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Abstract—The least squares based eigenfilter method has been
applied to the design of both finite impulse response (FIR) filters
and wideband beamformers successfully. It involves calculating
the resultant filter coefficients as the eigenvector of an appro-
priate Hermitian matrix, and offers lower complexity and less
computation time with better numerical stability as compared
to the standard least squares method. In this paper, we revisit
the method and critically analyze the eigenfilter approach by
revealing a serious performance issue in the passband of the de-
signed FIR filter and the mainlobe of the wideband beamformer,
which occurs due to a formulation problem. A solution is then
proposed to mitigate this issue, and design examples for both FIR
filters and wideband beamformers are provided to demonstrate
the effectiveness of the proposed method.

Index Terms—Least squares, eigenfilter, filter design, wideband
beamformer design.

I. INTRODUCTION

FIR filters and wideband beamformers have numerous ap-

plication ranging from SONAR, RADAR, audio processing,

ultrasound imaging, radio astronomy, earthquake prediction,

medical diagnosis, to communications, etc [1, 2]. Many opti-

mization methods have been employed in the past to design

FIR filters and wideband beamformers with required specifi-

cations. General convex optimization is one of the techniques

that has been extensively explored from this perspective [3–

6] with the inherent drawback of long computation time

required to reach the feasible solution. Although it can be

considered as a special case of the convex optimization

approach, least squares based design has been adopted as a

simple but effective solution to both design problems, which

minimizes the mean squared error between the desired and

designed responses [2, 7, 8]. The solution of the standard least

squares cost function involves matrix inversion to obtain the

required weight vector. Since matrix inversion poses numerical

instability with long filters [9], another method was proposed

based on the least squares approach by performing eigenvector

decomposition of a cost function to extract the required

weight vector in the form of an eigenvector. This method

is called eigenfilter design and has been explored for de-

signing both filters and beamformers [10–15]. Moreover, the

design of linear-phase FIR Hilbert transformers and arbitrary

order digital differentiators were considered by Pei and Shyu

[16, 17], who also investigated the design of arbitrary complex

coefficient nonlinear-phase filters [18, 19]. Two-dimensional

(2-D) extension to the eigenfilter method was proposed by

Nashashibi and Charalambous [20], and later considered by

Pei [21, 22]. Eigenfilters have also been used to design Infinite

Impulse Response (IIR) and all-pass filters [23, 24].

In this work, we revisit the eigenfilter method for designing

FIR filters and wideband beamformers and reveal a serious

performance issue in the passband of the designed FIR filters

and the mainlobe of the designed wideband beamformers in

the light of an inherent design formulation flaw. An overall

critical analysis of the performance of this approach is pre-

sented with the suggested modification for tackling this issue.

This paper is organized as follows. The eigenfilter based

design formulation for FIR filters and wideband beamformers

along with the critical analysis is presented in Section II.

The proposed solution to the highlighted problem is given

in Section III. Design examples for different types of FIR

filters and wideband beamformers affected by the problem are

provided in Section IV followed by results using the proposed

solution. Conclusions are drawn in Section V.

II. LEAST SQUARES BASED DESIGN AND

CRITICAL ANALYSIS

A. FIR filter design

Consider an N−tap FIR filter. Its frequency response

W (ejω) is given by

W (ejω) =

N−1
∑

n=0

wne
−jnω , (1)

where wn is the n−th tap/coefficient of the filter. In vector

form, we have

W (ejω) = wHc(ω) (2)

where w is the N × 1 weight vector holding the coefficients

wn, n = 0, 1, . . . , N − 1, and

c(ω) = [1, e−jω, · · · , e−j(N−1)ω]
T
. (3)

Now consider designing a lowpass filter as an example and

the desired response D(ω) is expressed as

D(ω) =

{

e−jωN−1

2 , 0 ≤ ω ≤ ωp

0, ωs ≤ ω ≤ π
(4)



where e−jωN−1

2 represents the desired linear phase at the

passband along with the desired stopband response equal to

zero.

The design process involves formulating the cost function

in the standard eigenfilter form, which is based on Rayleigh-

Ritz principle which states that for any Hermitian matrix R,

its Rayleigh-Ritz ratio is given by

wHRw

wHw
(5)

This ratio reaches its maximum/minimum when w is the eigen-

vector corresponding to the maximum/minimum eigenvalue

of R. The maximum and minimum values of this ratio are

respectively the maximum and minimum eigenvalues. For FIR

filter design, a reference frequency point was introduced by

Nguyen in the passband region of the cost function to help

represent it into the quadratic form as desired by (5) [11].

The cost function with reference frequency point incorporated

is given as

E =
1

π

∫

ω

v(ω)

∣

∣

∣

∣

D(ω)

D(ωr)
W (ejωr )−W (ejω)

∣

∣

∣

∣

2

dω (6)

where v(ω) is the weighting function and D(ωr) and W (ejωr )
represent the desired and designed responses at reference

frequency, respectively. Then, we have

E =
1

π

∫

ω

v(ω)

(

D(ω)

D(ωr)
W (ejωr )−W (ejω)

)

(

D(ω)

D(ωr)
W (ejωr )−W (ejω)

)H

dω

(7)

For stopband, the desired response D(ω) = 0. We have

Es =
1

π

∫ π

ωs

v(ω)W (ejω)W (ejω)Hdω (8)

Substituting the expression in (2) into (8), we have

Es =
1

π

∫ π

ωs

v(ω)wHc(ω)c(ω)Hwdω (9)

Then we can express (9) as

Es = wHPsw (10)

where Ps is a symmetric, positive definite matrix of order N

x N given by

Ps =
1

π

∫ π

ωs

v(ω)c(ω)c(ω)Hdω (11)

The passband cost function is derived by incorporating the

desired passband response D(ω) = e−jωN−1

2 into (7)

Ep =
1

π

∫ ωp

0

v(ω)

(

e−jωN−1

2

e−jωr
N−1

2

W (ejωr )−W (ejω)

)

(

e−jωN−1

2

e−jωr
N−1

2

W (ejωr )−W (ejω)

)H

dω

(12)

After simplification, we have

Ep =
1

π

∫ ωp

0

v(ω)wH
(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)

(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)H

wdω

(13)

This expression can also be written as

Ep = wHPpw , (14)

where Pp is a symmetric, positive definite matrix of order N

x N given by

Pp =
1

π

∫ ωp

0

v(ω)
(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)

(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)H

dω

(15)

The total cost function is a combination of the passband and

stopband cost functions with a trade-off factor α

E = αEp + (1− α)Es , 0 ≤ α ≤ 1 (16)

which can be transformed into

E = wHPw (17)

where

P = αPp + (1− α)Ps, 0 ≤ α ≤ 1 (18)

Combining (11) and (15) in (18) and taking the real part, we

have

P = α

∫ ωp

0

Re[
(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)

(

e−j N−1

2
(ω−ωr)c(ωr)− c(ω)

)H

]dω

+(1− α)

∫ π

ωs

Re[c(ω)c(ω)H ]dω

(19)

The solution rests in finding the eigenvector w corresponding

to the minimum eigenvalue of P which minimizes E. The

norm constraint wHw = 1 is also incorporated to avoid trivial

solution. The final expression of solution for the eigenfilter

based FIR filter design problem is given by

Min
w

wHPw

wHw
(20)

After investigating the designed filter’s performance, it is

found that although the design performs well for most of the

cases with varying specifications for short filters, it produces

ever increasingly inconsistent results as the number of filter

taps increases for the same set of specifications. With those

longer filters, the passband performance starts varying and

switches from one case with flatness around near unity gain to

another case with flatness achieved at almost zero magnitude.

This unstable performance can be attributed to the for-

mulation in (19) where the first part of the cost function

measures the difference between the filter’s response at the

reference frequency ωr and those at the other frequencies

ω in the passband. The term e−j N−1

2
(ω−ωr) compensates for

different phase shifts of the response at different frequencies.



Fig. 1: A general structure for wideband beamforming.

This expression minimizes the relative variation of the filter’s

response at different passband frequencies and ensures a flat

passband response. However, there is no control over the

absolute value of the filter’s response in passband, which can

lead to inconsistent design performance.

B. Wideband beamformer design

Consider a wideband beamformer with tapped delay lines

(TDLs) or FIR filters shown in Figure 1, where J is the number

of delay elements associated with each of the M sensors.

The wideband beamformer samples the propagating wave field

in both space and time. Its response as a function of signal

angular frequency ω and direction of arrival θ is given by [2]

P (ω, θ) =

M−1
∑

m=0

J−1
∑

k=0

wm,ke
−jω(τm+kTs) (21)

where Ts is the delay between adjacent taps of the TDL and

τm is the spatial propagation delay between the m− th sensor

and the reference sensor. We can also express (21) as

P (ω, θ) = wT d(ω, θ) (22)

where w is the coefficient vector

w = [w0,0, · · ·wM−1,0, · · ·w0,J−1, · · · , wM−1,J−1]
T

(23)

and d(ω, θ) is the M x J steering vector

d(ω, θ) = dTs(ω)⊗ dτm(ω, θ) (24)

where ⊗ denotes the Kronecker product. The terms dTs(ω)
and dτm(ω, θ) are defined as

dTs(ω) = [1, e−jωTs , · · · , e−j(J−1)ωTs ]
T

(25)

dτm(ω, θ) = [e−jωτ0 , e−jωτ1 , · · · , e−jωτM−1 ]
T

(26)

For a uniform linear array (ULA) with an inter-element

spacing d, and angle θ measured from the broadside, the

spatial propagation delay τm is given by τm = mτ1 = md sin θ
c

.

With normalized angular frequency, Ω = ωTs, and µ = d
cTs

,

the steering vector is given by

d(Ω, θ) = dTs
(Ω)⊗ dτm(Ω, θ) (27)

dTs
(Ω) = [1, e−jΩ, · · · , e−j(J−1)Ω]

T
(28)

dτm(Ω, θ) = [1, e−jµΩsinθ, · · · , e−j(M−1)µΩsinθ]
T

(29)

Now we have (22) as a function of Ω and θ, given by

P (Ω, θ) = wT d(Ω, θ) (30)

The desired response for the wideband beamformer is rep-

resented by Pd(Ω, θ). Then, the eigenfilter based cost function

can be expressed as

Jef (w) =

∫

Ωpb

∫

Θ

v(Ω, θ)

∣

∣

∣

∣

P (Ω, θ)− P (Ωr, θr)
Pd(Ω, θ)

Pd(Ωr, θr)

∣

∣

∣

∣

2

dΩdθ
(31)

where (Ωr, θr) is the reference point. We can change this

expression into

Jef (w) = wHGefw (32)

where

Gef =

∫

Ωpb

∫

Θ

v(Ω, θ)

(

d(Ω, θ)− d(Ωr, θr)
Pd(Ω, θ)

Pd(Ωr, θr)

)

(

d(Ω, θ)− d(Ωr, θr)
Pd(Ω, θ)

Pd(Ωr, θr)

)H

dΩdθ

(33)

Consider a typical design case with desired sidelobe re-

sponse equal to zero and response at look direction θ0 given

by e−j J
2
Ω equal to a pure delay; Ωr and Ωpb represent the ref-

erence frequency and passband frequency range, respectively,

and α is the weighting factor for the mainlobe. The expression

in (33) is modified accordingly for real-valued beamformer

coefficients and given by

Gef = α

∫

Ωpb

Re[
(

d(Ω, θ0)− e−j J
2
(Ω−Ωr)d(Ωr, θr)

)

(

d(Ω, θ0)− e−j J
2
(Ω−Ωr)d(Ωr, θr)

)H

]dΩ

+(1− α)

∫

Ωpb

∫

Θls

Re[d(Ω, θ)d(Ω, θ)H ]dΩdθ

(34)

Then, the solution to the wideband beamformer design prob-

lem is given by

Min
w

wHGef (Ω, θ)w

wHw
(35)

Similar to the FIR filter design case, testing of the designed

wideband beamformer through the eigenfilter method showed

an inconsistent performance. The design performed well for

some look directions, while attained a very poor response for

other look directions.

This variable nature of look direction response for the same

set of specifications can again be traced back to the design

formulation in (34), where the first part of the expression



calculates the difference between the beamformer response at

reference point (Ωr, θr) and those at other frequencies in the

look direction θ0 . The term e−j J
2
(Ω−Ωr) compensates for the

different phase shifts experienced by the wideband signal at

different frequencies. The formulation ensures minimzation of

the relative error at the look direction for different frequencies,

thus providing flat response at θ0. However, just like the FIR

filter case, there is a lack of control for absolute response in

the look direction which can lead to design failure.

III. PROPOSED SOLUTION

As shown in our analysis of the eigenfilter design for both

FIR filters and wideband beamformers in Section II, the key

issue is its lack of control of the achieved response at the

passband/look direction compared to the desired one in the

formulation. To solve this problem, we add an additional

constraint to the formulation to specify the required response

explicitly at the reference point. Since the original formulation

will minimize the variation of the achieved response in the

passband/look direction, the explicit control of the response

of the designed filter/beamformer at one reference point of

the passband/look direction will guarantee the design reaches

the desired response for the whole considered passband/look

direction region with a minimum overall error.

Now, constraining the reference frequency response to unity

by adding a linear constraint to (20) gives us the following

modified design formulation

Min
w

wHPw Subject to CHw = f (36)

where the constraint matrix C and the response vector f

provide the required constraint on the weight vector w so that

the resultant design can have the required exact response at

the reference frequency. Note that we can add other constraints

to the formulation of C and f so that more flexible constraint

can be imposed on the design. For example, we can add a

constraint to make sure the resultant design has an exact zero

response at some stopband frequencies.

The solution to (36) can be obtained by the Lagrange

multipliers method and it is given by

wopt = P−1C(CHP−1C)−1f (37)

For the wideband beamformer design, the modified problem

is given by

Min
w

wHGefw Subject to CHw = f (38)

where C and f can be formulated in a similar way as before

and the solution to (38) is given by

wopt = G−1
ef C(CHG−1

ef C)−1f (39)

Note that there are matrix inversion operations in (37)

and (39), which can be computationally intensive for larger

filters and beamformers. However, there are other approaches

available in literature e.g. null space based methods to solve

(36) and (38) without the need to compute matrix inversion

[2].

IV. DESIGN EXAMPLES

In this section, design examples are provided to show the in-

consistent performance produced by the original unconstrained

eigenfilter design method. The examples are then re-designed

through the proposed constrained eigenfilter method to show

the improvement.

A. Unconstrained eigenfilter design

First consider the lowpass filter design scenario. The whole

frequency range from [0, π] was discretized into 400 points.

The design specifications include passband from [0, 0.5π]

and stopband from [0.8π, π]. A 70-tap filter with trade-off

parameter α = 0.97 and reference frequency at 0.35π is then

designed. The result is shown in Figure 2 in blue colour (solid

curve) with a clearly satisfactory design performance. In the
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Fig. 2: The designed lowpass FIR filters using the original

formulation.

second case, we change the number of taps to 76 and all the

other specifications are the same as the first case. The result

is shown in Figure 2, highlighted in dashed curve with red

colour. We can see that the passband response is out of control,

with a flat response of around -118 dB, and the resulting

ratio between passband and stopband is just around 19 dB

(if ignoring the unacceptable response at the transition band).

For highpass filters, again two cases are presented. For the

first case, we have 81 taps, stopband is from [0, 0.4π] and

passband from [0.7π, π]. The tradeoff factor α = 0.71 and the

reference frequency is 0.74π. The satisfactory design result is

shown in Figure 3 with solid curve and blue colour.

For the second case, we just change the reference frequency

to 0.94π and the result is shown in Figure 3 with dashed

red colour, which is without any doubt unacceptable, with a

passband response only at around -130 dB.

For the wideband beamformer design, we consider an array

with 10 sensors and 10 taps. The look direction is θ0 = 10◦

with desired response e−j5Ω. The frequency band consists

of Ωpb = [0.4π, π] with Ωr = 0.7π and θr = 10◦ as the

reference point. The weighting function is set as α = 0.6 at

look direction and 0.4 at sidelobe region from −900 to −100

and 300 to 900. The frequency range is discretized into 20

points, while the angle range divided into 360 points. The
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Fig. 3: The designed highpass FIR filters using the original

formulation.
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Fig. 4: The designed wideband beamformer using the original

formulation.

result is shown in Figure 4(a), where it can be seen that the

mainlobe and the sidelobe have a reasonable ratio of 20 dB.

Now we change the look direction to θ0 = 00 with sidelobe

region from −900 to −200 and 200 to 900 with the remaining

specifications unchanged. The result is shown in Figure 4(b),

it can be observed that the look direction has a flat response

at around -40 dB, even lower than the sidelobe.

B. Constrained eigenfilter design

We now apply the constrained eigenfilter formulation in (36)

to design the lowpass and highpass filters specified in Section

IV-A. The new results are presented in Figure 5(a) and 5(b).

Although there is still a noticeable bump at the transition band,

the overall response has been improved significantly compared

to the results in Figures 2 and 3.

For the beamformer presented in Figure 4(b), we re-design

it using the constrained formulation in (38) and the result is

provided in Figure 6, where the look direction and the sidelobe

now have a reasonable ratio of 26 dB.

We have tried various designs and the proposed method

performs consistently well in different scenarios.

V. CONCLUSION

The classic eigenfilter approach has been revisited and

critically analyzed, where a formulation problem is highlighted

in the passband/look direction part of the cost function, leading

to an inconsistent design performance. A solution was then
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(a) 76 taps low pass filter
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(b) 81 taps high pass filter

Fig. 5: The designed lowpass and highpass filters using the

constrained design.
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Fig. 6: The designed wideband beamformer with θ0 = 00

proposed by adding a linear constraint, explicitly setting the

designed passband response at a reference point to the desired

one. Results have been provided for different design scenarios

to demonstrate the crucial issue of the original formulation

and the satisfactory performance by the proposed one.
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