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Abstract We establish the set of minimal forbidden induced subgraphs for the class of
graphs having linear rank-width at most 1. From these we derive both the vertex-minor and
pivot-minor obstructions for the class.

1 Introduction

Rank-width is a graph parameter introduced by Oum and Seymour [16] as an efficient
approximation of the clique-width [6] of a graph. Linear rank-width is obtained from rank-
width by restricting the trees in the decomposition to caterpillars. Intuitively, linear rank-
width is related to rank-width in the same way as path-width is related to tree-width. Large
classes of graph problems that are NP-hard in general become tractable when restricted
to graphs of bounded (linear) rank-width [5,8,10,13]. While the structure of graphs of
bounded path-width is well understood [3,7,12,17], much less is known about graphs of
bounded linear rank-width. Indeed, linear rank-width generalizes path-width in the sense
that if a graph G has path-width at most k then G has linear rank-width at most k (this is
not hard to prove, cf. [1]). Recently, Ganian [9] introduced the class of thread graphs and
proved that the graphs of linear rank-width at most 1 are precisely the thread graphs.

In this paper, we characterize the graphs of linear rank-width at most 1 in three ways:
firstly by induced subgraph obstructions, secondly by vertex-minor obstructions and thirdly
by pivot-minor obstructions. More precisely, let ≤ be a quasi-ordering (i.e. a reflexive and
transitive ordering) on graphs, and let C be a class of graphs that is downward-closed
under ≤. A graph G is an obstruction for C if G /∈ C and H ∈ C for every H � G. For
example, Kuratowski’s famous theorem states that the obstructions for planar graphs w.r.t.
(topological) minor containment are the two graphs K5 and K3,3.

For the class of graphs of linear rank-width at most 1, we determine the set of obstruc-
tions w.r.t. induced subgraph containment (cf. Theorem 4 and Figure 3), w.r.t. vertex-minor
containment (cf. Theorem 25 and Figure 5), and w.r.t. pivot-minor containment (cf. The-
orem 26 and Figure 9). It is known that the obstruction sets for graphs of bounded linear
rank-width w.r.t. vertex-minor and pivot-minor containment are finite [14,15]. However,
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until now none of these obstruction sets were known explicitly. Obstruction set character-
izations are known for the class of graphs of rank-width at most 1 (i.e. for the distance
hereditary graphs) [2] and for the class of circle graphs [4]. To obtain our results, we de-
pend upon the known equivalence between graphs of linear rank-width at most 1 and
thread graphs [9] and the fact that we can reduce the search for unknown obstructions to
distance-hereditary graphs.

In Section 2, we introduce basic notions and known facts. In Sections 3 and 4 we find
the induced subgraph obstructions, from which we obtain the vertex-minor obstructions in
Section 5 and the pivot-minor obstructions in Section 6.

2 Definitions

We consider finite, simple graphs, each graph G consisting of the set V (G) of vertices and
the set E(G) of edges, every edge e ∈ E(G) being a two-element subset of V (G). Given
an edge e = {u, v}, we say that u is adjacent to v and e is incident with both u and v. A
sequence v0, v1, ..., vk of vertices of G, no two being equal and every consecutive pair being
adjacent is called a path. The length of a path is k, the number of its edges. If additionally
v0 and vk are adjacent, they form a cycle. A graph without a cycle is called acyclic. For a
vertex v, we let NG(v) :=

{

u ∈ V (G)
∣

∣ {u, v} ∈ E(G)
}

be the neighborhood of v in G. The
degree of v ∈ V (G) is degG(v) := |NG(v)|. A vertex of degree 1 is a pendant vertex, and
the edge incident with a pendant vertex is a pendant edge. A graph H is a subgraph of G
if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset X ⊆ V (G), let G[X] be the subgraph of
G induced by X, i.e. V

(

G[X]
)

= X and E
(

G[X]
)

:= {e ∈ E(G) | e ⊆ X}. Such a graph
H is an induced subgraph of G. For a subset Y ⊆ V (G), we let G \ Y := G[V (G) \ Y ]. If
Y = {y} is a singleton set, then we write G \ y instead of G \ {y}.

A graph G is connected if G 6= ∅ and any two vertices of G are connected by a path.
A graph G that is not connected is said to be disconnected. A connected component of G
is a maximal connected subgraph of G. We say that a vertex v ∈ V (G) is a cut-vertex if
G \ v has more connected components than G. A tree T is an acyclic connected graph. We
denote the set of leaves of T by L(T ). Any vertex in V (T ) \ L(T ) is an internal vertex. A
tree is cubic if it has at least two vertices and every internal vertex has degree 3. For an
integer n ≥ 3, we let Cn denote the n-cycle, i.e. the cycle with n vertices. For a graph G
containing a cycle, a chord in the cycle is an edge of G between two vertices of the cycle
that are not consecutive. A complete bipartite graph is a graph G with a bipartition [X,Y ]
of V (G) such that E(G) =

{

{x, y} | x ∈ X and y ∈ Y
}

.

The distance between two vertices u and v of G is the minimum length of a path in
G connecting u and v (or infinity if no such path exists). A distance-hereditary graph is a
graph G for which the distances between vertices in any connected, induced subgraph of
G are the same as in G [11]. Every distance-hereditary graph can be constructed from a
single vertex by a sequence of the following three dh-operations [2]:



⊕p: Add a new pendant vertex v connected by an edge to an existing vertex u of the graph.
⊕f : Add a new vertex v with the same set of neighbors as a vertex u of the graph. The
vertices u and v are called false twins of each other.
⊕t: Add a new vertex v with the same set of neighbors as a vertex u of the graph, connecting
u and v by an edge. The vertices u and v are called true twins of each other.
We denote a dh-operation acting on a vertex u of a graphG by⊕x(G, u), where x ∈ {p, t, f}.

Let M(G) denote the adjacency matrix of a graph G, i,e., M(G) is the |V (G)|× |V (G)|
matrix where the columns and the rows are indexed by the vertices of G, and M(G) has
entries in {0, 1}, where the entry mi,j = 1 if and only if the corresponding row vertex
is incident to the corresponding column vertex. For a bipartition [X,Y ] of V (G), we let
M(G)[X,Y ] denote the |X|×|Y | submatrix (mi,j)i∈X,j∈Y ofM(G). The cutrank function of
a graph G is defined by cutrkG : 2V (G) → N given by cutrkG(X) := rank

(

M(G)[X,V (G) \
X]

)

, where rank is the rank function over GF(2). A rank-decomposition of a graph G is
a pair (T, λ), where T is a cubic tree and λ : L(T ) → V (G) is a bijection. For every edge
e ∈ E(T ), the two connected components of T \ e induce a partition (Xe, Ye) of L(T ). The
width of e is defined as cutrkG(λ(Xe)). The width of a rank-decomposition (T, λ) is the
maximum width over all edges of T . The rank-width of G is defined as

rw(G) := min{width of (T, λ) | (T, λ) rank-decomposition of G}.

If |V (G)| ≤ 1, then G has no rank-decomposition and we let rw(G) = 0.

Proposition 1 ([14]) A graph G is distance-hereditary if and only if rw(G) ≤ 1.

Linear rank-width is a related concept that restricts the form of the rank-decomposition.
A caterpillar is a tree T in which the removal of all leaves results in a path. A linear rank-
decomposition of a graph G is a rank-decomposition (T, λ) of G, where T is a caterpillar.
The linear rank-width of G is defined as

lrw(G) := min{width of (T, λ) | (T, λ) linear rank-decomposition of G}.

Equivalently, lrw(G) ≤ k if there exists a permutation π of V (G) such that for every prefix
X of π cutrkG(X) ≤ k. If |V (G)| ≤ 1, then G has no linear rank-decomposition and we let
lrw(G) = 0.

Obviously, lrw(G) ≥ rw(G), and lrw(G) ≤ k implies rw(G) ≤ k. It is easy to verify
that cliques, caterpillars and complete bipartite graphs have linear rank-width at most
1 and that the disjoint union of two graphs G and H has linear rank-width equal to
max{lrw(G), lrw(H)}.

Example 2 The cycle C5 satisfies lrw(C5) = 2. In any linear rank-decomposition (T, λ) of
C5 every edge in E(T ) between two internal vertices of T has width 2, and every pendant
edge in E(T ) has width 1.



3 Induced subgraph obstructions

The class of graphs with linear rank-width at most k is closed under induced subgraphs,
i.e., if a graph G satisfies lrw(G) ≤ k then lrw(H) ≤ k for all induced subgraphsH of G. We
define the set of induced subgraph obstructions (or minimal forbidden induced subgraphs)
for the class of graphs G such that lrw(G) ≤ 1, denoted as O, as all graphs G such that
lrw(G) > 1 and lrw(G \ v) = 1 for all vertices v in G. Such obstructions are necessarily
connected.

Lemma 3 Every graph G ∈ O is connected.

Proof. Assume a graph G ∈ O is not connected. Then we can delete a vertex v in one of
the connected components C of G and find that the resulting graph has linear rank-width
at most 1. Each of the unaffected components must have linear rank-width ≤ 1. Similarly,
by deleting a vertex v′ in a different component C ′ 6= C of G, we find that lrw(C) ≤ 1.
Since G is the disjoint union of its components, it follows that lrw(G) = 1, a contradiction.

�

We will prove the following theorem.

Theorem 4 The set of induced subgraph obstructions for graphs having linear rank-width
at most 1 consists of the induced subgraph obstructions for distance-hereditary graphs and
the graphs shown in Figure 3.

It follows from Proposition 1 that the class of graphs having linear rank-width at most
1 is a subclass of distance-hereditary graphs. Hence, to prove Theorem 4 it suffices to
show that O consists of the induced subgraph obstructions for distance-hereditary graphs
and the obstructions that are themselves distance-hereditary graphs, which are the graphs
shown in Figure 3.

The set of induced subgraph obstructions for distance-hereditary graphs, denoted as
D, has been shown to consist of exactly the following elements: [2]:

• any cycle of length five or greater (“holes” of length at least 5),

• a 5-cycle with one chord (“house”),

• a 5-cycle with two non-crossing chords (“gem”), and

• a 6-cycle with a chord connecting two vertices at distance 3 along the cycle (“domino”).

Lemma 5 D is a subset of O.

Proof. By inspection, for every graph G in D, lrw(G) = 2 and lrw(G\v) = 1, for all vertices
v in G. Therefore, these graphs are also induced subgraph obstructions for graphs having
linear rank-width at most 1. �



To complete the specification of the setO it is necessary to determine the set of distance-
hereditary graphs that are induced subgraph obstructions for graphs with linear rank-width
at most 1. We denote this set of obstructions as Odh.

Lemma 6 O = D ∪Odh.

Proof. By Lemma 5, it suffices to show that O\D ⊆ Odh. Let G ∈ O\D. Then lrw(G) ≥ 1,
rw(G) ≤ 1 by Proposition 1, and, for all v ∈ V (G), 1 = lrw(G \ v) = rw(G \ v). Hence
G ∈ Odh by definition. �

To determine the set Odh, we consider an alternative characterization of graphs G with
lrw(G) ≤ 1 introduced in [9] called thread graphs. Here, we define thread graphs and note
some of their relevant properties. It can be easily seen that our definition is equivalent to
the original definition in [9].

A thread block is the basic building block of a thread graph. A thread block B is a
tuple (G, (a, b), v̄,L), consisting of a graph G, a distinguished edge {a, b} ∈ E(G), called
the thread edge of G, an ordering v̄ = (v1, . . . , vn) of the vertices of V (G) \ {a, b}, called a
thread ordering, and an associated thread labeling L : V (G) \ {a, b} → {L,R, ∗}, such that

• for all 1 ≤ i < j ≤ n, {vi, vj} ∈ E(G) if and only if L(vi) ∈ {R, ∗} and L(vj) ∈ {L, ∗}.
• for all 1 ≤ j ≤ n, {a, vj} ∈ E(G) if and only if L(vj) ∈ {L, ∗}.
• for all 1 ≤ j ≤ n, {vj , b} ∈ E(G) if and only if L(vj) ∈ {R, ∗}.

Intuitively, in the sequence (a, v1, . . . , vn, b) every vertex u with L(u) ∈ {L, ∗} ‘sees’ all
vertices v to its left that ‘look’ to the right, i.e., that have L(v) ∈ {R, ∗}. Symmetrically,
every vertex v with L(v) ∈ {R, ∗} ‘sees’ all vertices u to its right that ‘look’ to the left, i.e.,
that have L(u) ∈ {L, ∗}. The label “∗” can be understood to represent both labels, i.e., to
be the set {L,R}. Vertices a and b are called thread vertices and are implicitly labeled “∗”.

A thread block is trivial if it consists of only the thread edge. A non-trivial thread block
may have a cut-vertex, as it may include pendant vertices. Figure 1 shows graph G with
an edge {a, b}, an ordering v̄ = (a′, v, u, b′) and a labeling L such that (G, (a, b), v̄,L) is a
thread block.

a′

a b b′

u v

a′

{L}

a b

b′

{R}

uv

{R} {∗}

Figure 1. A graph G and corresponding thread block B = (G, (a, b), (a′, v, u, b′),L).



A connected thread graph G is either a single vertex or a sequence of thread blocks Bi,
1 ≤ i ≤ n, such that thread vertex bi of thread block Bi is identical with thread vertex
ai+1 of thread block Bi+1, for 1 ≤ i ≤ n− 1. We call this shared vertex a bridging vertex.
A consistent threading of a connected thread graph G is an assignment of a sequence of
edges that form a path to be thread edges, and an ordering and labeling of non-thread
vertices, such that the edges implied by the ordering and labeling correspond to the edges
of G. From now on we only consider consistent threadings of thread graphs where the first
and the last thread block are non-trivial. This is not a restriction, because a trivial thread
block is a pendant edge and may be folded into the neighboring thread block.

A thread graph G is either the empty graph or a disjoint union of connected thread
graphs. A consistent threading of a thread graph is a collection of consistent threadings of
its connected components.

The following property of thread graphs follows immediately from the definitions.

Remark 7 Let G be a thread graph. The set of bridging vertices is the same for every
consistent threading of G, and every bridging vertex is shared by exactly two thread blocks.

⊓⊔

The structure of a thread block can be represented concisely by the sequence (l1, . . . , ln)
of vertex labels of the non-thread vertices (e.g.,(L,R, ∗, R) for the graph in Figure 1). A
sequence of thread blocks can likewise be represented as a sequence of non-thread vertex
label sequences of the thread blocks (e.g., (L,R)(∗) for a two block sequence). Minimal
thread blocks involve single non-thread vertices.

Remark 8 Every connected thread graph of three or more vertices has one of the following
thread blocks as an induced subgraph: (R), (L), or (∗). �

From these graphs the set of non-isomorphic, minimal two-block thread graphs can be
determined and are useful for determining certain obstructions.

Lemma 9 The vertex-minimal thread graphs with two non-trivial thread blocks are (L)(R),
(L)(∗), and (∗)(∗), which are unique up to an isomorphism.

Proof. The thread graphs (R)(R), (R)(∗), (R)(L) can be represented as the one-block thread
graphs (LLR), (LL∗), and (LLL), respectively. (L)(L) and (∗)(L) are isomorphic to the
first two of these graphs, respectively. Also, (∗)(R) is isomorphic to (L)(∗), so we have
accounted for all 9 vertex-minimal non-empty thread graphs with two thread blocks. �

The three unique vertex-minimal two-thread block thread graphs are presented in Fig-
ure 2.



(L)(R) (L)(∗) (∗)(∗)

Figure 2. The three graphs of Lemma 9.

The following theorem showing equivalence between the class of thread graphs and
graphs G with lrw(G) ≤ 1 was proven in [9]. We give a related proof here for completeness.

Theorem 10 (Ganian [9]) A graph G has lrw(G) ≤ 1 if and only if G is a thread graph.

Proof. We may assume that G is connected and E(G) 6= ∅.
(⇒) Assume lrw(G) ≤ 1, and let (T, λ) be a linear rank-decomposition witnessing this.
Consider a total ordering ≺ of the vertices of G that is consistent with the linear structure
of T yielding the linear rank-width ≤ 1. The first vertex in the ordering is a non-bridging
thread vertex. We will provide labeling of vertices which yields a consistent threading.
Consider further a vertex v being processed. There is a unique binary string expressing
adjacencies between already processed vertices u ≺ v and the vertices w, where v � w.

We use e = 0∗ to represent the pattern of all 0’s, i.e., no adjacencies (“empty neigh-
borhood”). We use n = e1{0, 1}∗ to mean an arbitrary pattern of 0’s and 1’s, including at
least one 1.

Case 1 : The neighborhood of processed vertices is 1n. Since v is the first unprocessed
vertex it is adjacent to the processed vertices. After v is processed, it could either have
no adjacencies to the remaining unprocessed vertices, in which case we label it “L” in
the corresponding consistent threading, or the neighborhood could be the same as the
neighborhood of other processed vertices, in which case it is labeled “∗” in the corresponding
consistent threading.

Case 2 : The neighborhood of processed vertices is 1e. This identifies v as a thread
vertex. After processing, v has either an empty neighborhood, in which case we label it
“L”, or its adjacencies with unprocessed vertices are expressed by n, in which case v is
labeled “∗” and is a bridging thread vertex.

Case 3 : The neighborhood is 0n. After v is processed, it must have a neighborhood n
as do other processed vertices, in which case it is labeled “R” in the consistent threading.

Thus, in each case there is a labeling for v, proving that G is a thread graph.
(⇐) For the converse, assume that G is a thread graph with a given consistent threading
that yields an ordering ≺ of V (G). We define a linear rank-decomposition (T, λ) by mapping
the leaves of T to the vertices of G in such a way that the linear structure of (T, λ) respects
≺. It is straightforward to verify that the width of (T, λ) is ≤ 1. �



4 Distance-Hereditary Obstructions Odh

Let H be the set of fourteen graphs shown in Figure 3. In this section, we establish the
following theorem:

Theorem 11 The set Odh is equal to the set H.

It is not difficult to verify that each of the graphs in Figure 3 is a member of Odh.

Lemma 12 H is a subset of Odh.

Proof. By observation, each graph G in H has lrw(G) > 1. One can not start at any vertex
and visit the other vertices sequentially while keeping width 1. However, after removing
any vertex from each graph G, a consistent threading of the remaining graph as a thread
graph can be found. �

In the remainder of this section we complete the proof of Theorem 11, showing that H
is the complete set of graphs in Odh.

A graph in Odh is a connected distance-hereditary graph by Lemma 3. Any connected
distance-hereditary graph G of more than one vertex can be described as G = ⊕x(G

′, u),
where ⊕x is one of the three dh-operations applied to vertex u of a distance-hereditary
graph G′.

Lemma 13 If a distance-hereditary graph G = ⊕x(G
′, u) is in Odh then G′ is a connected

thread graph.

Proof. Since G is a minimal forbidden induced subgraph, the graph G′ in any construction
must have linear rank-width less than or equal to 1. Graph G′ must be connected, as the
distance hereditary operations maintain connectivity. �

Throughout this section, let graph G be ⊕x(G
′, u), where G′ is a distance-hereditary

graph, as described above. To discover all distance-hereditary obstructions to linear rank-
width 1, we consider each of the three dh-operations applied to all possible cases for vertex
u of a thread graph G′. We show that after applying the operation, we have either a thread
graph G or a graph G that is one of the 14 graphs of Figure 3 (in set H) as an induced
subgraph. First, we consider applying a dh-operation to a thread vertex u of G′.

Lemma 14 Applying any one of the three dh-operations to a non-bridging thread vertex
u ∈ V (G′) results in a thread graph.

Proof. Assume wlog. that the non-bridging thread vertex u is at the right end of a consistent
threading of G′. A new pendant vertex v can be labeled R as last vertex in the thread block
sequence of the thread block including u. A new false (true) twin v of u can be labeled “L”
(respectively “∗”) as last vertex in the thread block sequence. �



Q T X

S V U

N R P W

S0 S1 S2 S3

Figure 3. The distance-hereditary induced subgraph obstructions for the class of graphs of linear rank-
width at most 1. Together with the induced subgraph obstructions for distance-hereditary graphs they
form the set of all induced subgraph obstructions for the class of graphs of linear rank-width at most 1 (cf.
Theorem 11).



Lemma 15 Applying ⊕p(G
′, u) when u is a bridging thread vertex of G′ results in a thread

graph.

Proof. The new vertex v can be considered to be a non-thread vertex labeled “L” (“R”)
as the first (last) vertex in the thread block sequence in one of the two consecutive thread
blocks of which vertex u is a member. �

Lemma 16 Applying ⊕f (G
′, u) or ⊕t(G

′, u) when u is a bridging thread vertex of G′ results
in a non-thread graph G containing Q,S, T, U, V, or X (shown in Figure 3) as an induced
subgraph.

Proof. Choose a consistent threading of G′. By Remark 7, u is a bridging vertex of G′ with
respect to this threading. Hence u has two neighbors, u1 and u2, that are thread vertices.
If both u1 and u2 are bridging vertices as well, then ⊕f (G

′, u) contains the half-cube Q as
an induced subgraph, and ⊕t(G

′, u) contains S as an induced subgraph.
If a neighbor, say u1 is not bridging, but u2 is bridging, then the thread block involving

u1 is non-trivial, so either u1 has a pendant vertex or u1 and u share a common neighbor. If
u1 has a pendant vertex, then ⊕f (G

′, u) contains Q as an induced subgraph, and ⊕t(G
′, u)

contains S as an induced subgraph. If u1 and u share a common neighbor, then ⊕f (G
′, u)

contains T as an induced subgraph and ⊕t(G
′, u) contains V as an induced subgraph.

If both u1 and u2 are non-bridging, then G′ has exactly two thread blocks and both
thread blocks are non-trivial. If both u1 and u2 have pendant vertices, then ⊕f (G

′, u) is
isomorphic to Q and ⊕t(G

′, u) is isomorphic to S. If u1 has no pendant vertex, but u2 has a
pendant vertex, then we find that ⊕f (G

′, u) is isomorphic to T and ⊕t(G
′, u) is isomorphic

to V . Finally, if neither u1 nor u2 has a pendant vertex, then ⊕f (G
′, u) is isomorphic to X

and ⊕t(G
′, u) is isomorphic to U . �

What remains is to consider the cases for dh-operation ⊕x being applied to a non-thread
vertex u of G′. Assume a given consistent threading of the thread block containing u in
the thread graph G′.

We consider the following cases for non-thread vertex u, depending on the structure of
the thread block containing u.

1. L(u) =“∗”
1.1 u has neither a bridging thread vertex nor a non-thread vertex labeled “L” or “R”

before it (the case for “after” is symmetric)
1.2 u has a bridging thread vertex or a non-thread vertex labeled “L” or “R” both

before and after it
2. L(u) =“R” (the case for L(u) =“L” is symmetric)
2.1 u has no vertex labeled “L” or “∗” after it (i.e., u is a pendant vertex)
2.1.1 u is adjacent to a non-bridging thread vertex
2.1.2 u is adjacent to a bridging thread vertex

2.2 u has a vertex labeled “∗” or “L” after it (i.e., u is in a 4-cycle)



2.2.1 u has neither a bridging thread vertex nor a non-thread vertex labeled “∗” or
“L” before it

2.2.2 u has a bridging thread vertex or a non-thread vertex labeled “∗” or “L”
before it

We must consider the three dh-operations applied in each of these structural cases. We
refer to the above numbering of cases in the lemmas to follow.

Lemma 17 (Case 1.) Applying ⊕t(G
′, u) when u is a non-thread vertex labeled “∗” in G′

results in a thread graph G.

Proof. The new vertex v can have the same label and be consecutive with u in a consistent
threading of G. �

Lemma 18 (Case 1.1) Applying ⊕p(G
′, u) or ⊕f (G

′, u) when u is a non-thread vertex
labeled “∗” that has neither a bridging thread vertex nor a non-thread vertex labeled “L” or
“R” before it results in a thread graph G.

Proof. The vertex u can become the thread vertex at the left end of the thread block. A
consistent threading of G will include the new vertex v as the first vertex of the thread
block sequence, labeled “L” in the pendant vertex case or “R” in the false twin case. �

Lemma 19 (Case 1.2) Applying ⊕p(G
′, u) or ⊕f (G

′, u) when u is a non-thread vertex
labeled “∗” that has a bridging thread vertex or non-thread vertex labeled “L” or “R” before
and after it results in a non-thread graph G that has graph N , R, P , or W shown in
Figure 3 as an induced subgraph.

Proof. Note that the case that u has a bridging vertex v before it is subsumed by the case
that it has a pendant vertex labeled “L” before it. Vertex v is part of a thread edge of the
adjacent thread block, connecting it to another thread vertex w. Deleting all vertices other
than v and w of that adjacent thread block yields the case where u has a vertex w labeled
“L” before it. The case where u has a bridging vertex after it is similarly subsumed by the
case that it has a vertex labeled “R” after it.

First, consider the cases of applying operation ⊕p(G
′, u). If u has a vertex labeled “L”

before it and a vertex labeled “L” after it, applying ⊕p(G
′, u) results in a graph containing

induced subgraph P . The result is the same if u has a vertex labeled “R” before it and a
vertex labeled “R” after it. If u has a vertex labeled “L” before it and a vertex labeled “R”
after it, applying ⊕p(G

′, u) results in a graph G containing induced subgraph N . Finally,
if u has a vertex labeled “R” before it and a vertex labeled “L” after it, applying ⊕p(G

′, u)
results in a graph G containing induced subgraph R.

Now, consider the cases of applying operation ⊕f (G
′, u). If u has a vertex labeled “L”

before it and a vertex labeled “L” after it, applying ⊕f (G
′, u) results in a graph containing

induced subgraph R. The result is the same if u has a vertex labeled “R” before it and a



vertex labeled “R” after it. If u has a vertex labeled “L” before it and a vertex labeled “R”
after it, applying ⊕f (G

′, u) results in a graph G containing induced subgraph P . Finally,
if u has a vertex labeled “R” before it and a vertex labeled “L” after it, applying ⊕f (G

′, u)
results in a graph G containing induced subgraph W . �

Now, consider Case 2, a non-thread vertex u labeled “R” in G′.

Lemma 20 (Case 2.) Applying ⊕f (G
′, u) when u is a non-thread vertex labeled “R” in

G′ results in a thread graph G.

Proof. The vertex v can have the same label and be consecutive with u in a consistent
threading of G. �

Consider Case 2.1 where u is a pendant vertex of G′. In these cases, u is adjacent to a
thread vertex w of G′.

Lemma 21 (Case 2.1.1) Applying ⊕p(G
′, u) or ⊕t(G

′, u) when u is a pendant vertex in
G′ labeled “R” adjacent to a non-bridging thread vertex w results in a thread graph G.

Proof. The vertex u will become a thread vertex (with vertex w becoming a bridging thread
vertex) in a consistent threading of thread graph G. �

Lemma 22 (Case 2.1.2) Applying ⊕p(G
′, u) or ⊕t(G

′, u) when u is a pendant vertex in
G′ labeled “R” adjacent to a bridging thread vertex w results in a graph G having S0, S1,
S2, or S3 of Figure 3 as an induced subgraph.

Proof. The vertex w would become a bridging vertex in G = ⊕x(G
′, u) shared by three

non-trivial thread blocks, contradicting the property of a thread graph of Remark 7. The
minimal, non-trivial thread graphs with two thread blocks are given by Lemma 9; these
minimal graphs determine the obstruction set generated by the operation. �

Finally, consider Case 2.2, when u is labeled “R” and is in a 4-cycle, having a vertex
labeled “L” or “∗” after it in the thread block.

Lemma 23 (Case 2.2.1) Applying ⊕p(G
′, u) or ⊕t(G

′, u) to a non-thread vertex u labeled
“R” that is in a 4-cycle and has neither a bridging thread vertex nor a non-thread vertex
labeled “∗” or “L” before it results in a thread graph G.

Proof. In this case, the left thread vertex of the block is an end vertex on the thread. This
case is as that discussed in Lemma 14; vertex u can “switch places” with the original left
thread vertex of the thread block. �

Lemma 24 (Case 2.2.2) Applying ⊕p(G
′, u) or ⊕t(G

′, u) to non-thread vertex u labeled
“R” that is in a 4-cycle and has a bridging thread vertex or a non-thread vertex labeled “∗”



or “L” before it results in a graph G having one of the graphs Q, S, T , V , X, or U of
Figure 3 as an induced subgraph.

Proof. Note that the case that u has a bridging vertex v before it is subsumed by the case
that it has a pendant vertex labeled “L” before it. Vertex v is part of a thread edge of the
adjacent thread block, connecting it to another thread vertex w. Deleting all vertices other
than v and w of that adjacent thread block yields the case where u has a vertex w labeled
“L” before it.

First, consider the cases where operation ⊕p(G
′, u) is applied. If there is a vertex labeled

“L” before u, then G contains induced subgraph Q or S depending on whether the vertex
following u is labeled “L” or “∗”, respectively. If there is a vertex labeled “∗” before u,
then G contains induced subgraph T or V depending on whether the vertex following u is
labeled “L” or “∗”, respectively.

Now, consider the cases where operation ⊕t(G
′, u) is applied. If there is a vertex labeled

“L” before u, then G contains induced subgraph T or V depending on whether the vertex
following u is labeled “L” or “∗”, respectively. If there is a vertex labeled “∗” before u,
then G contains induced subgraph X or U depending on whether the vertex following u is
labeled “L” or “∗”, respectively. �

Proof of Theorem 11. By Lemma 12, H is a subset of Odh. There can be no further members
of Odh as the above lemmas cover all possible cases of applying a dh-operation to a thread
graph. The set of non-thread graphs that results from these cases is exactly equal to set
H. ⊓⊔

Proof of Theorem 4. The proof follows from Theorem 11 and Lemma 6. ⊓⊔

5 Vertex-Minor Obstructions

Let G be a graph and let v ∈ V (G). The graph obtained from G by performing a lo-
cal complementation at v is the graph G ∗ v with V (G ∗ v) := V (G) and E(G ∗ v) :=
E(G)∆

{

{x, y} ⊆ NG(v)
∣

∣ x 6= y
}

(∆ denoting the symmetric difference of two sets). We
say that two graphs G and H are locally equivalent, if H can be obtained from G by a se-
quence of local complementations. Note that this is indeed an equivalence relation. Figure 4
shows all graphs that are locally equivalent to C5 (up to isomorphism).

A graph H is a vertex-minor of a graph G, if H can be obtained from G by a sequence
of local complementations and vertex deletions. In particular, every induced subgraph of G
is a vertex-minor of G. H is a proper vertex-minor of G, if H 4v G and |V (H)| < |V (G)|.
For a given, non-negative integer k, the class of graphs of rank-width at most k is closed
under taking of vertex-minors [14].

A graph G is a vertex-minor obstruction for the class of graphs of linear rank-width at
most 1, if lrw(G) ≥ 2 and every proper vertex-minor H of G satisfies lrw(G) ≤ 1.



C5

“house” “gem”

Figure 4. The three graphs that are locally equivalent to C5.

C5 N Q

Figure 5. The three vertex-minor obstructions for linear rank-width at most 1: The 5-cycle C5, the net
graph N , and the half-cube Q.

Theorem 25 The vertex-minor obstructions for the class of graphs of linear rank-width
at most 1 are the three graphs C5, N and Q depicted in Figure 5.

Proof. Since the class of graphs of linear rank-width at most 1 is closed under taking
vertex-minors, it suffices to show that the graphs in Figure 5 are a set of pairwise not
locally equivalent obstructions, such that every graph with linear rank-width at least 2
contains one of them as a vertex-minor. Indeed, it is not hard to see that the graphs in
Figure 5 are pairwise not locally equivalent.

Every graphG with linear rank-width≥ 2 contains one of the graphs listed in Theorem 4
as an induced subgraph.

If G contains a hole, the house, the gem or the domino graph, then it contains C5 as a
vertex-minor: Any cycle Ck, with k > 5, can be reduced in size by repeatedly performing a
local complementation and deleting the degree 2 vertex of the resultant 3-cycle. Applying
local complementation to a vertex of C5 yields the house graph. Applying local comple-
mentation to one of mutually adjacent vertices of degree 2 of the house graph yields the
gem graph. These locally equivalent graphs are shown in Figure 4. Applying local comple-
mentation to any vertex v of the domino graph (see Figure 8) and then deleting v, yields
a graph locally equivalent to the C5. Thus, the only non-distance-hereditary vertex-minor
obstruction is the 5-cycle.



To determine the set of distance-hereditary vertex-minor obstructions, first consider
the induced subgraph obstructions S0, S1, S2, S3 that are created by Lemma 22 (shown in
Figure 3). All four of these graphs have the net graph N as a vertex-minor. This is realized
by first applying local complementation to a vertex of degree 2 in any triangle, reducing
all four graphs to S0. By applying local complementation to the central vertex v of degree
3 in S0 and then deleting v, one realizes the net graph N .

Figure 6 and Figure 7 show the remaining ten induced subgraph obstructions postu-
lated by Theorem 11 grouped by local equivalence with graphs N and Q. By applying
local complementation to the bottom vertex of graph S, one reaches N . By applying local
complementation to the vertices in triangles on the sides of T and U , one reaches S. By
applying local complementation to the degree 5 vertex of graph R, one reaches graph U .
For the graphs locally equivalent to Q, applying local complementation to a degree 2 ver-
tex of P yields Q. Applying local complementation to the vertex with a pendant neighbor
in graph V yields graph X. By applying local complementation to one vertex from each
side of X in succession, one reaches Q. Finally, applying local complementation to the top
vertex of graph W yields graph X.

Therefore, by deleting zero or more vertices from any graph G with lrw(G) ≥ 2, one of
the induced subgraph obstructions of Theorem 4 will be encountered. This subgraph can
be reduced to one of the three vertex-minor obstructions, as shown above. �

N S T U

R

Figure 6. The five induced subgraph obstructions locally equivalent to the net graph N .



Q P V

X W

Figure 7. The five induced subgraph obstructions locally equivalent to the half-cube Q.

6 Pivot-Minor Obstructions

Pivot-equivalence is defined with respect to an edge {u, v}. Define three sets of vertices
A,B, and C as A = {w|{u,w} ∈ E(G) and {v, w} /∈ E(G)}, B = {w|{u,w} ∈ E(G)
and {v, w} ∈ E(G)}, C = {w|{u,w} /∈ E(G) and {v, w} ∈ E(G)}. The result of a pivot
operation G × {u, v} is defined as the complementation of edges of G between the three
sets of vertices A,B, and C, and also between {u, v} and A ∪ C (“swapping u and v”).

We say that two graphs, G and H are pivot-equivalent, G ∼p H if H can be obtained
from G by a sequence of pivot operations. Pivot-minor containment, H 4p G, is defined
as H being an induced subgraph of any graph pivot-equivalent to G. H is a proper pivot-
minor of G, if H 4p G and |V (H)| < |V (G)|. It is easy to check that for an edge {u, v}
in G,G × {u, v} = G ∗ u ∗ v ∗ u. Therefore, pivot-minor containment is a special case of
vertex-minor containment.

A graph G is a pivot-minor obstruction for the class of graphs of linear rank-width at
most 1, if lrw(G) ≥ 2 and every proper pivot-minor H of G satisfies lrw(H) ≤ 1.

Figure 8. The domino graph



Theorem 26 The pivot-minor obstructions for the class of graphs of linear rank-width at
most 1 are the eight graphs depicted in Figure 9.

Proof. We define C+
k , for k > 5, as the cycle on k vertices with a chord between two

vertices at distance 3 along the cycle. Figure 8 shows C+
6 , the domino graph. By applying

the pivot operation to an edge between two vertices of degree 2, one sees that Ck ∼p C+
k

and therefore, for all k > 6, Ck−2 4p Ck. As a result, all non-distance-hereditary graphs
contain C5 or C6 as a pivot-minor; these graphs are the two pivot-minor obstructions for
the class of distance-hereditary graphs [2].

Now consider the induced subgraph obstructions Si, for 0 ≤ i ≤ 3. By applying the pivot
operation to an edge that includes the central vertex of one of these graphs, a graph that
contains another obstruction as an induced subgraph is generated. For example, applying
the pivot operation to such an edge in S0 and then deleting the non-central vertex of the
edge results in obstruction Q. Similarly, S1 results in obstruction T , S2 results in X, and S3

results in U . Therefore, the induced subgraph obstructions Si are eliminated as pivot-minor
obstructions.

To determine the remaining pivot-minor obstructions for the class of graphs with linear
rank-width at most 1, we need only identify pivot-equivalent graphs in Odh. One finds
that N ∼p R,S ∼p T, P ∼p W,X ∼p V . There are no further equivalences among these
graphs, that would allow reduction of this set of graphs. This can be established readily,
by observation, as there are few distinct edges in each proposed obstruction. For example,
consider graph N . Applying a pivot operation to a pendant edge results in the identical
graph. Applying the pivot operation to the other distinct edge of N , results in graph R.
Applying the pivot operation to the pendant edge of R results in R. Applying the pivot
operation to an edge between two vertices of degree 3 results in graphN , Applying the pivot
operation to the other edge in R results in a graph isomorphic to R. A similar case analysis
shows that applying the pivot operation to edges of any of the other pivot-equivalent pairs
of graphs in Odh that were noted above only results in graphs isomorphic to graphs of the
pair. �

7 Conclusion

The celebrated Robertson-Seymour Theorem shows the finiteness of the obstruction sets
for classes of graphs that are closed under the taking of minors. However, the cardinality of
such an obstruction set can be enormous. It is known that if a class of graphs has bounded
rank-width, then the obstruction set is finite [15]. This implies that, for every integer k ≥ 0,
the obstruction set for the class of graphs of linear rank-width at most k is finite. Until
now, none of these obstruction sets were known explicitly. In this paper, we have exhibited
the exact finite sets of obstructions under taking of induced subgraph, vertex, and pivot
minors for the class of graphs having linear rank-width at most 1. A natural next step



C5 C6

N S U

Q P X

Figure 9. The eight pivot-minor obstructions for linear rank-width at most 1.

would be to determine the obstruction set for the graphs of linear rank-width at most 2.
However, we expect the number of obstructions to be large.
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