-layer computations41 show

that only small-scale modes are present in the first linear stage of disturbance evolution

and the temporal growth rates remain low for all simulations. The e-folding time of the

absolutely unstable mixing-layer evolution is very small in the Table I compared to the

time of order Mega years around which the mixing layer reaches a steady state when

nonlinearities saturate the KH instability41. The modelled mixing layers then belong to the

weakly-absolute-instability régime that exists for 200 km/s < Vhot < 240 km/s (cf. Table

I) but later on, secondary instability causes the large-scale modes to prevail.

A second application of this study is the solar-wind interaction with the interstellar medium,

interaction which yields two shocks: the bow shock which is the shock through which the IS

wind passes and is decelerated by the solar wind and the heliospheric shock through which

the solar wind passes and is decelerated by the IS wind (cf. Fig. 19). Both compressed

IS and solar winds interact within a mixing layer called the heliopause. We suppose that

the disturbance wavelength is smaller than the curvature of the heliopause radius; the flow

along the heliopause can be then considered as parallel. The IS wind, a gas of temperature

TIS and proton density nIS moves with a supersonic speed VIS with respect to the Sun. As

a discontinuity in density and velocity, Rayleigh-Taylor and Kelvin-Helmholtz instabilities

may occur along the heliopause. The second instability is expected to be more efficient on

the flanks, where the shear flow is more pronounced, away from the stagnation point. As

the gravity force is sunward, the dynamics of the heliopause around the stagnation point

is very similar to this of two still layers, the upper layer being heavier than the lower one.

The Rayleigh-Taylor instability may thus exist near the “nose” point where the difference

between the plasma densities on both sides of the interface is the largest42. At low polar

angle θ < 30◦, Rayleigh-Taylor instabilities are likely to occur but for larger angles, Kelvin-

Helmholtz instabilities develop43. If we choose numerical values from the recent observations
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by Ulysses44, nIS = 0.06 cm−3, TIS = 6500 K and VIS = 26.4 km s−1, and for the solar

wind around the Earth nSW = 8 cm−3, TSW = 2 105 K and VSW = 445 km s−1, yielding the

location of the termination shock around 100 AU away from the Sun. The IS wind contains

H neutral atoms, but we neglect their effects on the heliopause dynamics, effects which

intervene while the charge exchange of H atoms with IS gas protons occurs. The modal

equation (4) would be much more complex if we took the presence of H neutral atoms in

the plasma into account. With this assumption, Baranov45 gives tangential velocities and

pressures along the heliopause as functions of θ. For θ varying from 30◦ to 90◦, βU and βT are

practically constant, βU ∼ 0.081 (cf. Table II for βT ). On the contrary, the convective Mach

number undergoes a higher variation, increasing with θ. We are in the cooled-slow-stream

and coflowing-layer régime where absolute instability may be possible as βT < 0.1. We are

still however in the convectively unstable régime because βU > βU,ACT ∼ 10−2. We notice

that this zone needs a more complex model since we have seen that viscous and thermal

dampings were not negligible owing to the high values of the ACT absolute wavenumber.

The solar rotation generates forced perturbations on the heliopause of period 27 days, which

corresponds to a frequency of 4.3×10−7 s−1. Assuming a heliopause thickness of 20 AU , we

can deduce the dimensionless forcing frequency for each polar angle, at θ = 30◦, ω = 7.14,

θ = 60◦, ω = 3.75 and θ = 90◦, ω = 2.55. The maximum frequency for a spatial mode is

the neutral-mode frequency, this amounts respectively for each polar angle: ωN = 2.60, 2.34

and 2.20. For such a thickness of the heliopause, the solar rotation does not force any of

its modes. Let us now consider a 10 AU thickness, we thus give in the Table II the forced

spatial modes with their associated frequencies. Their wavelength is much smaller than the

mixing-layer thickness. For Mc = 0.51, the forcing frequency is higher than the maximum

permitted frequency. The thickness should be less than 7.28 AU to allow the heliopause at

30◦ for a forced mode. There hence exists a minimum polar angle above which heliopause

modes can be forced. A maximum angle may also exist due to the heliopause thickness

increase with θ and the neutral-mode frequency decrease with Mc. Perturbations along the

heliopause therefore develop all the more rapidly so since the polar angle is far from both

thresholds. After Fig. 15(b), for Mc > 2, −αi,ACT starts to decrease. More generally, all

growth rates decay with Mc, so we can assume that the amplication of these forced waves

attains a maximum in the permitted θ-range. The maximum-growth disturbance is parallel

to the heliopause for small M̂c. This is the case at θ = 60◦ (M̂c = 1.07). On the contrary, if
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M̂c becomes larger, the maximum-growth disturbance is oblique; at θ = 90◦, M̂c = 1.74, the

maximum amplification is given for an angle φ ≃ 23◦ corresponding to the following values:

Mc ≃ 1.60, L ≃ 2.39 AU , Le ≃ 5.47 AU and ωr ≃ 1.40. Such a e-folding length Le is related

to a variation of the polar angle of only 1.84◦ for a heliopause located at 170 AU from the

Sun.

VII. SUMMARY AND CONCLUSIONS

The absolute/convective transition is given by the pinching of two first modes. The

latter are two subsonic/subsonic vortex modes for small Mach numbers less than M∗ and

become two supersonic/subsonic vortex modes as M . M∗. The second modes which ap-

pear for M ≥ M∗, subsonic/supersonic modes do not intervene in the transition because

they propagate within the disturbance wavepacket with a higher real group velocity at any

M . Although the spatial growth rate −αi decreases with the Mach number, not only is

the convective absolute transition still possible at high M , for M > M∗, but this passage

occurs in fact earlier; the amount of backflow −βU required for taking the mixing layer to-

ward absolute instability tends asymptotically to zero as M tends to infinity. The temporal

growth rate in the absolute-instability zone nevertheless becomes very small for Mc > 1.

The transition toward turbulence should become more difficult because slowed down by

the appearance of intermediary basic flows, under the form of elongated Kelvin-Helmholtz

billows. Fully developed turbulence is not really, however, completely reduced at high M ;

Goebel and Dutton46 found that transverse turbulence intensities and normalized kinematic

Reynolds stresses decreased with increasing relative Mach number, whereas the streamwise

turbulence intensities and kinematic Reynolds stress correlation coefficients remained rela-

tively constant. Moreover as Mc increases, dispersion weakens. The absolute frequency of

the ACT double root tends to zero at supersonic values. The group velocity also tends to

zero. It is no longer therefore worth using notions of convective and absolute instabilities.

The transition can be given with a very good approximation by the neutral slow mode as

soon as the convective Mach number is supersonic. Besides, this study confirms Pavithran

& Redekopp24 and Jackson & Grosch25’s studies undertaken at subsonic régime. Cooling the

slow stream of a mixing layer has a destabilising effect whatever M may be. The baroclinic

term in the vorticity transport equation, named baroclinic torque too, plays a prevailing rôle
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in the passage to absolute instability. As we have recalled in the Introduction, it elongates

the Kelvin-Helmholtz billows and causes the growth rate to decrease at high Mach number.

Its action on the enhancement of the growth rate and on the acceleration of the passage to

absolute instability is more efficient at low Mach numbers. Indeed, when the slow stream is

very cooled, as soon as βT . 0.1, a positive-βU transition appears over a Mach number range

that starts from M ≃ 1 and increases as βT decreases. As M < 1, it is not possible to find

damping unstable waves at very small βT . The limit of existence of unstable waves is given

by a third branch cut that had not been mentioned yet in the literature. The transonic state

then becomes the most absolutely unstable. On the contrary, heating the slow stream can

make the absolute instability vanish at low Mach numbers. The AC transition is as well all

the earlier so since the temperature profile experiences a steep evolution within the mixing

layer. At last, these numerical results do not only characterize the hyperbolic-tangent-like

profile mixing layer but are qualitatively identical for any other mean profile that is decaying

exponentially at infinity.

We have applied the results of the analysis to the stabilities of Interstellar Medium mixing

layers and of the heliopause. Our main conclusions are the following ones. Using a ISM

mixing layer model with a temperature ratio βT = 0.02 corresponding to the smallest ratio

that we could compute with our spectral method, we have deduced that the initial stage of

the disturbance evolution was associated to a weakly absolutely unstable mixing layer. The

KH mode that is excited has a small scale and a low temporal growth rate. The transition

to turbulence is however given by a large-scale secondary instability.

The flanks of the heliopause defined by a polar angle θ ≥ 30◦ are characterized by a

compressible plasma where the related Mach number increases gradually with θ. The flow is

there convectively unstable. The periodic perturbation of the heliopause induced by the solar

rotation forces this interface over a polar-angle range provided its thickness is sufficiently

thin, roughly less than 17 AU in the θ ≤ 90◦-range. The spatial growth rate can be then

estimated fairly strong. Around θ = 90◦ for example, this amplification corresponds to an

arc less than 2◦.

For a better relevance to space and astrophysical flows, we intend to introduce, for further

papers, a magnetic field. After considering magnetohydrodynamic AC instability transition,

Terra-Homem & Erdélyi47 deduced that the presence of an external magnetic field had a

strong stabilizing effect on the mixing-layer dynamics.
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[7] Y. Taroyan and R. Erdélyi,,”Steady state excitation of field line resonances by global waveguide

modes in the magnetosphere”, J. Geoph. Res. 108, A71301(2003).

[8] L. Landau,”Stability of tangential discontinuities in compressible fluid”, Doklady Akad. Nauk

S.S.S.R.,Proceedings 44, 139-141(1944).

[9] L. Lees and C. C. Lin, ”Investigation of the stability of the laminar boundary layer in a

compressible fluid”, NACA Technical Note 1115(1946).

[10] W. O. Criminale, T. L. Jackson and R. D. Joslin, “Stability of compressible flows”, in Theory

29



and computation of hydrodynamic stability (ed. Cambridge University Press, Cambridge,

2003), 132-172.

[11] W. Blumen, “Shear layer instability of an inviscid compressible fluid”, J. Fluid Mech. 40, 4,

769-781(1970).

[12] W. Blumen, P. G. Drazin and D. Billings, “Shear layer instability of an inviscid compressible

fluid. Part II”, J. Fluid Mech. 71, 2, 305-316(1975).

[13] P. G. Drazin and A. Davey,”Shear layer instability of an inviscid compressible fluid. Part III”,

J. Fluid Mech. 82, 2,255-260(1977).

[14] S. A. Ragab and J. L. Wu, “Linear instabilities in two-dimensional compressible mixing layers”,

Phys. Fluids A 1, 6, 957-966(1989).

[15] T. L. Jackson and C. E. Grosch, “Inviscid spatial stability of a compressible mixing layer”, J.

Fluid Mech. 208, 609-637(1989).

[16] L. M. Mack, ”On the inviscid acoustic-mode instability of supersonic shear flows Part 1:

two-dimensional waves”, Theoret. Comput. Fluid Dynamics. 2, 97-123(1990).

[17] N. D. Sandham and W. C. Reynolds, “Compressible mixing layer: linear theory and direct

simulation”, AIAA J.28, 4, 618-624(1990).

[18] D. Papamoschou,”Communication paths in the compressible shear layer”, AIAA Pap.90-0155,

AIAA 28th Aerospace Sciences Meeting, Reno, Nevada(1990).

[19] P. J. Lu and K. C. Wu, ”Numerical investigation on the structure of a confined supersonic

mixing layer”, Phys. Fluids A 3, 12, 3063-3079(1991).

[20] S. A. Ragab and S. Sheen, “The nonlinear development of supersonic instability waves in a

mixing layer”, Phys. Fluids 4, 3, 553-566(1992).

[21] P. Huerre and P. A. Monkewitz,”Absolute and convective instabilities in free shear layers”, J.

Fluid Mech. 159, 151-168(1985).

[22] D. J. Forliti, B. A. Tang and P. J. Strykowski,”An experimental investigation of planar coun-

tercurrent turbulent shear layers”, J. Fluid Mech. 530, 241-264(2005).

[23] B. J. Bayly, S. A. Orszag and T. Herbert,”Instability mechanisms in shear-flow transition”,

Ann. Rev. Fluid Mech.20, 359-391(1988).

[24] S. Pavithran and L. G. Redekopp, “The absolute-convective transition in subsonic mixing

layers”, Phys. Fluid A 1, 10, 1736-1739(1989).

[25] T. L. Jackson and C. E. Grosch,“Absolute/convective instabilities and the convective Mach

30



number in a compressible mixing layer”, Phys. Fluids 2, 6, 949-954(1990).
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Vhot Mc instability wavelength L growth rate growth scale

(km/s) (pc) τ (kyear), Le (pc)

120 1 AU 6.79 ωi ∼ 0.045 τ ∼ 90

170 1.30 AU 0.82 ωi ∼ 0.047 τ ∼ 61

204 1.49 AU 0.085 ωi ∼ 0.025 τ ∼ 96

240 1.75 ACT 0.068 ωi ∼ 0, −αi ∼ 11.73 τ ∼ ∞, Le ∼ 0.043

300 2.19 CU 0.270 −αi,max = 6.10 Le = 0.082

TABLE I: Instabilities in a ISM mixing-layer model: βU = 0 and 1 pc-wide protonic-gas mixing

layer.

θ βT φ Mc frequency ωr wavelength L growth rate−αi e-folding length Le

(AU) (AU)

30◦ 0.019 0 0.51 3.57 > ωN −−− −−− −−−

60◦ 0.021 0 1.07 1.87 1.72 0.679 7.36

30◦ 0.93 2.16 1.47 0.321 15.58

0 1.74 1.28 2.62 0.877 5.70

90◦ 0.021 30◦ 1.51 1.47 2.24 0.905 5.52

45◦ 1.23 1.80 1.79 0.709 7.05

TABLE II: Convective instabilities along a heliopause model: βU = 0.081 and 10 AU -wide protonic-

gas mixing layer.
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FIG. 1: Branch cuts c± versus Mach number for βU = −0.5 and βT = 2.

(a)

(b)

FIG. 2: Branch cuts at ci = 0.2: (a) βT = 2, βU = −0.5; (b) βT = 0.1, βU = 0.2; dotted line

branch cuts c±2,−,r at −αi/αr = 0.12, 0.25, 0.75, 1, 2, 4, 10 and 100, for βU < 0 and the opposite for

βU > 0, dot-dashed line, branch cut c2,−,r for which ωi = 0 from Eq. 14.

34



(a)

(b)

FIG. 3: (a) Comparison between different computations of the ACT modes in the (βU ,M) plane:

⋄ from Jackson and Grosch25, � from Runge-Kutta scheme integration of (5), solid lines from the

spectral method with the temperature profile (3), βT = 0.5 and βT = 1, dotted line βT = 1 and

temperature profile (2). AU stands for absolutely unstable and CU for convectively unstable.

(b) ACT modes in the (βU ,Mc) plane for various values of βT . The legend stands for: dotted

line βT = 0.02, three-dot-dashed line βT = 0.1, dot-dashed line βT = 0.5, solid line βT = 1, short

dashed line βT = 2, long dashed line βT = 10.
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(a)

(b)

FIG. 4: Contours of ωi in the α-plane for two ACT modes at βT = 1: (a) βU = −0.1641 and

M = 0.5, (b) βU = −0.2541 and M = 3. Long-dashed and dot-dashed lines are the two branches

ωr = ω0,r, one is upstream and the second downstream showing the pinching condition.
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(a)

(b)

FIG. 5: (a) Growth rate γ = ωi−αiV and (b) phase speed cr, as functions of V at M = 2. βT = 1:

solid line βU = −0.3116, dotted line βU = −0.1 and dashed line βU = 0; βT = 0.5: dot-dashed

line βU = −0.1840; βT = 2: three-dot-dashed line βU = −0.4985; βT = 0.02: long-dashed line

βU = 13.5 10−6; γ has been divided by 10 for the slow-mode growth of that last value of βT .
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(a)

(b)

FIG. 6: The double root possessing the maximum ωi for βT = 1 (solid line): (a) ωi and (b) −βU

as functions of Mc.
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(a)

(b)

FIG. 7: The first and second modes βU = −0.3443, βT = 1, M = 1.5 (Mc ≃ 1.01), ACT mode

cr = 0.1403, αr = 0.2012, αi = −0.1844 and ωr = 0.519: (a) cr and (b) −αi as functions of ωr.
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(a)

(b)

FIG. 8: The spatial growth rate −αi as a function of ωr at βT = 1 for the first and second modes:

(a) βU = −0.1641, M = 0.5 (Mc ≃ 0.29), αr = 0.2737, αi = −0.4690, cr = 0.1475 and ωr = 0.1589,

and (b) βU = −0.2541, M = 3 (Mc ≃ 1.88), αr = 0.1684, αi = −0.0735 and ωr = 0.0099.
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FIG. 9: Pinching ACT double roots at M = 1.4: βT = 0.1, βU = −0.0206 (Mc = 1.09), and

βT = 0.02, βU = 0.0064 (Mc ∼ 1.22); α+
1 : dotted line and dot-dashed line, α−

1 : three-dot dashed

line and solid line, α+
2 : dashed line (βT = 0.1) and ♦ (βT = 0.02).
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(a)

(b)

FIG. 10: (a) ACT-mode phase speed (solid line) with the branch cuts c+ (dashed line), c− (dotted

line), c2,−,r (three-dot-dashed line) given respectively by (9), (11) and (14), and the neutral-mode

phase speed (dot-dashed line) for βT = 1; (b) asymptotic behaviour of ACT βU at high Mach

numbers, same legend as in Fig. 3 (b).
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(a)

(b)

FIG. 11: (a) Limiting values of ACT βT as a function of M ; maximum value for a counterflow

βU = −1, solid line, and minimum value at the edge of the branch cut from Eq. 14, numerical data

dashed line, βT given by Eq. 14 ♦, with the corresponding scale on the right axis, (b) −βU as a

function of Mc at βT = 2.
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12

FIG. 12: Branch cuts in the (cr,M) plane for βT = 0.02, c−: βU ± β
1/2
T /M , the curve c2,−,r is

determined by taking Eq. 14 and using αACT and βU,ACT , b2 > 0 in Eq. 13 for M ≤ 0.99. The

first double root appears at M = 0.978 for cr ≃ −0.0020, c2,−,r ≃ −0.0016, it is a subsonic mode

located in the domain 1. As soon as M & 1, (Mc & 0.888), ACT modes belong to the domain 4.
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(a)

(b)

FIG. 13: (a) ACT modes in the (ωr,Mc) plane for various values of βT ; for βT = 10, ωr has been

magnified by a factor 50, same legend as in Fig. 3 (b); (b) ACT absolute frequencies with their

branch cuts (14); βT = 0.5: solid line ωr; dashed line αrc−; dot-dashed line ω−

2 ; βT = 2: dotted

line ωr, long-dashed line αrc
−, three-dot-dashed line ω−

2 .
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(a)

(b)

FIG. 14: ACT modes in the (αr,Mc) plane for various values of βT , same legend as in Fig. 3 (b).

(a) zoom at small αr.
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(a)

(b)

FIG. 15: ACT modes in the (αi,Mc) plane for various values of βT , same legend as in Fig. 3 (b).

The spatial growth rate has been magnified by 15 for the case βT = 10. (a) zoom at small −αi.
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(a)

(b)

FIG. 16: ACT modes in (a) the (cr,Mc) plane and in (b) the (ci,Mc) plane for various values of

βT , same legend as in Fig. 3 (b).
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(b)

 17

b)

FIG. 17: Effect of the angle φ as a function of M̂ = M/ cos φ at βT = 1 on (a) the ACT ratio βU

and on (b) the spatial instability −αi. Solid line φ = 0, dotted line φ = 30◦, short-dashed line

φ = 45◦, dot-dashed line φ = 60◦ and three-dot-dashed line φ = 75◦.
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(a)

(b)

FIG. 18: Comparison of Tanh and Erf-like U profiles with erf[η] = 2/π1/2
∫ η
0 e−t2dt: a) profiles

U(y) at βU = −0.5 and βU = −1; b) −βU as a function of Mc at βT = 0.1 and βT = 2.
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FIG. 19: Schematic of the heliosphere
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