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a b s t r a c t 

Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic 

resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, 

such as ventricular tachycardia and heart failure. Clinical implementation of these developments neces- 

sitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare 

new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking 

datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents 

a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the 

LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired 

from two separate imaging centres. A consensus ground truth was obtained for all data using maximum 

likelihood estimation. 

Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the 

benchmarking framework. Results demonstrate that the algorithms have better overlap with the con- 

sensus ground truth than most of the n -SD fixed-thresholding methods, with the exception of the Full- 

Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding 

methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribu- 

tion of this work, can be used to test and benchmark future algorithms that detect and quantify infarct 

in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly 

available through the website: https://www.cardiacatlas.org/web/guest/challenges . 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

In recent years, the translation of image analysis tools to the

linical environment has remained limited despite their rapid de-

elopment. Although algorithms are extensively validated in-house

ollowing development, it is often not clear how they compare
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Table 1 

Overview of previously published methods for scar quantification and segmentation. 

Reference Model n Algorithm Highlight 

LV Kim et al. (1999) Canine 26 2-SD Correlation of MRI enhancement with scar 

Amado et al. (2004) Animal 13 1–6 SD, FWHM FWHM correlates to histology 

Kolipaka et al. (2005) Human 23 2,3-SD Manual correction is necessary despite algorithm 

Positano et al. (2005) Human 15 Clustering Fast clustering algorithm 

Schmidt et al. (2007) Human 47 2–6 SD Grey-zone and core quantification 

Hennemuth et al. (2008) Human 21 EM fitting ∗ Model based on scanner acquisition and reconstruction parameters 

Detsky et al. (2009) Human 15 Clustering ∗ Clustering in feature space 

Tao et al. (2010) Human 20 Otsu thresholding ∗ Dice overlap on chronic myocardial infarction with 2-observer manual segmentation 

Flett et al. (2011) Human 60 2–6 SD, FWHM Inter- and intra-observer reproducibility 

Rajchl et al. (2014) Human 35 SD, FWHM, Max-flow Inter- and intra-observer reproducibility on 3D CMR 

Andreu et al. (2011) Human 12 50, 60, 70% FWHM 60% FWHM for good voltage correlation 

Lu et al. (2012) Human 10 Graph-cuts ∗ Correlation with FWHM and manual segmentations on chronic myocardial infarction data 

Pop et al. (2013) Animal 9 Mixture model ex-vivo histology and high-resolution MRI 

LA Oakes et al. (2009) Human 81 2–4 SD LA fibrosis and correlation to recurrence 

Knowles et al. (2010) Human 7 Maximum intensity projection Necrosis and oedema theory for reconnection, comparison with electroanatomical data 

Ravanelli et al. (2014) Human 10 SD, Skeletonisation ∗ Comparison with electroanatomical data 

Karim et al. (2014) Human 15 Graph-cuts ∗ Dice with 3-observer consensus delineation 

Harrison et al. (2014) Animal 16 2–6 SD ex-vivo histology infarct volume against MR 

Methods are listed in chronological order, type of data they were evaluated with and the algorithm for: left ventricle (LV) or left atrium (LA). Methods which report on a 

segmentation algorithm developed are marked with an asterix ( ∗). 
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to other existing algorithms. Algorithm designers are faced with

the challenging task of cross comparing their algorithm’s perfor-

mance. The absence of a common pool of data along with evalu-

ation strategies has limited algorithm translation into the clinical

workflow Moreover, as larger cohort data sets become available,

the need for reducing the manual labour involved in image analy-

sis is becoming more important 

Benchmarking of algorithms on common datasets provides a

fair test-bed for comparison. It is thus a very important activity as

we move from bench to the bedside in the medical image process-

ing community. In recent years, several conferences and meetings

within the medical image processing community have provided a

platform to benchmark algorithms from multiple research groups.

These challenges invite participants to submit their algorithms and

test them on common data. The results from the test are then eval-

uated and compared using common evaluation metrics. In the past,

a few challenges have been organised, each with its own unique

theme. There exists an index of past challenges within the medi-

cal image processing community and it can be found on the Car-

diac Atlas project page in https://www.cardiacatlas.org/web/guest/

challenges . In the cardiovascular imaging domain, some recent

challenges include left atrial fibrosis and scar segmentation ( Karim

et al., 2013 ), left ventricle segmentation ( Suinesiaputra et al., 2014 ),

right ventricle segmentation ( Petitjean et al., 2015 ), cardiac motion

tracking ( Tobon-Gomez et al., 2013 ) and coronary artery stenosis

detection ( Kirisli et al., 2013 ). 

1.1. Motivation for left ventricle infarct segmentation 

Cardiovascular magnetic resonance (CMR) imaging can be used

to comprehensively assess the viability of myocardium in pa-

tients with ischaemic heart disease. Myocardial infarction can be

visualised and quantified using inversion recovery imaging 10–

15 min after intravenous administration of Gadolinium contrast.

This imaging technique is known as late Gadolinium enhancement

(LGE) imaging. Experimental models have shown excellent agree-

ment between size and shape in LGE CMR and areas of myocardial

infarction by histopathology ( Kim et al., 1999; Wagner et al., 2003 ).

Infarct size from CMR is also a primary endpoint in many clinical

trials (see Desch et al., 2011 for a complete list). 

Recent studies have also demonstrated how infarct size, shape

and location from pre-procedural LGE can be useful in guiding

ventricular tachycardias (VT) ablation ( Estner et al., 2011; An-

dreu et al., 2011 ). These procedures are often time-consuming due
o the preceding electrophysiological mapping study required to

dentify slow conduction zone involved in re-entry circuits. Post-

rocessed LGE images provide scar maps, which can be integrated

ith electroanatomic mapping systems to facilitate these proce-

ures ( Andreu et al., 2011 ). Clinical implementation of these de-

elopments necessitates a reliable, fast, reproducible and accurate

egmentation of the infarcted region. Moreover, as use of LGE-

ased infarct volume estimation becomes more clinically relevant,

tandardisation will facilitate more consistent interpretation. 

.2. State-of-the-art for cardiac infarct segmentation 

A short overview of previously published infarct detection algo-

ithms for the left ventricle (LV) is presented here. Table 1 lists

he algorithms surveyed and highlights some of their important

eatures. A common method for detecting infarct in the LV is the

xed-model approach, whereby intensities are thresholded to a

xed number of standard deviations (SD) from the mean inten-

ity of nulled myocardium or blood pool ( Flett et al., 2011 ). In the

est of the paper this will be known as the n -SD method, where

 = 2 , 3 , 4 , 5 or 6. A second common fixed-model approach is the

ull-width-at-half-maximum (FWHM) approach, where half of the

aximum intensity within a user-selected hyper-enhanced region

s selected as the fixed intensity threshold ( Amado et al., 2004 ).

sing this threshold, a region-growing process is employed from

ser-selected seeds. These seeds are selected to be within infarcted

egions such that they can be segmented with region-growing. 

As the aforementioned approaches require user input, making

hem prone to inter- and intra- observer variation, other ap-

roaches that are automatic have been developed. Hennemuth

t al. (2008) modelled the intensities of homogeneous tissue

n LGE CMR with a Rician distributions and an expectation-

aximization (EM) algorithm was used for fitting the data. Pop

t al. (2013) fitted Gaussian mixture models to myocardial tissue

ixel intensities and correlated with histology. In Detsky et al.

2009) , clustering in a feature space of steady-state and T ∗
1 

inten-

ity values provided the segmentation which was shown to provide

ood correlation with FWHM. Tao et al. (2010) employed auto-

atic thresholding using the Otsu method on bi-modal intensity

istograms of myocardium and blood pool. More recently, the use

f the graph-cut technique in image processing has been applied

o segment infarct in several methods ( Lu et al., 2012; Karim et al.,

014; Karimaghaloo et al., 2012 ). An advantage of this technique

s that constraints can be placed on the resulting segmentation,

https://www.cardiacatlas.org/web/guest/challenges
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Table 2 

Image acquisition: image acquisition parameters for the challenge LGE patient and porcine datasets. Abbreviations: TI - Inversion time, TR - Repetition time, TE - Echo time, 

FA - Flip angle, ECG - Electrocardiogram. Imaging centres: KCL-IM - Imaging Sciences, King’s College London and UL - Universiteit Leuven. Note that the patient dataset 

was acquired at KCL-IM and porcine dataset was acquired at UL. 

KCL-IM UL 

Scanner type Philips Achieva 1.5T Siemens Trio 3.0T 

Sequence Segmented 2D, inversion recovery gradient echo ECG triggered, breath-hold Segmented 3D inversion recovery, gradient echo ECG triggered breath-hold 

TI, TR, TE, FA 280 ms, 3.4 ms, 2.0 ms, 25 ° 340-370 ms, 2.19 ms, 0.78 ms, 15 °
Resolution 1 . 8 × 1 . 8 × 8 mm 1 . 8 × 1 . 8 × 6 mm 

Interleaving Every R-R interval in ECG Every other R-R interval in ECG 

Subjects Human Porcine 
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Fig. 1. Sample datasets: a sample of LGE CMR data included in the challenge. The 

human (top-row) and porcine (bottom-row) images are shown. 
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llowing segmentation boundary regularization with region-based

roperties. It also predicts which pixels are statistically most likely

o be infarct based on prior probability distribution models. 

.3. Proposed evaluation framework 

In this paper we propose an evaluation framework for future

lgorithms that segment and quantify infarct from LGE CMR

mages of the LV. To demonstrate the framework, five algorithms

ere evaluated by comparing against a consensus segmentation

f experienced observers. The algorithm and observers were both

rovided the myocardium segmentation. The algorithms were

lso provided with training data sets. Algorithms evaluated in

his work were submitted as a response to the open challenge,

ut forth to the medical imaging community at the Medical

mage Computing and Computer Assisted Intervention (MICCAI)

nnual meeting’s workshop entitled as Delayed Enhancement MRI

egmentation challenge. There were thirty LGE CMR data of the

V from both human and porcine cohorts used for the challenge.

he data were divided into test ( n = 20 ) and training ( n = 10 ) sets.

ach participant designed and implemented an algorithm which

egmented the infarct in each dataset. The datasets are publicly

vailable via the Cardiac Atlas project challenge website https:

/www.cardiacatlas.org/web/guest/ventricular-infarction-challenge . 

. Material and methods 

.1. Data acquisition database 

LGE images were collected from two imaging centres: Imaging

ciences at King’s College London (KCL-IM) and Universiteit Leuven

UL). A total of fifteen human and fifteen porcine datasets were

ollected, of which five in each cohort were used as a training

et for the algorithms. For all datasets, a short-axis stack of DE-

RI images covering the LV were provided. The myocardial mask

n each image was made available. This was delineated carefully by

n expert observer using short-axis slices. A first step was to deter-

ine the basal, mid and apical slices based on the standard Amer-

can Heart Association (AHA) guidelines ( Cerqueira et al., 2002 ).

he contours for epicardial and endocardial borders, excluding the

apillary muscles, were carefully drawn on each slice before the

nclosed region in-between them was filled to produce the mask.

he images in the database were limited to the above two different

ypes but varied in their quality. Refer to Table 2 for a summary of

he two different types of data that were included in this study. 

The human data ( n = 15 ) were from randomly selected patients

ho had a known history of ischaemic cardiomyopathy and were

nder assessment for an implanatable cardioverter defibrillator

ICD) device for primary or secondary prevention after infarction.

n addition to this, the patients chosen had a history of myocardial

nfarction at least three months prior to their MRI scan. There was

lso evidence of significant coronary artery disease on angiogra-

hy and evidence of left ventricular impaired systolic function on
chocardiography. The images were acquired on a clinical 1.5T MRI

nit (Philips Achieva, The Netherlands). All patients gave written

nformed consent. 

The porcine data ( n = 15 ) were randomly selected from an ex-

erimental database of a pre-clinical model of chronic myocar-

ial ischemia ( Wu et al., 2011 ), with induced lesions obtained

y occluding either the left-anterior descending or left-circumflex

rtery. The data were acquired six weeks after the induction of the

oronary lesion on a clinical 3T MRI unit (Siemens Healthcare, Ger-

any). Representative images are shown in Fig. 1 . 

Five research groups segmented the above datasets, leaving ten

mages aside, which were utilised for training. A brief summary of

heir algorithms is given in Table 3 . They are described in greater

etail in the sections below with a brief background on each tech-

ique implemented and details of their implementation. 

.2. Algorithm 1: Alma IT Systems - support vector machines and 

evel sets (AIT) 

.2.1. Background: 

Support vector machines (SVM) and level set methods were

sed to segment scar in this method. SVM is a machine learning

echnique which first computes the optimal hyperplane on a set of

raining data mapped to some feature space ( Hearst et al., 1998 ).

he hyperplane is a decision boundary which maximally separates

he pre-labelled data. Once the hyperplane is obtained, the unseen

ata is mapped to the same feature space to see which side of

he hyperplane it lies in. This labels and thus classifies the unseen

ata. Level-sets ( Sethian, 1999 ) were also used in this method. In

his technique a region evolves from an initial position within the

egion to be segmented. Level-sets have the added advantage of

mposing shape constraints on the evolving region. 

.2.2. Implementation: 

A number of image processing techniques were employed.

n the first stage, an Otsu-based thresholding was used. Here

he threshold between healthy and scar tissue was computed by

https://www.cardiacatlas.org/web/guest/ventricular-infarction-challenge
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Table 3 

A brief summary of algorithms that were evaluated on the proposed framework. Institution abbreviations: AIT - Alma IT Systems, and - Universitat Pompeu Fabra, 

MCG - McGill University, MV - Mevis Fraunhofer, KCL - King’s College London. 

Algorithm Technique 

Strengths and 

weaknesses Key features Interaction 

AIT : Lara et al. Otsu, support 

vector machines 

and level-sets 

Post-processing 

improves results but 

increases running 

time 

Otsu with two tissue 

classes. User selects 

seed in blood-pool 

Semi-automatic 

UPF : Albà et al. Region-growing 

and morphology 

Shapes 

uncharacteristic of 

scar are deleted but 

requires initialisation 

for every slice 

Two seeds, for healthy 

and scar, per slice. 

Region-labelling step 

ensures smoothness, 

filling gaps 

Semi-automatic 

MCG : Karimaghaloo 

et al. 

Conditional random 

fields 

Hierarchical 

approach with two 

levels of processing, 

but uses statistics on 

a small 

neighbourhood 

Posterior distribution 

model estimated with 

a direct map and not 

Gaussian during 

training 

Automatic 

MV : Hennemuth et al. EM-algorithm and 

Watershed 

transformation 

No fixed intensity 

model and the 

best-fit model is 

selected, but 

over-fitting can be an 

issue 

Automated 

seed-selection in 

watershed process. 

Gaussian-mixture or 

Rician–Gaussian 

models for fitting 

intensities with EM 

algorithm 

Semi-automatic 

KCL : Karim et al. Graph-cuts with 

EM-algorithm 

Computes a globally 

optimal 

segmentation, but 

can sometimes reject 

good candidates 

Gaussian-mixture 

model fits intensities 

with EM algorithm 

using three tissue 

classes 

Semi-automatic 

n - SD n standard 

deviations from 

healthy tissue 

(n = 2 , 3 , 4 , 5 , 6) 

Simple to implement, 

but baseline is 

subjective 

Only involves 

thresholding, no 

region-growing as 

FWHM 

Semi-automatic 

FWHM 50% of 

user-selected 

hyper-enhanced 

myocardium 

Validated with 

histology in 

literature but was 

first used to describe 

a phenomenon in 

signal analysis 

Computed threshold 

used for 

region-growing from 

user-selected seed 

locations in each slice 

Semi-automatic 
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maximising the intensity variance between the two labels in the

intensity histogram ( Otsu, 1975 ). However, as this method was

subject to limitations, especially in instances where healthy and

scar tissues had overlapping intensities, further steps were neces-

sary. An ensuing connected-component analysis found groups of

connected pixels. On these pixel groups, several features relevant

to scar were extracted: area, bounding box, major and minor axes,

eccentricity, convex-hull area and Euler number ( Teague, 1980 ).

This allowed pixel groups to be mapped to a feature space. Several

classifiers were tested on the training data provided. These were

namely SVM, K -nearest neighbours, linear Bayesian discriminant,

and linear perceptron classifiers. SVM was chosen based on the

best trade-off between error and sensitivity on the training data

( Hearst et al., 1998 ). 

Following classification using SVM, a further level-set-method

step refined the segmentations obtained ( Sethian, 1999 ). The con-

tours obtained from the SVM classification step were used to ini-

tialise a level-set. The level-set was constrained by the search area

obtained in the initial step of the algorithm. It evolved in a speed

image P ( x ) derived from the SVM classified pixels: 

P (x ) = 

{
I(x ) − L, if I(x ) < 

U+ L 
2 

U − I(x ) , otherwise 
(1)

The values U and L were obtained from grey-level intensity I ( x )

statistics of the SVM output, i.e. U = μ + 5 σ and L = μ − 5 σ . These

parameters are in-line with the standard deviation approach for

classifying scar ( Karim et al., 2013 ). 
.3. Algorithm 2: Universitat Pompeu Fabra - Region growing and 

orphology (UPF) 

.3.1. Background: 

Region-growing is a well-known image processing technique

hich finds a group of connected pixels with intensity homogene-

ty. It is an iterative process which starts from a seed point, and

he region increases in size by including neighbouring pixels that

t a certain pre-defined criteria. Region-growing can subsequently

eak into neighbouring areas, which is an important limitation of

he technique. 

.3.2. Implementation: 

Seed selection for region-growing was automatic and repeated

or each slice, making it essentially a 2D technique. A minimum

f two seeds were selected for each tissue class: scar and healthy.

he criteria for selecting seeds for the scar tissue class was the

ollowing: 

 > μk + 2 σk (2)

here a pixel in the k th slice has intensity I and is subjected to the

bove test based on mean ( μ) and variance ( σ 2 ) of myocardium

ntensity. Individual regions satisfying the above criteria were anal-

sed for their shape and size. Elongated and thin regions near the

picardium were deleted in an automated manner by computing

he eccentricity and width (proportion to myocardial mask) of the

egion in question, on which a thresholding was performed based
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n empirical values obtained from the training set. The size of neg-

igible regions were defined in proportion to the pixel size and

ize of the myocardial mask. The two largest and brightest regions

ere selected as the seeds. This selected seeds for the scar tis-

ue class. For the healthy tissue class, a similar standard deviation

pproach was utilised (i.e. I < μk + 2 σk ) and the two largest and

arkest regions were selected as seeds. Region-growing was initi-

ted from each seed region and these generated segmented regions

or healthy or scar tissue classes. The choice of two seeds, per slice,

or each tissue class is important as it generates two separate dis-

onnected regions. However, this places a limit on the maximum

umber of scar or healthy regions possible (i.e. two) in each slice. 

The region-growing process was followed by a region-labelling

tep in which pixels that were not labelled as scar or healthy tissue

ere analysed; if they contained any adjacent neighbour belong-

ng to either scar and healthy classes, they were labelled as such.

his was followed by a post-processing step to fill holes or small

aps in the segmentations. Also, regions that were small islands

ontaining a negligible number of pixels were removed from the

egmentation. Finally, dark regions that lacked contrast, but were

urrounded by scar pixels were re-labelled as scar. This is charac-

eristic of a microvascular obstruction. 

.4. Algorithm 3: McGill - conditional random fields (MCG) 

.4.1. Background: 

The previous methods described are geometrical in their na-

ure; a region’s intensity and its geometrical shape are used to

etermine its classification. The method described in this section

s different from the above approaches in that a probabilistic

lassifier model was used. Based on the training dataset, the

lassifier can infer the posterior distribution of a pixel’s label to

e healthy or scar given the observation. There are two sets of

bservations made: (1) the pixel’s intensity, and (2) the pixel’s

eighbourhood. Since labels of neighbouring pixels are typically

orrelated, neighbourhood information is incorporated by building

 graphical model G ( V, E ), where voxels are represented by a set

f nodes ( V ) and the relationships among them are represented

y edges ( E ). In the generative Markov random field (MRF) (see

oykov et al., 2001 ), the Bayes’ relationship is used to determine

he posterior distribution: 

p(Y | X ) = 

p(X | Y ) p(Y ) 

p(X ) 
(3)

here X is the unseen image to be segmented and Y is the

abelling into healthy and scar. The likelihood p ( X | Y ) of the unseen

mage is estimated by assuming that the voxel intensities in X are

ndependent given the labels. Also, a uni-modal Gaussian is often

sed. However, in the context of medical image segmentation,

egions are not random collections of independent pixels. Instead,

tructures usually form coherent and continuous shapes. In this

ork, a conditional Markov random field (CRF) ( Lafferty et al.,

001 ) is used which is a discriminative framework and the poste-

ior p ( Y | X ) is estimated by learning a direct map from observations

o the class labels (i.e. in training images). This is how it differs

rom other MRF approaches used in binary classification, where

he posterior is estimated using Gaussian distributions. 

.4.2. Implementation: 

The CRF implemented in this work used a hierarchical approach

nd is described in Karimaghaloo et al. (2012) . There are two levels

f CRF: in the first level image intensity information was used, and

n the second level, a so-called spin image feature vector derived

rom intensity information was used. In the first level CRF, the pos-

erior distribution p ( Y | X ) was estimated as in a conventional CRF
 Lafferty et al., 2001 ): 

p(Y | X ) 

= 

1 

Z 
exp 

[ 

n ∑ 

i =1 

φ(y i | X ) + 

∑ 

j∈ N i 
ϕ(y i , y j | X ) + 

∑ 

j,k ∈ N i 
ψ(y i , y j , y k | X ) 

] 

(4) 

here Z is a normalization term and φ, ϕ and ψ are unary, pair-

ise and triplet potentials respectively. Pairwise and triplet poten-

ials measure the interaction between pixels that are immediate

eighbours (pairwise) and neighbour’s neighbours (triplet). As re-

ions in MRI images are not random collections of independent

ixels but part of coherent and continuous shapes, the pairwise

nd triplet potentials reinforce this notion. The unary potentials

p(y i | x i ) computed the inference on the healthy or scar labels ( y i )

rom the MRI intensity observed at pixel i . This potential was mod-

lled from labelled training data provided within the challenge us-

ng: 

(y i | X ) = log p(y i | x i ) (5)

here y i is the label and x i is the observed intensity at voxel i .

 binary classifier was employed for the purpose of distinguishing

etween healthy and scar. The decision boundary was learned from

raining data using a variant of support vector machines (SVM)

nown as relevance vector machines (RVM) ( Tipping, 2001 ). The

nal classification of the first-level CRF was performed using a

raph-cut optimization framework ( Boykov et al., 2001 ). 

In the second-level CRF, using infarction candidates from the

rst level, a two dimensional histogram encoding the distribution

f image brightness values in the neighbourhood of a particular

eference point was constructed. This is the spin image which en-

oded local information around infarct candidates. Besides voxel

ntensity, these spin image features were also used for CRF. Sim-

lar to the first-level CRF, the final inference was performed using

 graph-cut optimisation framework. 

.5. Algorithm 4: Mevis Fraunhofer - EM-algorithm and watershed 

ransformation (MV) 

.5.1. Background: 

The method presented in this work assumes that the voxel in-

ensity distribution in MR images can be modelled using statistical

istribution models. Depending on acquisition parameters and the

econstruction algorithm, it can either be modelled using a Gaus-

ian, Rayleigh or non-central χ-distribution ( Dietrich et al., 2007 ).

hese distributions are also closely related to the Rician distribu-

ion, making it suitable for modelling healthy myocardium inten-

ities. For diseased myocardium the Rician–Gaussian mixture was

ound to be appropriate, and for necrotic tissues, the non-central

-distribution was shown to be suitable ( Hennemuth et al., 2008 ).

The watershed segmentation approach was used in this method

 Hennemuth et al., 2008 ). Watershed is a classical image segmen-

ation technique where the gradient image is considered as a to-

ographic surface. Structures such as scar can be assumed to have

igh intensity gradients at edges and low gradients in the interior.

his high-low-high intensity gradient profile creates basins in the

mage. Once points are located inside each basin they can be seg-

ented by following paths of decreasing altitudes on the topogra-

hy of the gradient image. 

.5.2. Implementation: 

In this work, three separate models were considered: Rician,

ician–Gaussian and Gaussian models. Each model was fitted to

he myocardium intensity distribution in the unseen image. The

odel with the least mean fitting error was chosen. To achieve

n optimal fit, the Expectation-Maximization (EM) algorithm was
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used. Two classes corresponding to healthy and scar were chosen

to initialise the EM fit. 

A threshold was then derived from the mixture distribution ob-

tained from the EM-fitting process. This is the higher of the two

means in the two-class mixture model. Using Euclidean distance

in 3D and endocardial voxels computed from the myocardium seg-

menatation, voxels with intensity higher than the threshold and

closer to the endocardium were chosen as seeds for the watershed

process. These seeds were used to define the basins and the wa-

tershed transformation determined the extent of each basin. The

basins determined each location to be labelled as scar. An en-

suing connected-components analysis step removed small noisy

structures. 

2.6. Algorithm 5: KCL - Graph-cuts with EM-algorithm (KCL) 

2.6.1. Background: 

The background of the method used in this work is in some

ways similar to the method proposed by MCG in Section 2.4 ex-

cept that it employs a non-conditional MRF solved using graph-

cuts. The image to be segmented is modelled as a graph with paths

or links between neighbouring pixels. For each pixel there is also a

link to two special nodes also known as source and sink nodes that

correspond to scar and healthy myocardium. Each link is assigned a

weight based on its intensity. The graph-cuts approach computes a

partitioning to divide the graph into two sub-graphs, one contain-

ing the source node and the other the sink node. This partitioning

assigns a label (source or sink) to each pixel solving the segmenta-

tion as an optimisation problem. It searches for a globally-optimal

solution. 

2.6.2. Implementation: 

In the graph-cuts approach implemented in this work, each

pixel in the myocardium was modelled as a node in the graph with

links to source and sink nodes. These links were assigned weights

representing the affinity to healthy (i.e. source) and scar (i.e. sink)

nodes. The weights were derived from statistical distribution mod-

els developed from training images. There were separate intensity

distribution models for healthy and scar tissue, both of which were

derived from the training images. For scar, the ratio of delayed en-

hancement intensity to mean blood pool was modelled using a

Gaussian distribution. For healthy tissue, a Gaussian mixture was

used. The number of mixtures in the model was fixed at three. The

standard EM-algorithm computed mean and variance for each mix-

ture from the training images. In the graph-cuts framework there

are also links between adjacent pixels and these were derived from

a measure of intensity similarity of two pixels. Adjacent pixels with

similar intensities attained a high weight. This enforced coherence

in the segmentation output. The final segmentation was obtained

using global optimisation over the entire image. This allowed for

disjointed infarct regions to be identified in the image. 

2.7. Algorithm evaluation 

2.7.1. Reference standard: consensus ground truth 

A reference standard for scar in each case was obtained by com-

bining volumetric segmentations from three separate observers.

All observers were cardiologists with several years’ experience in

CMR assessment of LV function and tissue viability. They also had

several years’ experience working with patients suffering from is-

chaemic heart diseases. For both datasets, they were blinded to the

underlying clinical situation of patients and pigs. For pigs, lesions

were obtained by occluding either the left-anterior descending or

left-circumflex artery, and the observers were blinded to this fact.

The observers were not instructed to look for areas of grey zones .
or regions affected by microvascular obstructions, they were in-

tructed to avoid these by looking for regions of significant hypo-

nhancement surrounded by enhanced regions. 

Scars in the images were segmented as follows: (1) Each slice

n the LGE CMR was analysed separately in the short-axis view.

he segmentation of the myocardium was loaded as an overlay. (2)

he basal, mid and apical slices were identified along with the LV

rientation, i.e. the posterior and anterior ends. (3) The short-axis

lices were then analysed one at a time sequentially from basal to

pical or apical to basal. (4) The basal slices were then examined

or non-scar related enhancements (see Turkbey et al., 2012 ) such

s the right ventricle (RV) insertion point, and partial voluming in

he basal slices due to the outflow tract and appendage. The mid

nd apical slices were also examined for coronary arteries carry-

ng blood that could be enhanced, and microvascular obstructions.

5) Pixels enhanced within myocardium were labelled as scar and

enerally noisy pixels or regions were avoided. Noise observed in

he lungs was used as a reference. 

Each observer was provided with the same set of guidelines as

bove. However, their segmentations differed in some instances.

his was generally due to differences in their opinion and expe-

ience. Such inter-observer variability is now widely accepted. It

as thus important to merge the segmentations and obtain a con-

ensus ground truth. A maximum likelihood estimation of ground

ruth was obtained using a published algorithm known as the STA-

LE ( Warfield et al., 2004 ). For every voxel, a probabilistic estimate

f the true segmentation was computed using an optimal combina-

ion of the observers’ segmentations. The final consensus segmen-

ation was then obtained by thresholding this probability above 0.7

r 70%. This is referred to in the rest of the text as the consensus

round truth. 

.7.2. Common algorithms: n -SD and FWHM 

Quantification of scar in LGE CMR images using a fixed model

s often desirable and commonly used as it includes fewer image

rocessing steps, with some studies advocating its reproducibility

 Flett et al., 2011; Amado et al., 2004 ). In fixed models, scar is

uantified by thresholding intensities at a fixed distance from a

eference intensity value. Two types of fixed models were used,

amely FWHM and the n -SD method. FWHM is a technique

here half of the maximum intensity within a user-selected

yper-enhanced region is selected as the fixed intensity threshold

or an ensuing region-growing step ( Amado et al., 2004 ). In the

egion-growing step, infarcted regions are segmented based on

ser-selected seed points. These are used to initialise the region-

rowing step. The n -SD method ( where n = 2 , 3 , 4 , 5 , 6) , uses a

xed number of standard deviations from mean signal within

ealthy myocardium. A manual region-of-interest (ROI) selection

as required in both techniques. In FWHM, a ROI was delineated

n hyper-intense myocardium. In n -SD, a ROI was delineated in

emote myocardium. Remote myocardium was defined as a region

ith no enhancement and normal wall motion. Endocardial and

picardial surfaces were avoided in the delineation. 

.7.3. Evaluation metrics 

Segmentations from each algorithm were compared against the

eference standard for scar. As no single metric is advocated as the

est metric, two different types of metric were chosen for evalu-

ting the segmentations. These were overlap and volumetric mea-

ures, and they are briefly described below: 

1. Overlap metric: The Dice similarity is a metric for segmenta-

tion overlap measuring the proportion of true positives in the

segmentation: 

s = 

2 | X ∩ Y | 
| X | + | Y | (6)
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Fig. 2. Examples of pseudo infarct in the patient database. Arrows indicate en- 

hancements due to the right ventricle insertion point (left) and outflow tract (right). 
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Fig. 3. Performance on patient datasets: segmentation accuracy on the patient 

dataset. Note the figure also displays results from 2-SD, 3-SD, 4-SD, 5-SD, 6-SD and 

FWHM. Dice was computed on every individual region of scar found in the consen- 

sus segmentation. 

Fig. 4. Performance on porcine datasets: segmentation accuracy on the porcine 

dataset. Note the figure also displays results from 2-SD, 3-SD, 4-SD, 5-SD, 6-SD and 

FWHM. Dice was computed on every individual region of scar found in the consen- 

sus segmentation. 
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where X is the segmented region in the ground-truth and Y is

the region in the challenger’s algorithm. 

2. Volumetric-based metric: The total volume error between the

algorithm’s output and reference standard was found: 

δV = | V T − V G | (7)

where V T is the volume of scar in the algorithm segmentation

and V G is the volume of scar in the consensus segmentation. 

.7.4. Objective evaluation 

In LGE CMR of the LV, hyper-enhanced areas not relating

o scar are not uncommon ( Turkbey et al., 2012 ). Unless the

haracteristic and geometry of these pseudo infarcts are explicitly

odelled into the technique, it is challenging for an algorithm to

istinguish them. Some common sources of pseudo infarcts seen

n LGE CMR of the LV are: (1) the location of the RV insertion

oint, (2) partial voluming in basal slices due to the outflow tract

nd the appendage, and (3) hyper-enhanced areas due to epi-

nd pericardial fat. An experienced observer selected regions con-

aining the aforementioned enhancements. These were identified

sing simple techniques such as checking for continuity of scar or

rtefact in the adjacent slices, i.e. if it continues then it is likely to

e scar. Some instances of pseudo infarcts occurring in the patient

ataset are shown in Fig. 2 . To evaluate how the algorithms

andled pseudo infarcts, each algorithm’s output was evaluated

eparately on these regions. The percentage of voxels detected by

ach method in these spurious regions was determined. 

A good contrast between normal myocardium, blood pool and

nfarct is challenging and greatly depends on achieving the optimal

nversion time. Each scan in the image database was scored by five

aters experienced in LGE CMR images. The rating with maximum

otes determined the scan’s rating. Scans in the image database

ere ranked into three categories: good, average and poor. The

ice metric was computed separately in each category. This indi-

ated how robust the algorithms were against contrast enhance-

ent quality. 

. Results and discussions 

.1. Segmentation accuracy against consensus ground truth 

On the patient and porcine LGE CMR scans, segmentations from

he algorithms were compared to the consensus ground truth. A

onsensus was available by combining segmentations from three

eparate observers as described in Section 2.7.1 . Segmentation

ccuracies measured using the Dice metric are shown in Fig. 3

or the patient dataset. The Dice overlaps between algorithm

nd consensus were determined on an automatically-determined

egion-of-interest (ROI) enclosing each individual region of infarc-

ion labelled in the consensus. The medians of these individual

ice overlaps were as follows: AIT = 73 , KCL = 74 , MCG = 85 ,

V = 44 , and UPF = 70 . Fixed model approaches for segmenting
car (i.e. n -SD and FWHM) were also compared with the con-

ensus ground-truth. The median Dice overlaps were: 2-SD = 47 ,

-SD = 54 , 4-SD = 55 , 5-SD = 62 , 6-SD = 64 , FWHM = 78 . An exam-

le of a single slice from the patient dataset is shown in Fig. 5 . 

On the porcine LGE CMR scans segmentations from the algo-

ithms and fixed-model approaches were compared in a similar

ay to the patient dataset. The Dice overlap metric is plotted in

ig. 4 for each submitted algorithm and fixed model. The Dice

verlaps were determined, as above, on ROIs enclosing each region

f infarction labelled in the consensus. The medians of these indi-

idual Dice overlaps were as follows: AIT = 86 , KCL = 80 , MCG = 73 ,

V = 33 , and UPF = 73 . Standard methods using fixed models were

lso compared with the consensus ground-truth and the median

ice overlaps were: 2-SD = 64 , 3-SD = 65 , 4-SD = 67 , 5-SD = 74 , 6-

D = 76 , FWHM = 69 . An example of a single slice from the porcine

ataset is given in Fig. 6 . 

The Dice scores, reported above, were evaluated within ROIs en-

losing scar in the consensus segmentation. These areas can often

e large sections within the image, especially if the scar is con-

inuous and extends to several slices. This provided for a more
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Fig. 5. Example segmentation from the patient dataset. Clockwise from top-left: original LGE CMR, consensus segmentation, FWHM, 5-SD, 6-SD, AIT, KCL, MCG, MV, UPF. 

Abbreviations: LV - left ventricle, RV - right ventricle, ANT - anterior, INF - inferior, INF-SEP - infero-septal, INF-LAT - infero-lateral, ANT-LAT - antero-lateral. 

Fig. 6. Example segmentation from the porcine dataset. Clockwise from top-left: original LGE CMR, consensus segmentation, FWHM, 5-SD, 6-SD, AIT, KCL, MCG, MV, UPF. 

Abbreviations: LV - left ventricle, RV - right ventricle, ANT - anterior, INF - inferior, INF-SEP - infero-septal, INF-LAT - infero-lateral, ANT-LAT - antero-lateral. 

Table 4 

Segmentation accuracy with volume difference ( δV ) on patient and porcine data for 

submitted algorithms and fixed-models. The standard deviation of each metric is 

quoted in brackets. 

Patient data Porcine data 

| δV | (ml) | δV | (ml) 

AIT 0.77 (0.7) 0.84 (0.5) 

KCL 1.05 (1.0) 0.73 (0.5) 

MCG 1.02 (0.5) 0.54 (0.1) 

MV 1.70 (2.3) 0.75 (0.3) 

UPF 0.70 (0.3) 0.97 (0.7) 

2-SD 8.55 (0.4) 4.00 (0.2) 

3-SD 6.71 (0.3) 3.52 (0.8) 

4-SD 5.20 (0.2) 2.92 (0.8) 

5-SD 3.92 (0.3) 2.44 (0.1) 

6-SD 2.96 (0.3) 2.08 (0.1) 

FWHM 3.10 (1.0) 2.20 (0.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Plot showing the characterization of Dice by slice location (basal, mid and 

apical) by combining results from the patient and porcine datasets. 
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objective evaluation. The algorithm’s false positives outside the ROI

is not accountable. To counteract this issue, segmentations were

also compared by quantifying volume differences. This was deter-

mined by measuring the difference in total volume of scar be-

tween the consensus and algorithm segmentation. An algorithm

could be deemed as accurate only when it yielded a good Dice to-

gether with a small volume difference. Table 4 lists the mean vol-

ume differences and variance (as millilitres) over the entire image

database for patient and porcine datasets. 

To further evaluate more objectively, the Dice overlap of the al-

gorithms’ segmentations were compared to the consensus based

on the slice position (basal, mid and apical. Short-axis slices were

subdivided according to the standard guidelines ( Cerqueira et al.,

2002 ). The results are plotted in Fig. 7 . It is not clear what should

be a good Dice overlap for datasets of this type. To address this
ssue, the degree of agreement between observers and the com-

uted consensus was analysed and plotted in Fig. 8 . It provided for

n estimation of a reasonable target (i.e. good Dice score) for the

valuated algorithms. 

.2. Pseudo infarct regions 

The algorithms were evaluated on hyper-enhanced regions

hich mimic scar. These pseudo infarct regions occur for several

easons mentioned in Section 2.7.4 and illustrated in Fig. 2 . In each

mage, pseudo infarct was manually segmented by an experienced
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Fig. 8. Plot showing agreement between observers’ segmentations (M1, M2 and 

M3) and consensus segmentation (C) on the combined patient and porcine datasets. 

For example, M1/M2 is the Dice agreement between observer’s M1 and M2. 
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Table 5 

Analysis of segmentation accuracy based on image quality (good, average and 

bad) on human and porcine datasets combined. The mean, standard deviation 

(SD) and median of the Dice for each challenger (AIT to UPF) and fixed-model 

method (2-SD to FWHM) is quoted. 

Challengers Poor Average Good 

Mean (SD), Median 

AIT 48 (19), 47 68 (23), 69 89 (9), 89 

KCL 47 (22), 47 60 (23), 57 66 (20), 65 

MCG 42 (25), 42 58 (18), 59 53 (24), 33 

MV 41 (25), 40 32 (22), 38 38 (25), 35 

UPF 46 (22), 37 52 (20), 45 44 (21), 45 

2-SD 53 (22), 56 46 (22), 37 52 (20), 52 

3-SD 56 (27), 61 48 (21), 39 52 (23), 54 

4-SD 60 (21), 69 52 (21), 44 56 (26), 56 

5-SD 66 (21), 75 55 (21), 49 59 (29), 58 

6-SD 69 (21), 76 57 (19), 55 61 (32), 61 

FWHM 63 (24), 64 54 (23), 51 55 (28), 54 
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bserver. These regions were either confirmed anatomically in the

ase of the outflow tract or by checking adjacent slices for scar

ontinuity in the case of partial voluming. In each image, the total

olume of pseudo infarct labelled by the observer was quantified.

he total volume of these spurious infarct regions present in each

lgorithm and fixed model segmentation was also quantified. This

as possible by comparing each segmentation to the manual

abellings of pseudo infarcts. Results are represented in Fig. 10 .

CL and MCG had a higher proportion of manually labelled pseudo

nfarct regions detected on average than other methods at 21 and

3%, respectively of pseudo infarct labelled by the observers. This

s in comparison to MV, AIT and UPF with only 3, 9 and 3%, re-

pectively. Fixed models 2,3,4,5,6-SD and FWHM contained 53, 44,

6, 30, 24 and 23% respectively of manually labelled pseudo infarct

olume. Pseudo infarcts were most successfully avoided in the MV

nd UPF algorithms and least in the 2, 3, 4 and 5-SD methods. 

.2.1. Image quality on segmentation 

The LGE CMR images in the database were acquired at dif-

erent imaging centres with differing protocols and scanners (see

able 2 ). The quality of enhancement is known to vary and it de-

ends on a number of factors including optimal inversion times,

ignal-to-noise and contrast-to-noise (CNR) ratios. The images in
ig. 9. Images in the patient and porcine datasets that are representative of good, averag

abelled by an observer. There are two images shown for every quality. 
he database were qualitatively rated by five observers experienced

n LGE. Images were rated as poor, average or good depending on

he overall quality of the image. The Dice overlap was measured

eparately in each category and these are given in Table 5 . In both

he good and average categories, there were 40%, 60% from the pa-

ient and porcine datasets respectively; in the poor category, there

ere 75%, 25% from the patient and porcine datasets, respectively.

 representative set of images for each quality is shown in Fig. 9 . 

.3. Discussion 

We have presented a framework which standardises evalua-

ion of algorithms for segmenting scar in the LV. The framework

as used to evaluate and compare five algorithms and six sepa-

ate fixed model thresholding approaches (i.e. n −SD and FWHM).

he algorithms were submitted as part of the STACOM challenge, a

orkshop organised at MICCAI in 2012. The data is publicly avail-

ble via the website at: 

https://www.cardiacatlas.org/web/guest/ 

entricular-infarction-challenge . 

.3.1. Evaluation framework 

The presented evaluation framework comprises of both human

nd animal LV LGE CMR datasets and their respective myocardial

egmentation masks. Human datasets were acquired from patients

ith a history of ischaemic cardiomyopathy. The animal datasets

ere acquired in a pig model of myocardial infarction induced

y coronary stenosis. Datasets were also acquired using different
e and poor quality images. The arrow labels indicate sites of possible infarction as 

https://www.cardiacatlas.org/web/guest/ventricular-infarction-challenge
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Fig. 10. The proportion of pseudo infarct manually labelled by expert observer that 

was detected by each method. Pseudo infarcts included hyper-enhanced regions at 

the right ventricle insertion points, aortic outflow tract, epi- and peri-cardial fat. 
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scanner vendors and resolutions. The human datasets were ac-

quired with a 1.5T Philips scanner and the animal datasets were

acquired with a 3T Siemens scanner. There were both 2D and 3D

(non-isotropic) acquisitions. This ensured that algorithms evalu-

ated on the framework were not biased to a specific acquisition

protocol, scanner vendor or resolution. The proposed framework

provides data acquisitions that are both commonly-used and mod-

ern, making it suitable for testing and evaluating state-of-the-art

algorithms. 

It is often challenging to establish ground truth on infarcted

regions in LGE CMR. This makes algorithm evaluation difficult. The

framework addresses this issue by proposing a reference standard

against which the algorithms can be reliably evaluated. To achieve

a reference standard, the human and animal datasets were manu-

ally segmented by three experienced observers provided with epi-

and endo-cardial boundaries and a set of guidelines. Although,

their delineations were consistent, some differences remained.

The three expert delineations were combined to obtain a con-

sensus segmentation of all three observers. The STAPLE algorithm

( Warfield et al., 2004 ), which uses a probabilistic estimate of the

true segmentation to derive the consensus, was used to obtain

a consensus segmentation. The degree of agreement between

observers and the computed consensus was analysed in Fig. 8

and this not only allows the assessment of agreement but also

quantitatively provides for an estimation of a good Dice score in

such datasets. In addition to the reference standard for scar, six

commonly-used and established fixed thresholding models were

used to see how they compare with the algorithms. These were

namely the n -SD (where n = 2 , 3 , 4 , 5 , 6 ) and FWHM methods

( Amado et al., 2004; Schmidt et al., 2007 ). The FWHM method

is implemented as described in Amado et al. (2004) , where the

user clicked on hyper-enhanced regions within myocardium and

an ensuing multi-pass region growing algorithm segmented infarct

using the FWHM criterion. 

Algorithms are often evaluated on various different metrics.

This makes comparison of algorithms challenging. Most of the

methods surveyed in Table 1 either use LGE volume or represent

it as a percentage to evaluate detected enhancement (for example

in Flett et al. (2011) ; Harrison et al. (2014) ), or compare the

amount of overlap with manual segmentation using the Dice

metric (for example in Tao et al. (2010) ; Ravanelli et al. (2014) ).

The framework evaluated algorithms on both scales - volume and

Dice metric. For the Dice metric, segmentations were evaluated

on individual infarcted regions in the image. A Dice metric on the
ntire image has its pitfalls as it is difficult to ascertain within

hich local regions algorithms fail or succeed. This was addressed

sing a localised Dice evaluation strategy. Future algorithms tested

n the framework will be subjected to the same metrics enabling

lgorithms and their segmentations to be compared in a reliable

anner. 

The presence of pseudo infarct, which mimics scar in LGE

MR images, poses various challenges for algorithms. Most earlier

lgorithms have not addressed or incorporated this into its seg-

entation models. The framework provided delineations of pseudo

nfarct regions from an experienced observer. Algorithms were

ssessed on the proportion of false positives due to pseudo infarct

egions. This has allowed a more objective evaluation within

his framework. The n -SD and FHWM fixed models segmented

 large proportion of pseudo infarct labelled by the observer.

he algorithms segmented significantly less pseudo infarcts than

xed models (paired t -test p < 0.05). Furthermore, images in

he database were qualitatively rated for its quality by five dif-

erent observers. Algorithms’ segmentations were also evaluated

eparately based on the image’s rating. 

The proposed framework has several limitations. An important

imitation is that the framework cannot be used to directly eval-

ate clinical utility or anatomic accuracy of the algorithms. This

s since, the reference standard does not include any information

bout outcomes (for the patient data set) or histology (for the pig

ata set). Another limitation is the image database size which is

0 images, of which 20 that can be used for testing and 10 usable

or training. However, within this small sample, it provides a range

f datasets from different scanner vendors, scanner resolution and

ohorts. 

A second limitation is the dimensionality of the dataset. The

uman datasets are 2D acquisitions with 8 mm slice thickness. 2D

mages are commonly employed clinically for treatment stratifica-

ion. For example based on the infarct volume and ejection fraction

rom 2D images, a patient could be subjected to certain therapeutic

trategies, such as an implantable cardioverter defibrillator (ICD)

mplantation or ventricular ablation. 3D images provide more de-

ailed quantification of infarct and only the porcine dataset within

his framework are 3D non-istropic acquisitions. A third limitation

s the manner in which the Dice metric is computed individually

n each region of infarction labelled by the consensus. The Dice is

omputed only within ROIs enclosing each consensus-labelled in-

arct. Outside these regions, the Dice is not accountable. Thus, algo-

ithms which over-segment can still exhibit a good Dice but poor

olume error. The Dice need to be combined with the volume error

o give a clearer understanding. 

Intensity variation across the images due to coil shading may

ave an impact on segmentation, especially for methods which

rocess absolute signal intensities. A coil sensitivity scan is a rou-

ine part of the acquisition protocol used to acquire the datasets of

his study. However, no further coil sensitivity correction was car-

ied out. This was in-line with the principal of this study to use

nly routine MRI scans. 

A final limitation is that only one observer was employed to

egment the myocardial masks. The observer was a cardiologist

ith several years of experience in CMR assessment of LV function

ssessment and ischaemic heart diseases. The issue of variability

ith different myocardial masks is counteracted by providing the

uman observers with these masks. The algorithms are also pro-

ided with the same masks. This ensures that infarct within the

ask are labelled and computed. Thus, the evaluation is only car-

ied out in the myocardial mask space. 

.3.2. Evaluated algorithms 

Quantifying infarct in the LV can have important clinical im-

lications. A 3D rendering of the LV with infarct areas can be
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Table 6 

The mean infarct volume (in millilitres) and average number of regions (i.e. infarct) 

per slice in the consensus segmentation. 

Patient data Porcine data 

Mean infarct volume (ml) 5.38 (6.73) 13.81 (8.70) 

Average regions per slice 1.2 (0.5) 1.0 (0.1) 
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q  
ntegrated into electroanatomical systems for facilitating catheter

blation. As the resolution and SNR of LGE CMR continues to im-

rove, detailed quantification of infarct is becoming possible. The

itfalls of fixed thresholding models advocated in past literature

 Amado et al., 2004; Kim et al., 1999 ) have been highlighted in

ecent studies ( Harrison et al., 2014 ). Fixed threshold model makes

rude assumptions about the contrast levels between nulled blood

ool and infarct, deeming a fixed cut-off threshold. However, as

hese contrast levels are directly dependent on the inversion time

elected in LGE CMR, the preset threshold often requires user

eadjustments. 

The algorithms were evaluated based on the slice position

basal, mid and apical) (see Fig. 7 ). In the analysis, there was

o significant difference between the basal and mid slices. The

pical slices showed better overlap for some algorithms. However,

pical slices enclose a smaller myocardial area and thus the

verlap assessments in these regions can be biased. However, it is

mportant to note that the Dice overlap used here was slice-based

nd not region-based as the other results in this work. In general,

ith Dice scores, it is difficult to ascertain what is a good Dice

or datasets of the nature included in this study. The analysis

f agreement between the observers’ segmentations (see Fig. 8 )

rovide for a reasonable estimation and target for the algorithms. 

The algortihms’ comparison to common algorithms is impor-

ant. The difference with FWHM remains small except for MCG,

hich was able to provide high accuracy in the patient dataset,

nd AIT providing the same in the porcine set. Both methods have

onsiderable strengths, with the former using a state-of-the-art

robabilistic technique for image segmentation, and the latter ben-

fitting from post-processing steps which rectify the segmentation.

he Dice results reflect the strengths of these methods. On the pa-

ient datasets, algorithms AIT, MCG and UPF performed similarly

hile KCL and MV also performed similarly but with a lower av-

rage Dice. This was due to greater variability in Dice for KCL and

V. However, AIT and UPF are both capable of rectifying errors

n its segmentation with post-processing steps. AIT employs level-

ets following SVM classification and UPF employs shape discrim-

nants. Both KCL and MV rely heavily on its core segmentation

rocess, with no post-processing. As a result, spurious regions are

ncluded. Models that are sub-optimal were able to benefit from

ost-processing. 

The algorithms were also evaluated on the total infarct volume

t segmented (see Table 4 ) and these volumes were compared to

he consensus volumes. This is important as Dice computed in this

ork has the aforementioned limitations. Also when evaluating the

yocardium, quantification of infarct volume is an important step.

he average volume error in challenger’s algorithms were 1.04 ml

nd 0.76 ml for patient and porcine datasets respectively (from

able 4 ). This was low compared to the overall average infarct vol-

me in the datasets (see Table 6 ). 

The algorithms evaluated on the framework have common

raits – most employ region-based image processing techniques,

or example level-set (AIT), region-growing (UPF and FWHM) and

atershed (MV). This is justifiable as the algorithms are meant to

egment infarct that are contiguous regions. However, key consid-

rations such as the shape of candidate regions, are not always

aken into account. UPF searches for regions that are elongated,
s this is a strong characteristic of LV infarcts. A second important

onsideration is the seed selection step. If only a single seed is

llowed per slice for capturing the infarct (for example UPF, see

able 3 ), other infarct areas on the same slice cannot be included.

he average number of infarct regions per slice was computed for

oth patient and porcine datasets in Table 6 . With the average

umber of regions found to be 1.2 in the patient dataset, more

han a single seed may be necessary. 

A second consideration is the spatial positioning of the scar

andidate in relation to the image slices or 17-segment model of

he AHA ( Cerqueira et al., 2002 ). Enhancement in the basal slices

ue to the outflow tract or RV insertion point should be discrimi-

ated as a pseudo infarct. None of the algorithms or fixed models,

ave classified enhancement based on its location. Thus, pseudo

nfarcts have not been addressed in the evaluated methods. 

A third consideration is the extent of scarring. Sub-classification

f infarct as sub-endocardial, mid-wall and epicardial helps stratify

reatment. But first and foremost, these formations are indicative

f scar, one which the algorithms should be able to distinguish

ased on Euclidean distances measured on the myocardium seg-

entation. Equipped with this information, algorithms should be

ble to better distinguish scar, especially when enhancements arise

ue to partial voluming or a fat-related cause. 

LGE CMR for the LV can be acquired either in 2D or 3D, with

he former being more common as they can be obtained rel-

tively quickly. However, 3D acquisitions are preferred over 2D

hen post-processing involves detailed quantification. As scanner

ngineering and technology continue to improve, 3D acquisitions

ill become more common. All algorithms, except UPF, evaluated

ithin this framework and those surveyed in Table 1 uses 3D tech-

iques that also work on 2D datasets. The UPF technique performs

egion-growing with seed selection on a slice-by-slice basis. For

he porcine 3D datasets, it chooses a particular slice orientation

 x, y or z ) to work on; and an increasing load on the operator for

eed-selection in each 3D slice. The framework supplies with both

ypes of acquisitions to enable future algorithms to be evaluated

eparately. 

.3.3. Future algorithms 

Infarct quantification in the LV is an important assessment cri-

eria for many cardiac therapies. Furthermore, heterogeneity within

nfarct, especially in the peri-infarct regions, was shown to be a

redictor of tachycardia and sudden cardiac death ( Schmidt et al.,

007 ). This work proposes an evaluation framework for future

lgorithms which segment and quantify LV infarct. To demonstrate

ts usability, five different algorithms were evaluated on the frame-

ork. Three of which have been published ( Hennemuth et al.,

008; Karimaghaloo et al., 2012; Karim et al., 2014 ). Six different

xed-model approaches were also evaluated. The framework

rovides thirty datasets, of which ten are for algorithm training

nd the rest for testing. Although they represent a specific pulse

equence, some algorithms evaluated here could be re-trained on

ew sequences. The consensus ground truths are derived from

anual segmentations of three separate observers. Future algo-

ithms can be evaluated both objectively with overlap metrics or

ess objectively and conventionally with pixel volumes. Most im-

ortantly, they can be compared and benchmarked against existing

lgorithms. To our knowledge, this is the first proposed framework

or evaluating LV infarct segmentation and quantification algo-

ithms from LGE CMR images. For the left atrium, a benchmarking

valuation framework already exists ( Karim et al., 2013 ). 

. Conclusions 

CMR continues to play an important role in imaging and

uantifying infarct in the LV. Several algorithms have been
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proposed for its quantification but it is not clear how they com-

pare or perform relative to one another. Furthermore, algorithms

have only been tested on centre- and vendor-specific images.

The translation of such algorithms into the clinical environment

thus remains challenging. Benchmarking frameworks, providing

a common dataset and evaluation strategies, is important for

clinical translation of these algorithms. The proposed benchmark-

ing framework provides thirty datasets, with fifteen datasets in

each cohort: patient and porcine. Datasets in the two separate

cohorts were acquired using different scanner vendors and field

strength (1.5T and 3T), resolutions and acquisition protocols (2D

and 3D). The ground truth is often absent in such datasets, and

to this end, the framework provides with a powerful expert

observers’ consensus ground truth. The proposed framework

remains publicly available for accessing the image database, up-

loading segmentations for evaluation and contributing manual

segmentations for improving the consensus ground truth on the

datasets. 
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