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Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal
microcircuit

Mark D. Humphries∗, Ric Wood, Kevin Gurney

Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, S10 2TN, UK

Abstract

The striatum, principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input
from all over neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain.
Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection
neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding the computations it performs,
hampered by the non-laminar structure that prevents identification of a repeating canonical microcircuit. We here begin the identi-
fication of potential dynamically-defined computational elements within the striatum. We construct a new three-dimensional model
of the striatal microcircuit’s connectivity, and instantiate this with our dopamine-modulated neuron models of the MSNs and FSIs.
A new model of gap junctions between the FSIs is introduced and tuned to experimental data. We introduce a novel multiple spike-
train analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales.
We find that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear, consistent
with experimental observations, and that the number of assemblies and the time-scale of synchronisation is strongly dependent on
the simulated concentration of dopamine. We also show that feed-forward inhibition from the FSIs counter-intuitively increases
the firing rate of the MSNs. Such small cell assemblies forming spontaneously only in the absence of dopamine may contribute to
motor control problems seen in humans and animals following loss of dopamine cells.
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1. Introduction

The striatum is a large subcortical nucleus that forms the
principal input structure of the basal ganglia. Diseases that
directly affect the striatum or its primary afferents – such as
Huntington’s or Parkinson’s disease – lead to profound deficits
in motor control. In particular, loss of dopamine cells in Parkin-
son’s disease and its animal models leads to motor symptoms
of rigidity, akinesia, and tremor (Schwarting & Huston, 1996;
Kirik et al., 1998; Ferro et al., 2005), and the striatum is the
main locus of dopamine’s action, containing the highest density
of dopamine receptors in the vertebrate brain (Dawson et al.,
1986; Richtand et al., 1995; Hurd et al., 2001). Moreover, an
intact dopamine system also seems to be critical for many forms
of learning (Whishaw & Dunnett, 1985; Ferro et al., 2005), con-
sistent with reported correlations between dopamine cell firing
and the prediction error required by reinforcement learning the-
ories (Redgrave & Gurney, 2006; Schultz, 2007). An intact
striatum is similarly required for successful acquisition of many
instrumental conditioning tasks (Yin & Knowlton, 2006). An
understanding of the striatum’s computational operation would
thus shed light on a fundamental contributor to both motor con-
trol and learning.
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Within the striatum lies a complex, predominantly GABAer-
gic, microcircuit (Bolam et al., 2006). Medium spiny projec-
tion neurons (MSNs) are the only output neurons and com-
prise up to 95% of the cell population in rat, with GABAer-
gic and cholinergic interneurons forming most of the remaining
cell population. Despite their comparatively small number, the
GABAergic fast-spiking interneurons (FSIs) in particular exert
a very strong influence on the MSNs (Koos & Tepper, 1999),
receive input from similar sources, and are interconnected by
both chemical synapses and gap junctions. Dopamine has mul-
tiple effects on these neuron types, via multiple receptor types:
indeed, the exact effects of dopamine receptor activation on the
MSN have been much debated (Surmeier et al., 2007). Seem-
ingly ideal for underpinning its multiple functional roles, the
striatum receives massive convergent input from the neocortex,
thalamus, hippocampal formation, and amygdala (McGeorge &
Faull, 1989; Groenewegen et al., 1999; Glynn & Ahmad, 2002;
Smith et al., 2004), and dopamine modulates striatal neurons’
responses to them.

Despite, or perhaps due to, this complexity of structure and
input, there are few well-quantified theories of the striatum’s
computational role. Many theories of striatal-specific or global
basal ganglia function draw explicit attention to the role of
the inhibitory local MSN collaterals as a substrate for com-
petitive dynamics (e.g. Wickens et al., 1991; Pennartz et al.,
1994; Beiser & Houk, 1998; Frank, 2005), whether that compe-
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tition be labelled ‘decision making’, ‘motor program selection’
or ‘pattern classification’. Wickens and colleagues’ domain hy-
pothesis is the most developed, and proposes that the basic com-
putational element of the striatum is the set – or “domain” – of
all MSNs that are mutual inhibitory (see e.g. Wickens et al.,
1991; Alexander & Wickens, 1993; Wickens et al., 1995). In
simulation, they have shown that winner-takes-all like competi-
tion occurs within a single domain, while winners-share-all dy-
namics (multiple active neurons) occur in networks composed
of multiple overlapping domains (Wickens et al., 1991; Alexan-
der & Wickens, 1993). Similar results have been obtained in an-
alytical studies of general mutually inhibitory neural networks
(Fukai & Tanaka, 1997).

All such theories of competitive dynamics are faced by the
problems that the inhibition provided by the local MSN col-
laterals is weak (Jaeger et al., 1994; Tunstall et al., 2002;
Czubayko & Plenz, 2002; Koos et al., 2004; Taverna et al.,
2004), that a single MSN is only contacted by between 12-18%
of MSNs in its dendritic field (Tepper et al., 2004), and that mu-
tual inhibition is the exception rather than rule (Tunstall et al.,
2002; Tepper et al., 2004).

Some theories do predict such weak connections. Bar-Gad
et al. (2003) have proposed that the striatum compresses infor-
mation relayed to it from cortex, transmitting back the com-
pressed version via the basal ganglia output nuclei. They noted
that the two layer network formed by the striatum and the output
nuclei can be mapped to standard neural network implementa-
tions of principal components analysis, and that these require
weak correlation in a layer corresponding to the striatum. While
an interesting hypothesis, this mapping does not account for the
microcircuit of the striatum, or the effects of the numerous neu-
romodulators within it. Other models of the whole basal gan-
glia circuit do not rely on the local collaterals within striatum
for their computations, rather proposing that the striatum is both
integrator of diverse cortical information and filter on weak cor-
tical inputs, as the first stage of an input selection mechanism
implemented by the whole basal ganglia (as opposed to just the
striatum), (Gurney et al., 2001; Humphries et al., 2006) – but
these models too do not account for the striatal microcircuit.

Our aim is to find out what computations can be supported
by the intrinsic circuitry of the striatum, what – if any – “ba-
sic computational elements” exist, and develop computational
theories of function on this basis. In particular, we wish to un-
derstand the role of the dominant GABAergic circuits of the
striatum: the rare, but powerful, FSIs, and the weak, asymmet-
rical, but comparatively plentiful MSN local collaterals. Under-
standing the contribution of all the striatum’s elements ideally
requires large-scale models (Djurfeldt et al., 2008) that repli-
cate the neuron types, numbers, and connectivity at one-to-one
scale. Such models can give deep insight into the role of each
neuron class in local circuit dynamics.

The purpose of this paper is twofold. First, we draw together
for the first time a series of techniques we have developed for
leveraging anatomical and physiological constraint data, some
of which promise general applicability (beyond the striatum) in
microcircuit construction: (1) a powerful computational neu-
roanatomy method for extracting the best connectivity statistics

from impoverished data; (2) the development of reduced mod-
els for dopamine modulation of striatal neurons, which replicate
the output of detailed compartmental models; and (3) a rigorous
method for spike generation which allows good approximation
to cortical input. We add to these here by introducing: (1) a gap
junction model tunable to known membrane properties; (2) a
principled method for parameterising the spike generation tool
based on anatomical and physiological data; and (3) a novel
method for detecting patterns in multi-unit activity at multiple
time-scales, with general applicability to simulation or experi-
mental data.

Second, we begin the identification of computational ele-
ments within the striatum, and examine how these might sup-
port hypotheses for competitive dynamics underpinned by the
GABAergic neurons of the striatum. Specifically, we construct
a three-dimensional model of the striatal microcircuit’s connec-
tivity, and instantiate this with our dopamine-modulated neuron
models of the MSNs and FSIs. We apply our multiple spike-
train analysis to the outputs of this model to find groups of
synchronised neurons at multiple time-scales. We then show
that, with realistic in vivo background input, small assemblies
of synchronised MSNs spontaneously appear, consistent with
experimental observations (Carrillo-Reid et al., 2008), and that
the number of assemblies and the time-scale of synchronisa-
tion is strongly dependent on the simulated concentration of
dopamine.

2. Creating the striatal microcircuit

Building large-scale models at up to 1:1 scale, neuron for
neuron, is an ambitious aim. In particular, as recognised by the
Blue Brain Project (Markram, 2006), these models are severely
limited by the need for accurate connectivity. There is a wealth
of studies showing how the structure of a network is a strong
determinant of its dynamics (see e.g. Nishikawa et al., 2003;
Kwok et al., 2007; Galan, 2008), and that the typical fall-back
of completely regular or random networks give false impres-
sions about both synchronisation and stability (see especially
Watts & Strogatz, 1998; Lago-Fernandez et al., 2000). It is thus
imperative that we begin from as accurate a network structure
as possible.

2.1. The striatal microcircuit

First, we specify the GABAergic microcircuit of the striatum
(Tepper et al., 2004). Figure 1 shows its complete set of con-
nections and neuron types; these are intermingled throughout
the non-laminar structure of the striatum. The MSNs number
around 2,790,000 in the rat, with a (shrinkage-corrected) den-
sity of 85,000 per mm3 (Oorschot, 1996). Various estimates
have placed this total as anything up to 95% of all neurons in
the striatum (Gerfen & Wilson, 1996), though a figure of 90%
is more commonly quoted (Kawaguchi et al., 1995). The MSNs
can be split into two populations on the basis of their dominant
expression of either the D1 or D2 dopamine receptor, and these
populations are of roughly equal size. In addition to their long
axonal projections to targets in the pallidum (D2 MSNs) and
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Figure 1: The striatal GABAergic microcircuit studied in this paper. Primary in-
put to the striatum comes from glutamatergic (GLU: •) fibres originating in the
neocortex, thalamus, hippocampal formation and amygdala, and dopaminergic
(DA: ¥) fibres originating in the hindbrain dopamine cell bands. All striatal
axo-dendritic connections (M) are GABAergic and hence inhibitory. The fast-
spiking interneurons (FSIs) can form dendro-dendritic gap junctions between
them. The medium spiny neuron (MSN) population can be divided in two on
the basis of the dominant dopamine receptor (D1 or D2) they express.

substantia nigra pars reticulata (D1 MSNs) both types have ex-
tensive local axon collaterals, which ramify in approximately
the same volume as the parent neurons’ dendrites.

The physiological class of FSIs seem to correspond
to the class of parvalbumin-immunoreactive interneurons
(Kawaguchi, 1993), and these comprise around 3-5% of the stri-
atal cell population in the rat (Kawaguchi et al., 1995). Their
axons remain wholly in the striatum, and target both MSNs
(Koos & Tepper, 1999) and other FSIs (Kita et al., 1990).
In addition, there are dendro-dendritic gap junctions between
FSIs (Koos & Tepper, 1999). Both MSNs and FSIs receive
glutamatergic input from cortical and thalamic sources, and
dopaminergic input from the hindbrain dopamine cell bands.

We focus on this microcircuit as the neuron types are the best
characterised (Tepper et al., 2004), but hence omit at least two
other physiological classes of interneuron found in the stria-
tum. The long-lasting hyperpolarisation class correspond to the
large aspiny cholinergic interneurons (Kawaguchi, 1993). We
are focusing here on the short time-scale dynamics in striatum,
which are thought to be dominated by the GABAergic elements
(Tepper et al., 2004; Mallet et al., 2005). Future work on this
circuit will incorporate the cholinergic interneurons, as they
may play role in setting the dynamic state of the striatal net-
work (Wickens et al., 1991) and their regulation of dopamine
release affects plasticity at cortico-striatal synapses (Zhou et al.,
2002; Wang et al., 2006). The low-threshold spiking class cor-
respond to the interneurons that co-express nitric oxide, so-
matostatin, and neuropeptide Y (Kawaguchi, 1993; Kawaguchi
et al., 1995); this class may also express GABA (Kubota &
Kawaguchi, 2000). The FSIs probably dominate MSN be-

haviour, as they form far more synapses on somas (Kubota
& Kawaguchi, 2000), whereas the low-threshold spiking neu-
rons may form an inhibitory network between the cholinergic
interneurons (Sullivan et al., 2008).

2.2. The neuroanatomical model
We developed a novel computational neuroanatomy method

to build a three-dimensional model of the striatum that is as ac-
curate as possible given current neuroanatomical data (Wood
et al., 2007). The strength of this method is that it can be up-
dated and re-run each time new relevant data becomes available.
We review the outline of the method and the results essential for
reconstructing the network used here.

Our approach builds on the underlying assumption that the
probability of connection between a given pair of neurons is
proportional to the distance between the cell bodies, and the
overlap of their neurites at that distance. For a standard axo-
dendritic synapse, the probability of connection is thus propor-
tional to the joint volume occupied by both the axonal field
of the source neuron and the dendritic field of the target neu-
ron. However, like much neural tissue, detailed data on the
dendrites, axons, and their three-dimensional structure were not
available for the MSNs and FSIs.

We thus developed the method outlined in Figure 2. This
method relies on developing stochastic growth models for the
dendrites and axons of both MSNs and FSIs. For the dendritic
trees, we used an existing growth algorithm (Burke et al., 1992)
and found its parameters using a genetic algorithm search of
a fitness space defined by known parameters (e.g. number of
branch points) of the neuron type’s dendritic tree. For the axon,
which has a simpler structure, we created our own growth al-
gorithm based on known properties of MSN and FSI axons.
By creating models for the dendrite and axon structure, we had
a full set of data on the dendritic branches and axons at each
distance from the soma, including their approximate volume.
Using the growth algorithms, we produced a large number of
dendritic trees and axons to estimate expected neurite volume.

Based on this, we could then compute the expected volume of
a sphere that was occupied by dendrite (or axon) at a given dis-
tance from the cell body. Both MSNs (Wilson & Groves, 1980;
Zheng & Wilson, 2002) and FSIs (Kawaguchi, 1993; Koos &
Tepper, 1999) have approximately spherical dendritic and ax-
onal fields, and so we could compute the expected amount of
neurite in all directions – effectively modelling a mean-field
dendrite or axon. Then, in turn, we could compute the expected
volume of overlap between the spherical fields given the dis-
tance between cell bodies for each connection type. For every
1µm3 voxel in this overlapping volume, we computed the prob-
ability of its occupancy by both neurites (axon and dendrite or
dendrite and dendrite, depending on the connection type) and
thus the probability of a potential contact. Summing over all
voxels in the overlapping volume thus gave us the expected
number of contacts for each distance between cell bodies.

2.3. Construction of the network
We found that the expected number of contacts between two

neurons, as a function of the distance ds between the two somas,
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Figure 2: Anatomy model construction. (a) We create complete dendrograms using stochastic algorithms, bounded by known properties of the dendrites and axons.
This example shows all six dendrites of the complete dendrogram for one MSN. (b) Each segment of each branch is modelled as a cylinder, whose diameter tapers
with distance from the soma – summing over all branches gives the total volume of dendrite (or axon) at each distance from soma. (c) We then compute the
proportion of spherical volume occupied by dendrite (or axon) at each distance from the soma. (d) Expected values for occupied volume are computed over many
repetitions of the growth algorithm. The result is a continuous function of volume occupancy for each dendrite and axon type. (e) Volume of intersection of all
dendrite and axon fields found for each distance between somas; volume discretised into 1 µm3 voxels. (f) For each voxel, given its distance from the respective
somas, we compute probability of intersection between fields (dendrite-axon or dendrite-dendrite) from volume occupancy functions (in panel d). We then sum over
all probabilities to get expected number of contacts between neuron pairs as a function of distance between their somas. These are all functions of the form (1), with
parameters given in Table 1; we use these functions to construct our network.
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was well fit by the truncated power law

Ec(ds) = αd−βs e−dsγ, (1)

for every connection type. Table 1 gives the specific parame-
ter values for each of the four connection types in the striatal
GABAergic microcircuit: between MSNs formed by the local
axon collaterals synapsing on MSN dendritic trees; FSI axonal
connections on MSN dendritic trees; FSI axonal connections
on FSI dendritic trees; and gap junctions between FSI dendritic
trees. Figure 2f shows the four resulting functions.

Table 1: Parameters for the expected number of contacts between neuron pairs.

Connection α β γ

MSN-MSN 0.5567 0.1212 0.008
FSI-MSN 0.5528 0.1184 0.0082
FSI-FSI 0.2216 0.083 0.008
FSI gap 0.2892 0.0099 0.0132

We use these functions to construct our striatal network.
First, we specify the three dimensions of our simulated region
of striatum. The resulting volume V mm3 defines the number
of neurons (see section 2.1): given the 85,000 MSNs per mm3

(Oorschot, 1996) we get V × 85000 MSNs, and 3% of this is
added as FSIs (Kawaguchi et al., 1995). All neurons are then
randomly assigned a three-dimensional position within the de-
fined volume, with a minimum distance of 10µm enforced.

For all pairs of neurons with potential connections we then
apply (1) with the appropriate parameters from Table 1 for the
connection type (MSN-MSN local collaterals, FSI-MSN axo-
dendritic, FSI-FSI axo-dendritic, FSI-FSI dendro-dendritic gap
junctions). As shown in Figure 2f, the expected number of con-
nections was always much less than one, and so we used these
functions as giving the probability of connection given the dis-
tance between somas – then the total number of such connec-
tions in a sufficiently large network would yield the same ex-
pected connection function. We have successfully used this to
build and run models up to 1mm3, though the models we use
here are kept small so that a thorough analysis of the outputs
remains tractable.

3. Model neurons

The model striatal network forms the basis for our study of
its dynamics. If we are to build at such scales, we require in-
dividual neuron models that are simple enough to be computa-
tionally tractable, but sufficiently complex to capture key mem-
brane properties that contribute to the characteristic behaviour
of a neuron species. Our neuron model of choice is the recent
canonical spiking model of Izhikevich (2007), which has been
employed in some notably large-scale models (Izhikevich et al.,
2004).

We previously extended these model neurons by incorpo-
rating dopaminergic modulation of intrinsic and synaptic ion-
channels, which we review below. In this paper we extend the
model further by introducing a model of gap junctions between

FSIs and tune parameter values to data from gap-junction cou-
pled cortical FSIs.

3.1. Reduced models of striatal neurons
In his recent book, Izhikevich (2007) gives a biophysical

form of his canonical model for spike generation. Given that
v is the membrane potential, and u is the contribution of the
neuron class’s dominant slow current, we have

Cv̇ = k(v − vr)(v − vt) − u + I (2)
u̇ = a [b(v − vr) − u] , (3)

with reset condition

if v ≥ vpeak then v← c, u← u + d,

where C is capacitance, vr and vt are the resting and threshold
potentials, I is a current source, a is a time constant, and c is
the reset potential (i.e. the value of the membrane potential
immediately after an action potential is fired). Parameters k
and b are derived from the I-V curve of the neuron and d is
tuned to achieve the desired spiking behaviour. We solve all
neuron models using the forward Euler method with a time-
step of 0.01 ms – this small time-step is necessary because of
the fast dynamics of the FSI (Humphries & Gurney, 2007).

3.1.1. Dopamine-modulated MSNs
Izhikevich (2007) provided parameter values that modelled

a MSN response to current injection. We introduced a frame-
work for reformulating and extending this model to replicate the
output of a detailed dopamine-modulated multi-compartment
model (Moyer et al., 2007) – see (Humphries et al, submitted)
for details. The MSN population is split in two by the expres-
sion of the dominant dopamine receptor type (D1 or D2). These
receptors have different affects on both intrinsic and synaptic
ion channels (see Surmeier et al., 2007, for review). We ex-
press the relative level of dopamine receptor occupancy by the
parameters φ1 (for D1) and φ2 (for D2), normalised to the in-
terval [0,1]. We add dopaminergic modulation of intrinsic ion
channels in D1 MSNs by extending (2) to

Cv̇D1 = k(vD1 − vr)(vD1 − vt) − u + I + φ1gDA(vD1 − EDA), (4)

where the term φ1gDA(vD1 − EDA) is sufficient to simulate the
hyperpolarising effect of D1 activation when at an already hy-
perpolarised membrane potential, and the depolarising effect of
D1 activation when at an already depolarised membrane poten-
tial (Surmeier et al., 2007).

For the D2 MSNs, we add dopaminergic modulation of in-
trinsic ion channels by extending (2) to

Cv̇D2 = k(1 − αφ2)(vD2 − vr)(vD2 − vt) − u + I, (5)

where we only decrease k by a factor of (1 − αφ2), which is
sufficient to model the increased sensitivity to injection current
following D2 activation (Moyer et al., 2007).

We model synaptic input to all the MSNs as

I = Iampa + B(v)Inmda + Igaba-fs + Igaba-ms, (6)
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where both Iampa and Inmda are derived from cortical input,
Igaba-fs from FSI input, and Igaba-ms from local MSN collaterals.
Each synaptic input of type z (ampa, nmda, gaba-fs,gaba-ms) is
modelled by

Iz = ḡzhz(Ez − v), (7)

where ḡz is the maximum conductance and Ez is the reversal
potential. We use the standard single exponential model of post-
synaptic currents

ḣz =
−hz(t)
τz

, and hz(t)← hz(t) + S (t)/τz, (8)

where τz is the appropriate synaptic time constant, and S (t) is
the number of pre-synaptic spikes arriving at all the neuron’s
receptors of type z at time t. Finally, we have the term B(v) that
models the voltage-dependent magnesium plug in the NMDA
receptors (Moyer et al., 2007)

B(v) =
1

1 +
[Mg2+]0

3.57 exp (−v · 0.062)
, (9)

where [Mg2+]0 is the equilibrium concentration of magnesium
ions.

We add D1 receptor dependent enhancement of NMDA-
evoked EPSPs (Moyer et al., 2007) by

ID1
nmda = Inmda(1 + β1φ1), (10)

and we add D2 receptor dependent attenuation of AMPA-
evoked EPSPs (Moyer et al., 2007) by

ID2
ampa = Iampa(1 − β2φ2), (11)

where β1 and β2 are scaling coefficients determining the rela-
tionship between dopamine receptor occupancy and the effect
magnitude. All parameter values are given in Table 2.

3.1.2. Dopamine-modulated FSIs
The FSIs only express the D1-family of receptors on their

membranes (Centonze et al., 2003). We add D1-receptor mod-
ulation by extending (2) to

Cv̇fs = k[vfs − vr(1 − ηφ1)](vfs − vt) − ufs + I, (12)

where we increase the nominal resting potential vr by a factor
of (1 − ηφ1), following experimental data from (Bracci et al.,
2002; Centonze et al., 2003).

Following Izhikevich (2007), we use a nonlinear u term

u̇fs =


−aufs, if vfs < vb,

a
[
b(vfs − vb)3 − ufs

]
, if vfs ≥ vb,

(13)

that enables the FSI model to show Type 2 dynamics, particu-
larly a non-linear step at the start of its current-frequency curve
from 0 to around 15-20 spikes/s.

Synaptic input to the striatal FSIs predominantly activates
GABAa or AMPA receptors (Blackwell et al., 2003), NMDA
receptors are rare. The dendrodendritic gap junctions provide

Table 2: Intrinsic and synaptic parameters for the medium spiny neuron model.
Dimensions are given where applicable.

Parameter Value Source

C 50 pF Izhikevich (2007)
b -20 ”
c -55 mV ”
vr -80 mV ”

vpeak 40 mV ”
k 1.14 Humphries et al, submitted
vt -33.8 mV ”
a 0.05 ”
d 377 ”
α 0.03 ”

gDA 22.7 nS ”
EDA -68.4 mV ”
β1 3.75 ”
β2 0.156 ”

Eampa,Enmda 0 mV Moyer et al. (2007)
Egaba-fs, Egaba-ms -60 mV ”

τampa 6 ms ”
τnmda 160 ms ”

τgaba-fs, τgaba-ms 4 ms ”
gampa 6.1 nS Humphries et al, submitted
gnmda 3.05 nS ”

ggaba-ms 4.36 nS ”
ggaba-fs 21.8 nS ∼ 5× MSN conductance

Koos et al. (2004)
[Mg2+]0 1 mM Jahr & Stevens (1990)

6



Table 3: Intrinsic and synaptic parameters for the fast spiking interneuron
model. Dimensions are given where applicable. n.d.: no data.

Parameter Value Source

a 0.2 Izhikevich (2007)
b 0.025 ”
d 0 ”
k 1 ”

vpeak 25 mV ”
vb -55 mV ”
C 80 pF Tateno et al. (2004)
c -60 mV ”
vr -70 mV ”
vt -50 mV ”
η 0.1 fitted to Bracci & Panzeri

(2006)
ε 0.625 fitted to Gorelova et al.

(2002)
Eampa,Enmda 0 mV n.d.; set as for MSNs

Egaba-fs, Egaba-ms -60 mV ”
τampa 6 ms ”
τgaba-fs 4 ms ”
gampa 61 nS n.d.; tuned to achieve realis-

tic firing rates (section 5.2)
ggaba-fs 20 nS n.d.; assumes equivalent ef-

fect of FSI-FSI contacts as
FSI-MSN contacts

g 30 nS section 3.1.3
τ 11 ms ”

a further source of “synaptic” current (Koos & Tepper, 1999).
Thus the synaptic current contributions are

I = Iampa + I∗gaba + Igap, (14)

where we add D2-receptor dependent modulation of GABAer-
gic input (Bracci et al., 2002; Centonze et al., 2003) by

I∗gaba = Igaba(1 − εφ2), (15)

where Igaba is derived from FSI input. All parameter values are
given in Table 3.

3.1.3. Tuning FSI gap junctions
A gap junction between FSIs i and j is modelled as a com-

partment with voltage v∗i j, which has dynamics

τv̇∗i j = (vi − v∗i j)(v j − v∗i j), (16)

where τ is a time constant for voltage decay, and vi and v j are
the membrane potentials of the FSI pair. The current introduced
by that cable to the FSI pair is then

I∗gap(i) = g(v∗i j − vi) I∗gap( j) = g(v∗i j − v j), (17)

where g is the effective conductance of the gap junction. The
total gap junction input Igap to an FSI is then the sum over all
contributions I∗gap.

Figure 3: Tuning the gap junction model. Galarreta & Hestrin (1999) injected
sinusoidal current into a cortical FSI at various frequencies, and recorded from
another connected to it by a gap junction. They computed both the coupling
ratio (¥) and phase lag (•) of the second neuron’s membrane potential with
respect to the injected neuron. We similarly connected a pair of model FSIs
with our gap junction model, injected sinusoidal current into one, and hand-
tuned the gap junction parameters (g and τ) to fit the data. A qualitatively good
match was achieved by the model for both coupling ratio (¤) and phase lag (◦).

We hand-tuned τ and g using a pair of FSI models connected
by a gap junction. Our target data came from a study by Galar-
reta & Hestrin (1999) in which sinusoidal current at different
frequencies was injected into one of a gap-junction coupled pair
of cortical FSIs, and membrane voltages recorded from both:
this data is ideal as it provides both voltage coupling strength
and voltage phase-lag, which are affected by both g and τ. We
injected sinusoidal current I into one FSI with an amplitude of
400 pA at different frequencies and computed the coupling co-
efficient (ratio of maximum amplitudes in the membrane volt-
ages of the two neurons) and the phase-lag (voltage-peak offset
as a function of the injection current frequency). Figure 3 shows
we achieved a good qualitative match to both coupling coeffi-
cient and phase-lag from the experimental data, with τ = 11 ms
and g = 150 nS.

While this data-set was the most appropriate for tuning the
gap junction model, we cannot immediately use the value for g.
Two caveats have to be accounted for: first, that there is an un-
known number of other FSIs connected by gap junctions to the
studied pair; second, that the study was done in tissue from ju-
venile rats, and so would over-express gap junctions (Belluardo
et al., 2000). Both of these would contribute to the decay of
the coupling coefficient. Thus, we find we need to re-scale g to
account for the approximate reduction in gap junctions in adult
tissue and to account for other connections. In further simula-
tions we explored fully-connected gap-junction networks of 3,
4 or 5 FSIs, as might be found in juvenile tissue. We found that
repeating the same paired recording protocol in these networks
did indeed predict a dramatic reduction in g: the multiple gap
junctions acted to reinforce the effects of the injection current
on the un-injected neuron. A five-fold reduction to g = 30 nS
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produced an equivalent fit to the data in Figure 3 for all three
networks, and so we used that figure here. This is also consis-
tent with the comparatively weak coupling coefficients of 3%
and 20% that have been reported for the few gap junction cou-
pled striatal FSIs recorded to date (Koos & Tepper, 1999).

3.2. Input to network
In addition to its synaptic connections defined by our net-

work model, each neuron received external input representing
its cortical afferents. In many spiking neuron models, affer-
ent input is generated by a set of Poisson processes. However,
for large-scale models where each neuron receives hundreds or
thousands of afferent inputs, this becomes unfeasible because of
the memory requirements. Recently we have developed a series
of tools addressing just this problem, using a method that col-
lapses many afferent trains into an single equivalent spike-event
count.

Each spike-event generator directly produces the spike-
events that occur across N afferents to the neuron. At each
time-step ∆t, and given a mean spike rate r, we compute the
probability of a spike per afferent as p(s) = r∆t. The total num-
ber of spike-events S at each time-step is then just drawn from a
binomial distribution S = B(N, p(s)). The resulting time-series
of spike-events is equivalent to the pooling of N spike trains
modelled as independent renewal processes, the superset that
includes Poisson processes.

We define N and r for the striatal network for the tonic back-
ground in vivo state, by combining data from anatomy and elec-
trophysiology:

1. In a recent organotypic cortico-striatal-nigral co-culture
study, Blackwell et al. (2003) reported that a striatal MSN
receives an average of around 800 synaptic events per sec-
ond during its depolarised (“up”) state, but they could not
distinguish excitatory and inhibitory potentials.

2. The ratio of asymmetric (putative excitatory):symmetric
(all others) synapses in rat striatum is ∼ 3.9 : 1 (Ingham
et al., 1998).

3. If we conservatively assume that half the asymmetric
synapses are cortical in origin, then we have a ratio of 2:1
potentially active synapses in the co-culture

4. Assuming this corresponds (roughly) to the proportion of
glutamate:GABA activity, then cortical activity accounts
for ∼ 530 synaptic events per second.

5. Given the estimate of 4250 cortical inputs per MSN
(Zheng & Wilson, 2002), the average firing rate of those
cortical neurons is therefore ∼ 0.12 spikes/s.

6. From in vivo extracellular recordings, we know that dedi-
cated cortico-striatal neurons tonically fire a maximum of
5 spikes/s and pyramidal tract neurons with striatal col-
laterals tonically fire around 15 spikes/s (Bauswein et al.,
1989; Turner & DeLong, 2000). The former dominate in
number over the latter (Bauswein et al., 1989; Zheng &
Wilson, 2002), suggesting an overall mean rate around 2-5
spikes/s.

7. Taking the lower mean single neuron rate of 2 spikes/s,
and the estimate of 530 synaptic events per second, we

see that just 265 active cortico-striatal neurons are required
to achieve this – or just 6 % of the total afferent cortical
population.

Overall then, tonic cortico-striatal activity sufficient to drive
MSN firing requires just N ' 250 trains, at a rate of r ' 2
spikes/s. We hence use N = 250 and r = 1.9 spikes/s for the
MSN input throughout our simulations. In addition, we use the
same N, r in the spike-event generators for the FSIs, as there is
no data on cortical input to these neurons.

4. Detecting groups of synchronised cells in multi-unit data

We sought to identify potential candidates for the basic com-
putational elements of the striatum from the dynamics of our
large-scale models under background input. For our present
purposes, we wanted to find groups of co-active or mutually
antagonistic MSNs that could form the basis for competitive
dynamics within the striatum. In addition, we studied this input
regime to see if the reported striatal cell clusters spontaneously
formed in vitro (Carrillo-Reid et al., 2008) could be identified in
our model. However, analysis methods suitable for exploratory
analysis of such large spike-train data-sets are lacking (Brown
et al., 2004). We therefore developed a new algorithm for find-
ing synchronised groups at multiple time-scales within a multi-
ple spike-train data-set.

At its most general, our algorithm follows a two-step pro-
cedure. First, some measure of correlation between each pair
(or more) of neurons is computed, resulting in a correlation
matrix. Second, some method acts on this matrix to iden-
tify “strong” spike-train correlations within groups of neurons,
thereby grouping the data-set into sets of neurons whose out-
put is more related to each other than with the remaining neu-
rons. A group is thus 3 or more neurons that are co-correlated.
With this in mind, we detail our specific algorithm (our present
choices for these two steps are specified in the Appendix):

1. For all N spike trains, correlate all N(N−1)/2 unique pairs,
resulting in a correlation matrix C with entry Ci j = C ji be-
ing the correlation measure between spike-trains i and j.
We use here the normalised Hamming distance (see Ap-
pendix)

2. Threshold each correlation matrix with threshold θ, to cre-
ate a graph. In general the graph’s adjacency matrix A is
generated by some function Ai j = f (Ci j, θ) ∈ {0, 1}, where
a 1 denotes a link between nodes i and j on the graph, and
0 denotes the absence of a link. Here we use

Ai j =


1 if Ci j < θ

0 otherwise.
(18)

Note that the sign of the comparison is dependent on the
correlation method chosen: this direction (<) is suitable
for our choice of Hamming distance, but would be re-
versed if, for example, the absolute correlation coefficient
was used instead. Each retained link thus indicates the
presence of a “strong” correlation between the respective
neurons, where correlation strength is parameterised by θ
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– the lower θ, the stronger the correlations that make up
the graph.

3. Remove all nodes with less than 2 links from A, resulting
in reduced graph A∗, which has n∗ nodes and m∗ links. We
do this because any neuron with fewer than two links is
not participating in any synchronised group at the specified
threshold.

4. For simplicity, we proceed only if (a) n∗ > 5, so that mul-
tiple groups are possible (given that each group is at least
3 neurons), and (b) m∗ > ln(n∗) so that the graph should
have a single giant component (Watts & Strogatz, 1998),
that is, most nodes should be reachable from any other
node along the links. These conditions could be relaxed in
more complex uses of the current algorithm.

5. If we proceed, then we run a graph modularity algo-
rithm (Newman, 2006a,b) on A∗ (see Appendix). This
method does not require prior specification of the num-
ber of groups, and is hence more suitable for exploratory
data analysis than the family of k-means clustering meth-
ods or classic graph-partitioning algorithms. The result is
a vector of length n∗, with the ith entry an integer 1 . . . M
identifying the membership of node i in the M identified
groups.

4.1. Identifying structure in the dynamics of the cell groups
The above method results in a set of M groups for each com-

bination of tested binsize δt and threshold θ, for each model
that we simulate. Given this potentially vast data-set, how do
we summarise the outcome of that combination, and identify
which combinations have sufficiently rich dynamics to analyse
further? Our present search is for basic computational elements
that could be formed by antagonistic striatal cell assemblies.
We thus seek a scalar metric β that encapsulates our current cri-
teria: maxmising the number of groups M found; maximising
the number of neurons contributing to groups, so that the ra-
tio n∗/N → 1; and clear evidence for both synchronisation and
anti-correlation within the correlation matrix.

For the latter, consider a particular choice of (δt, θ) and the
resulting correlation matrix C. Let h̃ be the median non-zero
Hamming distance for C, h∗ be the minimum non-zero Ham-
ming distance for C, and ∆ = h̃ − h∗. The greater ∆, the
greater the likely existence of both strongly correlated and anti-
correlated neurons. Thus, we express our full set of criteria as

β = M
n∗

N
∆. (19)

5. Results

We now have the necessary tools – models of anatomy, neu-
rons, and input, and suitable analysis methods – to begin ad-
dressing the problem of identifying the computational elements
of the striatum. We use in this paper a small striatal region of
250 µm3, which gives us 1400 neurons, 1359 MSNs and 41
FSIs. This made a thorough analysis of both the network itself
and all its outputs computationally tractable, and we keep this
size throughout for consistency. We randomly split the MSNs

Figure 4: Spontaneous dynamic clusters form at a characteristic time-scale in
the absence of dopamine. (a) Both (the number of groups (•) and the metric β
(N) have a unique maximum at δt = 800 ms, suggesting this is the characteristic
time-scale of the dominant dynamics. (b) For that time-scale, changing the
threshold θ for correlation reveals further structure. Both the number of groups
and β are maximum at θ = 0.1, 0.15. The reduction in both number of groups
and β at the strong correlation threshold θ = 0.05 illustrates that cell assemblies
can exist at multiple strengths of correlation.

into two equal sized populations, and assigned one set as the
D1 MSNs and the other as the D2 MSNs. The resulting net-
work was used as the basis for every simulation detailed below.

As noted above, we here assess the spontaneous dynamics
of the network, simulating spontaneously firing cortical input.
Every simulation was run for 10 seconds of network time, and
every MSN data-set analysed with the cell group detection al-
gorithm detailed above, using the set of binsizes δt ∈ {20, 40,
60, 80, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} ms.
For all simulations, we set θ = 0.2 as this was a conservative
threshold for identifying potential structure. For some simula-
tions, we use this threshold to identify a particular time-scale of
interest, as defined by the δt that maximises (19), and re-analyse
the corresponding correlation matrix C for a range of θ to pick
out the detailed dynamical structure.

5.1. Spontaneous clusters of synchronised MSNs emerge with-
out dopamine

Spontaneously formed striatal cell assemblies were observed
using calcium imaging by (Carrillo-Reid et al., 2008), from an
in vitro preparation that was excited by bath application of an
NMDA agonist. To see if we could observe equivalent dynam-
ics in our model, we began with a model without dopamine,
setting φ1 = φ2 = 0, so that the model was close to this in vitro
state.

We found that this basic model indeed supported multiple
groups of synchronised cells. Figure 4 shows that our algorithm
found groups at many time-scales, with a unique maximum in
both the number of groups and β at δt = 800 ms. The majority
of the MSNs were retained by the algorithm when groups were
detected (range 1286-1354).

We took the correlation matrix C for δt = 800 ms and re-ran
the cluster detection algorithm with a range of θ ∈ { 0.05, 0.1,
0.15, 0.2, 0.25, 0.3 }, to look in more detail at the dynamical
structure. Both thresholds of θ = 0.1 and θ = 0.15 maximised
the number of groups and β, producing an identical set of 6
groups (Figure 4b).
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Figure 5: Synchronised MSN clusters at long time-scales in the absence of dopamine. (a) Unsorted raster plot for all MSNs retained for grouping by algorithm –
spike trains are arranged in rows, each dot signifies the occurrence of a spike, and each train is shown for the full 10 seconds. (b) Raster plot of the same set of
MSNs, sorted by groups detected by our algorithm – it found 6 groups with θ = 0.1. All the spike trains belonging to each group are colour coded either black or
grey, alternating by group. (c) Histograms of the proportion of active cells in each group for each time bin, illustrating the different structure of the dynamics in
each group. Note, for example, the comparatively high firing rate of MSNs in group 1 (groups are numbered top-down). The total of 1328 MSNs were divided into
groups sized: 174, 126, 88, 129, 659 and 152.

Figure 5 shows the striatal cell assemblies so identified. We
see that, faced with the initial set of 1328 MSNs that contributed
to graph A∗, the algorithm could successfully find cell assem-
blies of different types and strength. Groups 2-4 and 6 each
had at least two long (> 500 ms) periods of near-silence, but at
different times for each group, and with different strengths of
correlation between the individual spike trains – compare, for
example, the two periods of near-silence for group 6 with the
noisier but clearly identifiable periods for group 2 later in the
simulation. By contrast, groups 1 and 5 are distinguished from
the others by not having multiple synchronised periods, but are
clearly distinguishable from each other on the basis of the dif-
ferent firing rates of their constituent neurons, and the initial
period of silence shared by neurons in group 1.

5.2. Increasing dopamine concentration simplifies sponta-
neous dynamics

We proceeded to study the changes in the model’s dynamics
under changes in dopamine concentration, to search for poten-
tial correlates of known dopamine-related effects on MSN dy-
namics and, in turn, the striatum’s role in motor control (see
Introduction). We tested five levels of dopamine with equal
activation applied to both D1 and D2 receptors, giving the set
φ1, φ2 = φ ∈ { 0.05, 0.1, 0.2, 0.5, 0.8 }.

We found that increasing dopamine simplified the dynamical
structure of the MSN output, as determined by our algorithm
and metric β. Figure 6a shows that increasing dopamine gen-
erally increased the left-shift and decreased the height of the
curve relating correlation binsize δt to the metric β. Indeed,
Figure 6b shows that the maximum β found at any time-scale

reduced monotonically with increasing dopamine. The time-
scale δt at which this maximum β occurred also decreased with
increasing dopamine.

The loss of synchronised cell groups was apparent even at
low dopamine levels. For φ = 0.1 maximum β was found for
δt = 400 ms. When we evaluated the grouping algorithm for a
range of θ as before, we found that θ = 0.2 maximised β. For
this threshold, only 3 groups were found. Figure 6c shows the
lack of synchronised cell group dynamics in the the raster plots
for all MSNs in these groups, emphasising the dramatic sim-
plification of the structure. Nonetheless, the neurons grouped
by the algorithm did share common properties: groups 1 and 2
were divided by firing rate (median rates 3.5 and 1.4 spikes/s,
respectively), and group 3 were clustered by the period of si-
lence at the start of the simulation.

This grouping by firing rate continued at higher levels of
dopamine. For φ = 0.5, 0.8 only 2 groups were found, clearly
separated by median firing rates, and the time-scale δt that max-
imised β for both these levels approximately coincided with the
average MSN firing rate across the whole network.

We found that the firing rate characteristics of our striatal
model were commensurate with experimental data on in vivo
activity under baseline conditions. The background (tonic) state
of striatal dopamine we expect to be between 0.05 and 0.2 in
our model, as the tonic concentration can be up to an order
of magnitude lower than the concentration during phasic re-
lease (Gonon, 1997; Venton et al., 2003), represented by the
upper limit of our normalised dopamine parameters φ1, φ2. In
this approximate tonic dopamine range, Figure 7 shows the fir-
ing statistics are consistent with known properties of striatal
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Figure 6: Increasing dopamine level reduced dynamical structure in the MSN output. (a) The relationship between correlation bin-size δt and metric β for all tested
dopamine levels. (b) Both maximum β (•) and corresponding time-scale δt (N) that maximised β decreased with increasing dopamine. (c) Raster plot for all MSNs
grouped for dopamine level φ = 0.1 at the threshold (θ = 0.2) that maximised β. No synchronised cell group dynamics are evident. Nonetheless, the grouping
algorithm does find neurons with common properties: groups 1 and 2 are split by firing rate, group 3 clustered by the brief silence at the start (groups are numbered
top-down). The total of 1333 MSNs were divided into groups sized: 246, 907, 180.

cells. That is, MSNs are relatively quiet, while some FSIs
fire strongly (Sandstrom & Rebec, 2003; Mallet et al., 2005).
Figure 7 also shows that our model predicts a linear change in
the firing rates of both neuron types with increasing dopamine.
By contrast, MSNs showed a monotonic decrease, and FSIs no
change, in the median inter-spike interval coefficient of varia-
tion (ISI CV) with increasing dopamine. That is, the MSN spike
trains became increasingly regular, but there was no global
change in FSI spike patterning despite their decrease in firing
rate.

The FSI firing statistics showed two striking properties. First,
the decrease in FSI firing rate with increased dopamine lev-
els runs counter to the effect of dopamine on the single neu-
ron model (equations 12 and 15). We attribute this to the ac-
tion of the gap junctions: without them, the FSI median fir-
ing rate increases with increasing dopamine (Figure 7a). Sec-
ond, previous studies have reported spike-to-spike synchrony
in model fast-spiking interneuron networks coupled by both
synaptic contacts and gap junctions (Traub et al., 2001). How-
ever, despite similar connectivity, we see no network-wide syn-
chrony between our FSIs, irrespective of the level of dopamine
(Figure 7c). Our results are nonetheless consistent with the re-
ported uncorrelated behaviour of striatal FSIs in vivo (Berke,
2008).

5.3. Dissecting the network: contribution of microcircuit ele-
ments

To begin the task of understanding how the GABAergic stri-
atal microcircuit produces these dynamics, we look at the con-
tributions of the two elements that have dominated recent dis-
cussions (Tepper et al., 2004): “weak” feedback inhibition by

the local MSN collaterals, and “strong” feedforward inhibition
of MSNs by the FSIs.

5.3.1. An MSN-only network shows cell assembly sequencing
We first created an MSN-only network by removing all FSI

connections, and repeated the simulations at all previously
tested levels of dopamine. Figure 8 shows that, compared to the
full model, the MSN-only network could produce spike train
dynamics of greater complexity (as measured by β), and did
not have a monotonic relationship between dopamine level and
β. By comparing the spike trains rasters in Figure 8b and Figure
8c we can see that the metric β captures the visual impression
of greater complexity in the structure of the neural dynamics.

With dopamine absent or at low levels, the grouped rasters
also clearly show the presence of multiple groups that fire in
patterns of silence and high activity. Their absence in the intact
model clearly suggests that the FSIs desynchronise the MSN
network. The ordering of these patterns is also suggestive of
inhibition-based competition between a few of these groups,
particularly in the absence of dopamine (Figure 8b). With a
low level of dopamine, Figure 8c clearly shows a sequence of
silent periods involving all 9 groups identified by our analysis
method, with some groups showing further alternating periods
of silence and activity.

To quantify these interactions at the scale of whole groups,
for every group we compute a vector of the proportion of active
neurons per time-bin (as in Figure 5c). When we compute the
correlation coefficient between all vectors, we see in Figure 9
multiple negative correlations between cell groups in the MSN-
only networks with absent or low dopamine (though we note
that these are limited to the time-scale picked by algorithm).
By contrast, the correlation coefficient distribution for the intact
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Figure 8: An MSN-only network generates a range of complex spike-train groupings, showing sequences of group firing. (a) The relationship between maximum
β (•) and increasing dopamine level is no longer monotonically decreasing, as it is for the intact model, suggesting an increased complexity of spike-train structure
for intermediate dopamine levels. However, the time-scale at which maximum β occurs (N) does still generally decrease with increasing dopamine. (b) With
no dopamine, the grouped raster plot shows multiple clear groups. Groups 1 and 3 in particular have roughly anti-correlated sequences of silence and activity,
suggestive of competition between them. (c) At low levels of dopamine (here φ1, φ2 = 0.1), we see more groups at a wider range of sizes, with more complex
dynamics: we have ordered the 9 groups to show a sequence of silent periods occurring across them all. Note that this is only one of many possible orderings –
group 8, for example, is silent at the beginning of the simulation, just like group 1; groups 4 and 5 are simultaneously silent for approximately the same length of
time, but only group 4 has a further period of complete silence. Groups in (b) and (c) shown for the threshold that maximised β (both θ = 0.1), as before; groups
numbered top-down.

Figure 7: Effect of dopamine level on population firing statistics. (a) Both MSN
(•) and FSI (black ◦) populations had linear changes in median firing rate with
increasing dopamine. Removing the FSI gap junctions reduced their median
firing rate, but reversed the effect of changing dopamine levels (grey ◦). (b)
Increasing dopamine monotonically decreased the MSN population’s median
inter-spike interval (ISI) coefficient of variation (CV), but had no effect on the
FSIs’ median ISI CV. The model thus predicts increased regularity of MSN
spike trains under constant elevated dopamine levels and background synaptic
barrage. (c) The FSIs showed no evidence of network-wide synchrony, for any
level of dopamine. The distributions of pair-wise correlation coefficients for all
active FSIs are shown for φ = 0 (solid), φ = 0.1 (dashed), and φ = 0.8 (dotted):
network synchrony would be evident as a positively-biased asymmetric distri-
bution. (Pair-wise correlation coefficients computed using spike trains binned
at 1/min{mean spikes/s,median spikes/s}, so that the bins matched the firing
rates for that dopamine level. Hence, we looked for spike-to-spike correlations
on the rough time-scale of the inter-spike interval).

Figure 9: Detected cell assemblies show alternating firing sequences in MSN-
only networks. We computed correlation coefficients between the activity vec-
tors of every pair of cell groups. The empirical cumulative distributions of
these for the MSN-only networks show a range of negative correlations be-
tween groups; showing φ = 0 (black solid line) and φ = 0.1 (grey solid line).
By contrast, the distribution for the intact model with φ = 0 (black dashed
line) had no negative correlations, indicating the absence of distinct sequences
of firing and hence no evidence for competitive interactions between groups –
activity vectors for this model are shown in Figure 5c.

model’s activity vectors is entirely positive.

The MSN-only network firing rate statistics were also dis-
tinct from the intact model. Figure 10a shows that, although
the median MSN firing rate did monotonically increase with in-
creasing dopamine, the rate was always less than that of the in-
tact model. We thus see a counter-intuitive attenuation of firing
rate following the removal of inhibition provided by the FSIs.
The MSN spike-trains were also roughly consistent in their ir-
regularity (as measured by ISI CV), independent of the level of
dopamine and of the changes in firing rate (Figure 10b).
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Figure 10: Effect of dopamine level on MSN population firing statistics in the
MSN-only network. (a) The MSN-only network firing rate (•) increased with
increasing dopamine, but the median rate was always lower than for the intact
model (◦). We infer that inhibitory input from FSIs has a facilitatory effect on
MSN activity. (b) In a further departure from the intact model, the MSN-only
network did not have a monotonic relationship between dopamine and the me-
dian ISI CV: rather, the spike trains seemed consistently irregular, independent
of the firing rate changes.

5.3.2. The FSI network dominates the MSN network
We removed all local MSN collaterals from the full network

to assess the impact of the FSI feed-forward inhibition. Figure
11 shows that, similar to the full model, both maximum β and
corresponding time-scale generally decreased with increasing
dopamine. Without dopamine, Figure 11b shows that 5 groups
in all were detected, similar in distribution of size and dynam-
ics to the full model in Figure 5b. The notably greater β at low
levels of dopamine, compared to the full model, corresponds to
the detection of more groups that could be distinguished by fir-
ing rate, as shown in Figure 11c. Yet, similar to the full model,
there was a loss of within-group structure in the presence of
dopamine. Comparing the groupings in Figure 11 to those of
the MSN-only model in Figure 8 and the intact model in Figure
6, both emphasises the previous conclusion that the FSIs desyn-
chronise the MSN-only network, and shows that they dominant
the dynamics of the intact model.

5.3.3. Relating dynamics to network structure
Having found a wide variety of complexity in the spike-trains

from our various models, we sought to relate the striatal net-
work structure to the dynamic cell assemblies and the relation-
ships between them. We focussed on the output from the MSN-
only model with no and low dopamine (φ1 = φ2 = 0.1), shown
in Figure 8b-c, as these were both using the simplest network
and had the clearest set of discrete cell assemblies.

Standard graph metrics (Watts & Strogatz, 1998; Humphries
& Gurney, 2008) were computed for the whole MSN network,
each network formed by the neurons within a dynamic group,
and each network formed between a pair of groups. These met-
rics were: the mean shortest path length L between each pair
of neurons in the network; the clustering coefficients Cws (the
mean density of interconnections between all immediate neigh-
bours of each neurons) and CM (the number of closed 3-neuron
feed-forward loops in the network); and the small-world-ness

coefficients S ws, S M (Humphries & Gurney, 2008), correspond-
ing to the two forms of clustering coefficient. S ws, S M > 1
implies that the network is tending to a small-world regime of
short path length but high clustering. We attempted to relate
these to the cell assemblies and their sequencing, using the val-
ues for the whole network as baselines for comparison.

The MSN-only network formed a classic random graph,
rather than a small-world, with small-world-ness values of
S ws, S M ' 0.87. The mean path length was L = 1.92 (maximum
path length 3), and clustering coefficients were Cws = 0.092 and
CM = 0.093. All MSNs were reachable from all others on the
network, and so no dynamic group was defined by its physi-
cal isolation from the network. We also used the modularity-
based graph-cutting method (see Appendix) directly on the
graph formed by the connections in the MSN-only network:
this gave just 2 groups of approximately equal size, showing
that the groups found in the dynamics were not related to equiv-
alent groups in the physical network.

We hypothesised that each dynamic group was formed by
neurons with fewer local collaterals between them, and so were
less able to inhibit each other, as indicated by either or both of
(a) a longer path length and (b) lower clustering within the net-
work formed by those neurons. However, the networks formed
by each dynamic group could not be distinguished by their
graph metrics: path lengths and clustering coefficients did not
systematically depart from those for the whole network, and the
small-world-ness coefficients fell in the range expected for such
small networks. We also found no difference in path lengths,
in either direction, between all pairs of groups with negatively
correlated activity vectors. Thus, we could not relate the seem-
ingly antagonistic arrangement of cell firing to corresponding
arrangements of local collateral inhibition, though we note fur-
ther work is needed here to more precisely define the sequence
of firing groups.

Finally, we found that the groups were not defined by their
physical positions within the 250 µm3 region of simulated stria-
tum. All groups had approximately the same median distance
from the centre of the region, and all had approximately the
same distributions of distances as well. Thus, no group was
seemingly defined by edge effects on the network.

6. Discussion

To study the striatal GABAergic microcircuit, we have
brought together for the first time a detailed model of stri-
atal anatomy, models of its main neurons, their modulation by
dopamine, and connection by gap junctions, and models of cor-
tical input. Further, we proposed a new algorithm for finding
structure in the multiple spike train data-sets resulting from the
striatum model. We used this method to gain unique insight
into the computations of the microcircuit, and identify potential
“basic computational elements” for further study. These tech-
niques have general application to the study of microcircuits.

6.1. Detecting structure in multiple spike-trains
Our goal was to find co-active and antagonistic MSNs within

the striatum. Naturally, this meant facing the problem of iden-
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Figure 11: Feed-forward inhibition from the FSIs dominates and desynchronises the MSN network. (a) Increasing dopamine generally decreased both maximum β
(•) and the corresponding time-scale at which it occurred (N), similar to the full model. However, the values of β at low dopamine levels were larger, reflecting the
presence of more spike train groups that could be distinguished by firing rates. (b) Without dopamine, the grouped raster shows 5 groups, similar in distribution of
size and within-group dynamics to the full model. (c) The introduction of a low level of dopamine (here φ1, φ2 = 0.1) does not cause the same drop-off in β as it did
for the full model, corresponding to the presence of more spike-train groups that could be distinguished by firing rate. Nonetheless, the within-group structure to the
dynamics has disappeared in the presence of dopamine. Groups in (b) and (c) shown for the threshold that maximised β (b, θ = 0.1; c, θ = 0.2); groups numbered
top-down.

tifying meaningful groups from many hundreds or thousands
of simultaneously recorded neurons. Such problems are at the
cutting-edge of current neuroscience research. Recent multi-
electrode experimental techniques (Buzsaki, 2004; Miller &
Wilson, 2008) and calcium imaging (Carrillo-Reid et al., 2008)
are already identifying hundreds of neurons, and there is a clear
need for suitable multi-unit methods (Brown et al., 2004), as
their absence places a fundamental limit on the use of such
large-scale data.

Our graph-cut algorithm, based on a Hamming distance cor-
relation metric, is an excellent candidate method for such ex-
ploratory analyses, as it does not require the user to pre-suppose
the size or number of the neuron groups within the data. We
have shown here that the algorithm can successfully find a wide
range of groups that differ in number, size, discreteness of fir-
ing, and time-scale of activation. Extending this approach to
determine neurons shared between more than one cell assembly
(Carrillo-Reid et al., 2008), and to improve detection of group-
ings at multiple time-scales is the subject of ongoing work.

6.2. Microcircuit dynamics
We found no evidence for strongly synchronised neuron

groups or for competitive dynamics between groups, under con-
ditions we considered to best approximate an in vivo state with
tonic dopamine. Of course, we cannot rule out the possibil-
ity that such competing neurons groups are on the scale of the
size of this network, but then only a few such groups could be
sustained in the striatum as a whole. Certainly, such a group
would be much larger than that proposed in the “domain” the-
ory (Wickens et al., 1991). Having prototyped all the appro-
priate methods here, we can now use larger scale networks and
search for the existence of larger cell assemblies.

Without dopamine, noisy but synchronised groups of MSNs
were observed. This is consistent with the increased synchrony
of rat MSNs recorded under anaesthetic following dopamine
depletion (Tseng et al., 2001). Moreover, it provides an ex-
planation for the perplexing finding that dopamine-depletion

causes a fragmentation of striatal cell clusters corresponding
to sensorimotor stimulation of particular body parts (Cho et al.,
2002). Our model clearly suggests that such fragmentation of
striatal cells into smaller groups after dopamine loss occurs as
a natural consequence of the microcircuit’s dynamics.

Taken together, observations of the model with and with-
out dopamine suggest that the dominance of asynchronous fir-
ing with dopamine is beneficial: then the response to subse-
quent structured input would not be corrupted by ongoing syn-
chronised dynamics in the striatum, whereas part of the effect
of dopamine-loss is to hinder striatal computations by having
small groups that respond incorrectly to structured input.

6.3. Dissection of the network
The MSN-only, dopamine-free network showed the clearest

set of cell groups that were consistent with some form of com-
petitive dynamic within the striatal network. With low-levels of
dopamine, the same network showed a structured sequence of
silent periods across all groups. These results show why MSN-
only, dopamine-free models could mislead theories on striatal
function to focussing on competition within it.

The MSN-only network also provided evidence that the FSIs
have a counter-intuitive facilitatory effect on MSN firing. This
is consistent with experimental evidence for an excitatory ef-
fect of GABAergic input to MSNs (Bracci & Panzeri, 2006),
but goes beyond this by showing a detectable affect on firing
rate. In the model, we see that this is simply due to the dispar-
ity between the reversal potential for chloride and the nominal
resting potential of the MSN. GABAergic input acts to drive
the membrane potential toward this reversal potential; yet the
MSN’s isolated resting potential is around -80 to -90 mV, due
to an inwardly-rectifying potassium current. From this starting
point, GABAergic input to the MSN can depolarise the neuron,
and could make it easier to fire, not less. However, the facil-
itatory effect must depend on a balance of glutamatergic and
GABAergic input: an excess of GABAergic input would sim-
ply clamp the membrane potential to the reversal potential for
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chloride. Our model shows that, beyond just a depolarising ef-
fect (Plenz, 2003), realistically parameterised GABAergic input
to the MSNs can produce detectable changes in firing rate.

The MSN-collateral lesioned models revealed that the com-
paratively simple, noisy structure of the full model’s spike train
groups was seemingly dominated by the FSI input, supporting
views that the sparse FSIs play a major role in the striatum (Tep-
per et al., 2004). They appeared to obscure or desynchronise the
groups formed by the MSN-only network. This points to a dif-
ferent hypothesis for the “basic computational element” of the
striatum: that the local MSN collaterals can support competi-
tive dynamics within the striatum, but only when the damping
influence of the GABAergic FSIs is removed. A possible mech-
anism for this is provided by the GABAergic control of FSIs by
globus pallidus (Bevan et al., 1998). In this picture, a small
region of striatum would support local competition following
enhanced pallidal inhibition of a group of GABAergic interneu-
rons. Firmer conclusions here require gathering of better data
on striatal FSIs in particular.

The complex behaviour of the model FSI network empha-
sises the need for more data. We saw an unintuitive effect of
gap junctions. Their presence caused the FSI population firing
rate to fall with increasing dopamine, despite dopamine hav-
ing an excitatory effect on the individual neuron. Removing
the gap junctions reversed this trend. However, it also caused a
large overall fall in population firing rate due to the homogeni-
sation of the firing patterns. With gap junctions, we typically
saw the firing rates spread over 100 spikes/s or more with peaks
at both very low and high ends of this range; without them, the
firing rates were within 3 spikes/s of each other. Presumably the
FSI network transitions between multiple states between these
two extremes, dependent on gap junction strength. A particu-
larly interesting avenue for future work is the potential for this
strength to be controlled dynamically by the nitric oxide releas-
ing interneurons in the striatum (O’Donnell & Grace, 1997).

Further interesting extensions include the other omitted in-
terneuron class (cholinergic) and the effects of GABAb re-
ceptors. The sustained activity of the FSIs could raise extra-
synaptic GABA concentration sufficiently to activate extra-
synaptic GABAb receptors by volume transmission. In the
striatum these are predominantly located on axon terminals
(Galvan et al., 2006). Their activation by baclofen attenuates
both excitatory and inhibitory post-synaptic potentials in MSNs
(Nisenbaum et al., 1993). This suggests they are located on
both glutamatergic terminals, decoupling the MSNs from their
input, and on GABAergic terminals, self-regulating inhibition
throughout the striatum. A thorough study awaits the incorpo-
ration of three-dimensional volume transmission models into
the striatal microcircuit studied here.

6.4. Conclusions
We have found some tantalising hints about the nature of the

computations within the striatal microcircuit, and their relation-
ship to dopamine-depleted disease states. The cell assemblies
found here under a variety of conditions can now form the basis
for a focussed study of the striatum’s dynamics under struc-
tured input: its responses to slow-wave cortical activity under

anaesthetic (Tseng et al., 2001), broad-scale synchrony during
free behaviour (Berke et al., 2004), and its reorganisation dur-
ing learning (Tang et al., 2007). More generally, in developing
our model we have assembled an armoury of tools applicable to
the study of neuronal microcircuits.
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A. Specification for the spike-train clustering algorithm

We specify here the choices of correlation method and graph-
modularity algorithm for use in our general algorithm for
analysing multi-unit data (section 4).

A.1. Choice of correlation method: Hamming distance

There is a wide choice of correlation methods for spike train
pairs, but few fulfill the multiple criteria we require: reducible
to a scalar value, and suitable for repeated, exhaustive compu-
tation of all pairs at multiple time-scales. We propose here a
novel (to the best of our knowledge) metric that fulfills these
criteria. For each spike train, we divide time into bins of width
δt, and in each bin record a 1 for the presence of any spikes, and
a 0 for the absence. The resulting binary vector of length q thus
records when the neuron is active or not. For each pair of bi-
nary vectors, we compute the normalised Hamming distance h,
which is just the proportion of bins that differ between the two
vectors: the smaller h, the closer the two vectors, and thus the
more synchronised the two neurons at time-scale δt. Therefore
we use Ci j = C ji = h to construct the correlation matrix.

This encoding and correlation method has two advantages
for us. By not encoding the magnitude of activity we do not
confound the co-activity of two neurons with scalar measure-
ments of their respective magnitudes. More importantly, us-
ing the Hamming distance places equal weight on co-active and
co-silence periods. This allows us to find neurons that are co-
active, rather than the more limited set that are co-active at sim-
ilar rates. Of course, in other applications of the general algo-
rithm, a more detailed exploration of a smaller subset might be
desirable: then the correlation matrix could be constructed by
counting spikes in each bin and applying a continuous metric,
such as the correlation coefficient.

A.2. Choice of grouping method: graph “modularity”

Standard data clustering techniques, such as k-means and its
various extensions, can be used to find clusters within the ma-
trix A∗ or directly on the correlation matrix C, but these are lim-
ited by the need for the user to define the number of clusters in
advance. Similarly, standard graph partitioning algorithms ap-
plied to A∗ require prior specification of the size of the resulting
partitioned groups (Newman, 2006a). They are thus difficult to
use for the kind of exploratory data analysis required here. We
propose here a novel use of a new graph-partitioning method
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that circumvents this problem by not requiring prior specifica-
tion of the number of groups. We can provide only an outline of
this method here – the reader is referred to (Newman, 2006a,b)
for details.

The general problem of dividing networks into clusters has
generated many techniques in network theory, generally under
the label of “community detection”. Central to many of them is
an attempt to maximise a benefit function

Q = [number of edges in a community]
−[expected number of such edges],

(20)

often called “modularity”, over all possible subdivisions of the
graph describing the network. That is, the division that max-
imises Q creates the clearest division of the graph into two sets,
with more connections within them, but fewer connections be-
tween them, than expected. Key here is quantification of the
“expected number of edges”, which is encapsulated in the null
model graph P. We can define Q in matrix notation as

Q = sT Bs, (21)

where s is a vector denoting the group membership of each node
(defined in (24)), and B is the “modularity” matrix whose en-
tries

Bi j = Ai j − Pi j (22)

denote the difference between the number of links Ai j connect-
ing nodes i and j (allowing for graphs with multiple links be-
tween nodes), and the expected number of links Pi j. Following
Newman (2006a), we use here the null model

Pi j =
kik j

2m
, (23)

where m is the number of unique links in the original graph
(here m∗), and ki, k j are the degrees of (number of links made
by) nodes i and j. This null model is closely related to the
so-called “configuration” model: it essentially forms a random
graph with the same expected degree sequence as the graph be-
ing analysed.

If we compute the eigenvalues βi and the eigenvectors ui of B
for all n nodes, and order the eigenvalues so that β1 ≥ β2 ≥ . . . ≥
βn, then it turns out that we can use the leading eigenvector u1
to partition the nodes into two groups:

si =


1 if ui(1) ≥ 0
−1 if ui(1) < 0.

(24)

We can then use the resulting vector s to compute modularity Q
from (21): if Q is positive, we retain the split; if it is negative,
we do not split. We need only do this once, as the sum in (21)
is maximised by the choice of (24).

To find more than two groups, we repeat the process on each
subgraph defined by the nodes in a group. As each subgraph is
smaller than the original graph, a correction is applied to (22)
to account for the smaller number of nodes and edges

B(g)
i j = Ai j − Pi j − δi j

[
k(g)

i − ki
dg

2m

]
, (25)

where δi j is the Dirac delta functions, k(g)
i is the degree of the

ith node in subgraph g, and dg is the sum of all total degrees ki

(from the original graph) for the nodes in the subgraph. Then
we replace B ← B(g) in (21), and repeat the computation of
eigenvalues and eigenvectors. The subgraph is then split ac-
cording to vector s if Q > 0 as before. This procedure is iter-
ated for all subgraphs until no split yields Q > 0: then we have
reached a state where no subgraph can increase its modularity
by dividing further.

In our application of this method, the outcome is a set of node
groups, corresponding to all found subgraphs. Each subgraph
in turn corresponds to a set of neurons with sufficiently strong
correlation between them to fulfill the definition of modularity
(20).
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