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Towards a More Realistic, Cost Effective and

Greener Ground Movement through Active Routing:

A Multi-Objective Shortest Path Approach
Jun Chen, Michal Weiszer, Giorgio Locatelli, Stefan Ravizza, Jason A. Atkin, Paul Stewart Senior member, IEEE,

and Edmund Burke.

Abstract—Based on the multi-objective optimal speed profile
generation framework for unimpeded taxiing aircraft presented
in the precursor paper, this paper deals with how to seamlessly
integrate such optimal speed profiles into a holistic decision
making framework. The availability of a set of non-dominated
unimpeded speed profiles for each taxiway segment with respect
to conflicting objectives can significantly change the current
airport ground movement research. More specifically, the routing
and scheduling function that was previously based on distance,
emphasizing time efficiency, could now be based on richer
information embedded within speed profiles, such as the taxiing
times along segments, the corresponding fuel consumption, and
the associated economic implications. The economic implications
are exploited over a day of operation to take into account cost
differences between busier and quieter times of the airport.
Therefore, the most cost-effective and tailored decision can be
made, respecting the environmental impact. Preliminary results
based on the proposed approach are promising and show a 9%–
50% reduction in time and fuel respectively for two international
airports, viz. Zurich and Manchester Airports. The study also
suggests that, if the average power setting during the acceleration
phase could be lifted from the level suggested by the International
Civil Aviation Organization (ICAO), ground operations may
achieve the best of both worlds, simultaneously improving both
time and fuel efficiency. Now might be the time to move away
from the conventional distance based routing and scheduling to
a more comprehensive framework, capturing the multi-facetted
needs of all stakeholders involved in airport ground operations.

Index Terms—Active Routing, multi-objective shortest path
problem, fuel consumption, economics, sustainability, A-SMGCS.

I. INTRODUCTION

ENERGY-EFFICIENT air transportation has been iden-

tified as one of the Grand Challenges for Control in

2011 [1], with the aim of having efficient, robust, safe, and

environmentally aware air traffic management (ATM). As

pointed out in [1], the problem is in essence a distributed,

large-scale, and multi-objective control problem with potential
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trade-offs between objectives such as fuel burn, operating

costs, delays, and system throughput. Therefore, apart from

technological improvements for fuel efficiency, multi-objective

control (optimization) techniques that simultaneously optimize

these various objectives are prevised as the key to unfold and

exploit such a hidden and rather complex relationship. Among

these objectives, being able to quantify fuel burn not only has

a direct link to managing the airline’s cost, but also provides

a quantitative means by which the environmental impact can

be thoroughly examined and weighted in the decision making

process of air traffic operations. This will move the whole

air transportation sector a step forward towards more cost-

effective and greener operations.

While only a fraction of an aircraft’s journey consists of

taxiing, this makes a significant contribution to the running

cost of an aircraft. This is particularly the case at larger

airports and especially for short-haul flights, as jet-engines

are designed to operate optimally at cruising speed, and are

considerably less efficient when taxiing. It is estimated that

fuel burnt during taxiing alone represents up to 6% of fuel

consumption for short-haul flights, totalling 5m tonnes of fuel

per year globally [2]. There seems to be a similar lack of multi-

objective approaches in airport ground operations planning.

In research towards the Next Generations Air Transportation

System (NextGen) in the U.S. [3] and Single European Sky

ATM Research (SESAR) programme [4], the differing objec-

tives such as fuel burn, operating costs and delays for ground

operations are often considered capable of being reconciled.

Therefore, considerable effort has been put into the capacity

and delay aspects of planning, with little quantification of the

associated environmental effects [5].

Although taxi operations are often the largest source of

emissions in a standard landing take-off (LTO) cycle around

airports [6], many studies that focus on fuel consumption on

the airport surface assume an average value for fuel flow

during taxi without explicitly accounting for the differing fuel

consumption during idling, accelerating from a stop, taxi at

constant speed, and turning, perhaps due to a lack of a detailed

fuel burn estimation for airport ground operations. As a result,

fuel burn, associated surface emissions, and airline’s cost are

usually considered to be reduced on the same path while

reducing taxi times.

As pointed out in [7], [8], the amount of fuel consumed is an

important metric for benefit assessment of congestion control

methods, and its detailed estimation plays an important role in
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calculating the environmental impact of air traffic operations.

A trend towards employing a data-driven approach for the

modelling of fuel consumption [8], [9] can be observed. The

aim is to distinguish contributions to the total fuel consumed

on the surface from different taxi phases. In [8], assumptions

were made for each of the taxi phases: 4% of take-off thrust is

used for ‘ground idle’, 5% for ‘taxi at constant speed or decel-

eration’, 7% for ‘turning’, and 9% for ‘acceleration’. Higher

breakaway thrust (up to 20%) and constant speed thrust (7%)

were also investigated. Preprocessing the detailed operational

aircraft position data for each flight yields information for

different taxi phases. Fixed durations are assumed for accel-

eration after stop and for a perpendicular turn. The authors

concluded that the fractional contribution of each phase to

the total fuel consumption does not change, and that stop-

and-go conditions constitute about 18% of fuel consumption

during surface operations, irrespective of assumptions about

the thrust level. Therefore, eliminating such stop-and-go situ-

ations would reduce the daily and annual fuel consumption as

well as emissions. Furthermore, Nikoleris et al. [8] identified

that idling and taxi at constant speed or braking are the largest

fuel consumption contributors, and are sensitive to the thrust

level assumptions for these states. In [9], taxi fuel burn is

modelled as a linear function of several potential explanatory

variables including the taxi time, number of stops, number

of turns and number of acceleration events, estimating the

coefficients using operational aircraft data and least-squares

regression. Their analysis revealed that although the taxi time

is the main driver, the number of acceleration events is also

a significant factor in determining taxi fuel consumption, and

will also need to be considered in ground movement studies.

Results also revealed that the assumed 7% thrust value by

ICAO for all ground operations is overestimated in most cases,

but significantly underestimated for some aircraft types.

The conclusions drawn in [8] and [9] call for a more

elaborate ground movement decision support system. Such a

system should be able to address:

1) The optimal number of acceleration events: apart from

reducing such events at the strategic level during op-

timization, to avoid routes consisting of many turning

segments, the increased realism in planning is also a

determining factor; more realistic planning means that

pilots can execute such decisions more faithfully to

minimize the number of additional acceleration events

which may be required to make up for differences

between the actual and instructed speeds.

2) The optimal acceleration thrust level and its duration: it

is worth pointing out that assumptions made in [8] for a

fixed acceleration rate and its duration are not realistic

and will only lead to a constrained search space for the

routing and scheduling problem (as will be seen in the

results in this paper), leading to suboptimal solutions.

Choosing appropriate acceleration rates and durations to

reduce the amount of time spent on the ‘acceleration’

and ‘constant speed’ phases will reduce overall fuel

consumption.

As indicated in [8], there is a lack of consensus regarding

thrust settings and time required for each maneuver. Moreover,

the increase in acceleration thrust has little effect on total

fuel and emission values, which implies that a slightly higher

acceleration thrust may be beneficial in both time and fuel

efficiency. Having a decision support system, which can take

into account different thrust settings and their corresponding

durations, will facilitate decision makers to evaluate the best

possible practice and regulations for a specific airport under

investigation.

The main costs associated with airport ground movement

mainly consist of costs for fuel, aircraft operation and the use

of the airport. Fuel consumption and its economic cost have

been a concern of the aviation industry for decades [10], and

currently constitutes one of the largest operating cost for an

airline. Aircraft costs [11], such as maintenance, crew and

opportunity costs, also contribute to total airline operations

expenditure. In [12], airport opportunity cost is defined as

every minute during which the airport infrastructure is used in

an inefficient way, particularly during the peak traffic period.

Congestion is faced by many airports, especially during peak

periods, thus many resources are scarce, including runway and

taxiways. Congested airports have applied congestion pricing

schemes since the 1960s, to mitigate this problem during hours

with high traffic demand [13]–[15]. The idea is to charge

access fees for aircraft based on daily traffic patterns to reduce

delays. Advanced surface decision support systems should take

all of these costs into account in a holistic way so that the most

cost-effective planning can be achieved. This implies that the

preferable planning solution may vary over a day of operation.

With the right pricing scheme, taking into account the multi-

facetted needs of all stakeholders involved in airport ground

movement, planning solutions will be more acceptable. The

overall economic impact on the airlines and airports will be

reduced, while time efficiency improved. This will also lead

to an overall reduction in greenhouse gas emissions associated

with fuel consumption, and a reduction in engine exhaust

pollutants that can cause illness and premature mortality [10].

In the light of the above discussion, the overriding objective

of this paper is to introduce a holistic decision making frame-

work, named the Active Routing (AR) framework. At the heart

of this concept are multi-objective optimization techniques

applied to multiple interconnected components (from multi-

objective optimal speed profiles to multi-objective optimal

route planning). The integration of unimpeded optimal speed

profiles, generated in [16], into a routing and scheduling

framework enables the investigation of the optimal power

settings and their durations for each individual aircraft in

a collaborative, complex and dynamic network environment.

Due to the multi-objective nature of the proposed approach, the

inclusion of the proposed economical optimization will assist

the decision maker to choose the most appropriate planning

solution from a Pareto set according to the current airport

operational mode.

This paper is organized as follows: Section II introduces

the proposed AR framework; the relation of the proposed

framework to multi-objective shortest path problems (MSPP)

is also highlighted; Section III introduces a particular imple-

mentation of the MSPP, which is based on our previous work



3

[17]; the proposed economical optimization is discussed in

Section IV; Section V presents comparisons of the proposed

AR approach with different existing routing approaches, in

terms of both their realism and efficiency, evaluated using a

heuristic airport ground simulator; sensitivity analysis is also

carried out in this section; finally, conclusions are drawn in

Section VI, highlighting the important contributions of the

work and potential future directions.

II. THE ACTIVE ROUTING (AR) FRAMEWORK

Conventional routing and scheduling approaches, such as

[18]–[22], are formulated as a single-objective shortest path

problem (SSPP), where the main concern is to minimize either

the total taxi time or a weighted sum of different objectives,

such as the time, the delays of the route and the target time for

departure. The airport ground movement problem presented in

this paper represents a real-world instance of a multi-objective

shortest path problem (MSPP), where the aim is to find a set of

Pareto optimal (efficient) routes between the parking position

on the apron and the runway.

A. Shortest Path Problems for Airport Ground Movement

The existing research into the SSPP formulation of the

airport ground movement problem, can be classified into two

categories: a) sequential approach, where routing is carried

out in a pre-determined sequence; b) integrated approach,

where routing and scheduling are considered in a combined

model. In the sequential approach, the outputs of a separate

scheduling stage are utilised by shortest path search algorithms

such as Dijkstra’s [17] and A* [21] algorithms, which route

aircraft one at a time. These algorithms are adapted to take

previously routed aircraft into account, with time constraints

ensuring safe separations between aircraft. In the integrated

approach, the problem is formulated either as a mixed-integer

linear programming problem [19], [20] or in the framework of

heuristic search methods [23], [24]. The k-shortest path [25]

algorithm is a derivant of SSPP.

The multi-objective shortest path problem (MSPP) is a

direct extension of the SSPP, where each edge has a vector

of multiple costs. Modification of the Dijkstra’s algorithm

[26] for the bi-objective case dates back to Hansen [27]

and its multi-objective version was presented in [25]. There

are three main approaches to solve a MSPP: a) enumerative

approaches such as label correcting [28] and label setting

[25], b) ranking methods [29]; and c) heuristic search based

approaches [30], [31]. Enumerative approaches work similarly

to Dijkstra’s algorithm apart from that the objectives at the

investigated node are now evaluated using the non-dominance

concept. During the last few decades, other variants within

this category have been proposed with the aim of speeding

up the search if certain heuristics are also available [32]–[34].

However, in the worst case, the number of Pareto optimal paths

can grow exponentially with the number of nodes. Therefore,

the problem may become computationally intractable with

even a small number of considered objectives. In light of the

mentioned drawbacks, ranking methods have been developed

to approximate Pareto optimal solutions or a subset of the true

Pareto front. A ranking procedure proposed by Climaco and

Martins [29] for the bi-objective case generates a sequence of

k-shortest paths with respect to the first objective function,

until the path with the minimal value with respect to the

second objective function is obtained, leading to a Pareto front

of all optimal paths. However, if the value of k is bounded,

only approximately optimal solutions are found. Metaheuristic

search based approaches [30], [31] also do not guarantee

optimality, but are showing promising features for dealing

with non-additive weights, and reducing computational time,

especially when the scale of the network is fairly large.

For the problem in this paper, due to the existence of mul-

tiple optimal speed profiles for each segment, the weights for

each segment, i.e. the fuel consumption and taxi time, are no

longer a vector, but a matrix. Vectors within the matrix provide

trade-offs among conflicting objectives. The introduction of

this matrix for each segment is equivalent to having parallel

segments for any two connected nodes, leading to a very

complex directed multigraph. For clarity, the term ‘segment’

in this paper has an identical meaning to the term ‘edge’ in

multigraph theory, but ‘segment’ is used here since the term

‘edge’ in the context of airport ground movement, as defined

in [16], already represents the smallest constituent within a

segment. The airport ground movement problem has been

formulated here as an MSPP. To the best of our knowledge,

apart from [17], which is based on ranking methods, we are

not aware of any MSPP algorithms being applied to airport

taxiing planning. The proposed AR framework is based on

[17], with an additional decision making module to consider

the different interests of the stakeholders.

It is worth pointing out that the presented AR framework

is fairly general. Therefore, any solution approaches for the

MSPP are potentially feasible for the AR framework and worth

further investigation.

B. Description of the AR Framework

The proposed AR concept is a general (i.e. can be extended

to n objectives) and complete framework combining both

optimization strategy and decision making. The active routing

name acknowledges: 1) the seamless integration of optimal

speed profiles in the search for the optimal routes and sched-

ules, and 2) the proactive consideration of the multifaceted

needs of all stakeholders and different operational scenarios.

The AR framework is illustrated in Fig. 1. Based on the

potential routes, optimal speed profiles are generated. Then,

the selected speed profile determines the route and schedule

of the aircraft, imposing time constraints for the subsequent

aircraft. The key component that links n objective functions

is the optimal speed profiles.

Without loss of generality, in this paper, two objectives are

considered. The objectives, namely the total taxi time TT and

the fuel consumption TF , are defined in (1):

TT =
∑

i∈A

g1 =
∑

i∈A

T (ql, y
j
i ),

TF =
∑

i∈A

g2 =
∑

i∈A

F (ql, y
j
i , wi),

(1)
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Fig. 1: Active Routing framework.

where, T (ql, y
j
i ) is a function which returns travel time of a

single aircraft i on an allocated route ql following the j-th

speed profile y
j
i belonging to a set of Pareto optimal speed

profiles Yi from the source to the destination, as generated

in [16]; F (ql, y
j
i , wi) is a function which returns the amount

of fuel burn during taxiing for each aircraft i ∈ A of weight

category wi. Interested readers are referred to [16] for the

detailed definitions of these two functions and the speed profile

generation block.

It is worth noting that neither the definitions of the objective

functions described therein nor the MSPP method which

are explained in the next section are mandatory in the AR

Framework. Other objectives which are derivable from the

speed, such as emissions and noise, can also be incorporated

into the framework. Irrespective of the actual implementation

of each function block shown in Fig. 1, the aim of the AR

framework remains the same, which is to route each aircraft

i following the speed profile y
j
i on the route ql in an efficient

manner, respecting time constraints imposed by other aircraft

while preventing conflicts between them. Time constraints will

be discussed in detail in Section III-B.

The decision making block (economic optimization) takes

into account conflicting interests among all stakeholders. The

most cost-effective decision will be made with respect to the

current airport operational situation, therefore being able to

address the dynamic airport environment.

In the next section, an implementation of this framework is

introduced.

III. A MULTI-COMPONENT AND MULTI-OBJECTIVE

APPROACH

The AR framework combines two multi-objective optimiza-

tion components into a global optimization problem:

1) The multi-objective optimal speed profile generation

2) The MSPP for routing and scheduling

The solution of the ground movement problem requires the

solution of each of the subproblems. Furthermore, although the

speed profile generation problem is independent of the MSPP,

it will affect its solution, and the generated speed profile will

be affected by constraints given by the routing and scheduling.

This type of optimization problem is also known as multi-

component optimization problems [35], examples of which

include the travelling thief problem [35], the vehicle routing

problem under loading constraints [36] and the combined

runway sequencing and routing problem [37]. In order to solve

this combined optimization problem, a sophisticated integrated

procedure based on [17] is employed in Section III-A.

A. An Implementation Instance of the MSPP and the AR

As discussed in [16] and [17], the airport surface is rep-

resented as a directed graph, where the edges represent the

taxiways and the vertices represent the taxiway crossings,

intermediate points and sources/destinations such as gates,

stands and runway exit points, as can be seen in Fig. 2.

Intermediate points are placed to ensure a safe separation

between two adjacent aircraft. Aircraft are considered to

occupy edges and only one aircraft can travel along an edge at

a time, enforcing minimum safety distances between aircraft.

(a) (b)

Fig. 2: A directed graph representation of the airport surface

for (a) Zurich Airport, (b) Manchester Airport.

For the single-objective version of this problem, Ravizza

et al. [22] developed a sequential routing and scheduling

algorithm, the Quickest Path Problem with Time Windows

(QPPTW), which has the total taxi time as its main objective.

The algorithm routes aircraft one after another in a sequence

according to their pushback/landing time respecting previ-

ously reserved taxiways of other aircraft. Already assigned

routes do not change whenever a new aircraft is taken into

consideration. In order to address the MSPP, the k-QPPTW

algorithm proposed in [17] is employed in this work. The

information about the speed of aircraft along individual edges
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is extremely important for the algorithm as this determines

when aircraft will pass over the nodes. Therefore, these two

sub-problems are interconnected, where solving the routing

and scheduling problem for a new aircraft is only possible after

finding a solution to the speed profile optimization problem

of the previously routed aircraft. This integrated procedure is

described in Algorithm 1, which approximates the Pareto front

by only generating p points on it.

Algorithm 1: Integrated procedure for trade-off analysis.

1 Sort aircraft by their pushback/landing time;

2 for a = 1 to p do

3 for each aircraft i do

4 Generate the shortest k routes using the

k-QPPTW algorithm w.r.t. to time windows;

5 for each route k for aircraft i do

6 Approximate the Pareto front of both

objectives using PAIA or the heuristic;

7 end

8 Generate the combined Pareto front for the

source-destination pair for aircraft i;

9 Discretize this Pareto front into p roughly equally

spaced solutions;

10 Select the a-th solution and reserve the relevant

route for aircraft i;

11 end

12 Save the accumulated values for all aircraft for both

objective functions for the global Pareto front;

13 end

Result: Approximation of the global Pareto front

In each iteration (lines 3–11) the whole set of aircraft is

scheduled using the k-QPPTW algorithm and one point of

the Pareto front is generated. As a is incrementally increased

(line 2), the algorithm finds alternative points on the Pareto

front gradually changing from the most time-efficient to the

most fuel-efficient solutions. The aircraft are considered se-

quentially according to their pushback/landing times (line 1).

For each aircraft i, the k best routes are generated based

on their taxi times, assuming constant speed vstraight and

vturn for straight and turning edges, respectively (line 4).

The generated routes are subject to constraints imposed by

other taxiing aircraft, as described in Section III-B. For each

route, two speed profile generation approaches based on a

Population Adaptive Immune Algorithm (PAIA) and heuristics

[16] are adopted to approximate the Pareto front, taking into

consideration all reservations that were made by previously

scheduled aircraft (lines 5–7). Line 8 combines the different

Pareto fronts for k routes to produce the global Pareto front for

the given source destination pair of aircraft i by selecting non-

dominated solutions. The resulting Pareto front is discretized

into p roughly equally spaced solutions (line 9). The com-

bination of non-dominated solutions and discretization of the

resulting Pareto front is illustrated in Fig. 3.

The a-th discretized solution on the Pareto front is selected

in line 10 and that route, together with the corresponding

speed profile, is used to schedule aircraft i. The inner loop
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(lines 3–11) is repeated until all aircraft from the dataset have

been routed and the total taxi time and fuel consumption is

accumulated to generate a single solution on the global Pareto

front (line 12).

B. Constraint Handling

During routing, scheduling and speed profile optimization,

the generated routes and speed profiles must conform to: a)

physical constraints related to taxiing of a single aircraft such

as maximum speed and maximum acceleration; b) constraints

related to interactions of multiple aircraft taxiing on the airport

surface. The physical constraints are handled by the speed

profile optimization algorithm [16]. The constraints related

to interactions of multiple aircraft ensure that a safe distance

between aircraft is maintained during taxiing. For this purpose,

each edge e of the graph representing the airport surface has

a set of time windows TWe assigned, which correspond to

the time intervals when the edge is not used by any other

aircraft. For each aircraft i, the time interval (tstarti,e , tendi,e )
corresponding to its traversal over the edge e must conform

to TWe so that (tstarti,e , tendi,e ) ⊆ TWe. Algorithm 1 takes time

windows into account on two occasions:

1) The k-QPPTW algorithm in line 4 generates the shortest

k routes using constant speeds, as described in Section

III-A. The shortest k routes consist only of edges for

which time windows are available;

2) The generated optimal speed profiles (line 6) for the

above routes must respect TWe.

As speed profiles are constructed over segments, they span

multiple edges. Furthermore, as speed profiles are constructed

beforehand, without knowing the available time windows, for

each edge e, the algorithm has to check conformance of

(tstarti,e , tendi,e ) with TWe as illustrated in Fig. 4.

As mentioned above, TWe for edge e corresponds to a time

when e is not used. Therefore, TWe will be constantly adjusted
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by excluding the time used by any already routed aircraft as

shown in Fig. 5a. When the next routed aircraft i enters the

system, its time interval (tstarti,e , tendi,e ) will be calculated, as

illustrated in Fig. 4. When there are no conflicts, i will be

routed using the calculated (tstarti,e , tendi,e ), as shown in Fig. 5b.

In case of a conflict when no feasible speed profiles exist,

holding for the time ‘(th)’ is applied to all optimal speed

profiles for the route containing the particular edge in conflict,

so that (tstarti,e + th, t
end
i,e + th) ⊆ TWe as shown in Fig. 5c. In

this case, TWe will be adjusted accordingly. Otherwise, speed

profiles violating TWe will be discarded during the search, the

remaining feasible speed profiles will be used for routing, and

TWe adjusted. It is worth noting that TWe is not only adjusted

when edge e is in use as mentioned above. Other edges, while

they are in conflict with edge e, will also induce adjustment

of TWe. Two edges are considered in conflict if the distance

between them is less than the safe distance. A set of Pareto

optimal speed profiles will ensure that the best possible speed

profile is chosen with respect to TWe.

IV. ECONOMIC OPTIMIZATION AND DECISION MAKING

For a decision support system, the decision maker is re-

sponsible for choosing just one of the solutions found by

the algorithm, which will then be implemented. The solu-

tions on the obtained Pareto front are only local optima,

and additional cost information is required for the decision

making. This fact, which is often omitted in multi-objective

optimization studies, is tackled in this section. The conceptual

framework presented in this section paves the way to a

technical/environmental/economic optimization of the airport

operations performance by managing the planned taxiing in

the best way. A holistic simplified model can consider three

cost categories related to the taxiing:

1) Fuel cost is one of the key aspects for the sustainability

of the aviation industry, particularly considering renew-

able fuel [38].

2) Non-fuel aircraft cost. Every minute of aircraft time

represents a cost, which is mainly (in terms of [39]):

a) usage/wear: maintenance to perform at a fix interval,

b) opportunity cost: revenues missed because the air-

craft is not used for profitable business i.e. flying

passengers,

c) various variable operation costs, such as crew cost.

0 time
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Fig. 5: (a) The time window for edge e corresponds to a time

when the edge is not used. (b) If aircraft i is routed, the time

window is readjusted. (c) In the case of a violation, holding

is applied until aircraft i can be accommodated .

3) Airport opportunity cost, as defined in [12]: every

minute for which the airport infrastructure is used in an

inefficient way. A longer than expected taxiing time for

an aircraft not only means that it can miss its designated

slot in the take-off queue, but can also have a network

wide effect on other aircraft. The faster the taxiing, the

more aircraft can pass in the same time frame, thus

minimizing the chance that the runway is unused due

to missed slots. Consequently, the faster the taxiing, the

cheaper the unitary airport opportunity cost for each

aircraft.

Since different periods during the day have different demands

(peak vs. off-peak), the costs for 2) and 3) change over the

day. Moreover, the cost for 3) will vary greatly between

airports: some airports are very busy while others are under-

used. Airport opportunity cost includes a number of items,

mainly related to infrastructure construction, maintenance and

management [40]. The estimation of the airport opportunity

costs needs to include a number of drivers: size (i.e. economies

of scale), public vs private ownerships, locations, type of

airlines (low cost vs. traditional), etc. The most common

way to estimate these relies on marginal cost (since the

early work [41], [42]). Bottaso and Conti [43] investigate the
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cost function focusing on ownership forms and economies

of scale, showing that economies of scale exist, but tend to

gradually decrease with the scale of operations. They also

show that private airports have been more efficient than public-

mixed ones (even if the gap is reducing). Martı́n et al. [44]

identifies the drivers of airport opportunity cost flexibility by

estimating a short-run stochastic cost frontier over a database

of 194 airports worldwide between 2007 and 2009. Flexibility

decreases with the scale of production, given the significant

step-changes in capacity experienced by large airports. Voltes-

Dorta and Lei [45] provides both long- and short-run multi-

output cost functions estimated from a database of 29 UK

airports observed between 1995 and 2009. Interestingly, the

paper investigates the case of Manchester Airport. It was de-

designated in 2009 and a very strong efficiency incentive was

established to achieve a convergence to long-run marginal

costs by the end of the period. The principle of matching

marginal cost is one of the key ideas for this economic

optimization. It is worth noting that the price charged to airline

companies can vary considerably: British Airways pays £6.08

per passenger, MyTravel, JMC, Air2000 and Britannia are

charged in the range of £6.55 to £6.71 per passenger, while

Ryanair pays only £4.29 per passenger [45]. This should reflect

the number of passengers from each company. Marginal cost

is also investigated in [46] with respect to airport operations

in Norway and a comprehensive review of cost functions in

the airport industry is provided by [47], which also presents a

detailed real long-run cost function.

In the light of the discussion above, the hypotheses for the

model presented here are: The fuel used is a unitary cost cfuel

(e·kg−1). The total fuel cost, Cfuel, (e) for taxiing is the

product of the fuel consumed, TF (kg) and the unitary fuel

cost cfuel (e·kg−1), as given in (2). Apart from fuel, the cost

of the time for taxiing is a time dependent expense (e·s−1)

due to the existence of:

• maintenance cost which is time dependent (e·s−1), i.e.

aircraft maintenance is necessary at defined time inter-

vals.

• aircraft opportunity cost (e·s−1). The time spent on

taxiing is not used for profitable service.

The total non-fuel aircraft cost caicraft (e) is therefore given

by (3). The airport opportunity cost cairport (e·s−1) depends

on the time of the day (peak vs. off-peak hour), as shown

in Fig. 6. With the taxi time defined in seconds, the airport

opportunity cost is given in (4). Since all costs are in e, these

can be summed and the total cost can then be expressed by

(5):

Cfuel = cfuel · TF (2)

Caircraft = caircraft · TT (3)

Cairport = cairport · TT (4)

Ctotal = Cfuel + Caircraft + Cairport (5)

Since faster taxi times can increase fuel costs, the resulting

function in Fig. 6 shows a trade-off. There are time intervals of

minimum cost for each aircraft, which represents the optimal
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Fig. 6: Cost optimization and decision making: (a) fast taxiing

is preferred during the peak hour; and (b) slow taxiing is

preferred during the off-peak hour.

(economic) solution considering all stakeholders’ interests, and

these intervals will vary with the load on the airport.

To illustrate this concept, in this study, we investigate

how fuel cost and aircraft cost collaboratively affect decision

making with respect to the changing airport environment. A

fuel cost of 0.71 e·kg−1 (as on 17/01/2014) is used. The non-

fuel aircraft cost is assumed to be equal to the delay cost at the

gate as in [48] and is a scenario dependent cost as previously

discussed. Table I summarizes the aircraft cost with respect to

low, medium and high traffic scenarios.

TABLE I: Non-fuel Aircraft cost per minute of taxiing [48].

Cost scenario Low Medium High

caircraft (e·min−1) 0.6 0.9 16.1

For this work, the airline’s perpective is assumed, thus

considering only cfuel and caircraft. Airport opportunity cost

cairport and the investigation of the way in which it affects

the results will be investigated in further work. However, the

conclusions drawn in Section V-E still hold without the loss

of generality.
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TABLE II: Instances.

Instance

ZRH L ZRH H ZRH M MAN H MAN M MAN L

Hour 14:00 – 15:00 19:00 – 20:00 21:00 – 22:00 10:00 – 11:00 11:00 – 12:00 13:00 – 14:00
Number of aircraft 21 49 34 21 13 10
Arrivals 9 33 22 10 5 5
Departures 12 16 12 11 8 5

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed AR framework is applied to

instances from two busy international hub airports: Zurich

Airport (ZRH), Switzerland and Manchester Airport (MAN),

United Kingdom.

A. Description of the airport data

The algorithm was tested on a dataset of real arrival

and departure flights at ZRH (recorded on 19/10/2007) and

MAN (recorded on 11/11/2013). The data has been divided

into several instances as summarized in Table II, to give a

representation of a typical day, similarly to [19]–[24]. Each

instance includes flights departing or landing within one hour,

and can be classified into low (L), medium (M), and high (H)

traffic according to the current traffic situation on the airport.

Fig. 7 shows the number of flights over the given day for ZRH

and MAN.

The data for the ZRH instances was provided by the airport

and specifies landing/pushback times and gates/runway for

each flight. The data for the MAN instances was obtained

from publicly available sources [49]. The MAN data has been

pre-processed so that noisy (abnormal) data is disregarded and

taxiways are automatically assigned by specialized processing

tools [50].

In order to keep the problem tractable, aircraft have been

divided into 3 groups according to their wake vortex separation

requirements (weight category wi). A representative aircraft is

designated for each category, and its specifications are used

for the calculations for all aircraft within this category. The

specifications are summarized in Table III.
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Fig. 7: The number of flights over the given day for ZRH and

MAN.

TABLE III: Specifications of the representative aircraft.

Learjet 35A Airbus A320 Airbus A333

Take-off weight m 8300 kg 78000 kg 230000 kg
Engines TFE731-2-2B CMF56-5-A1 CF6-80E1A2
Number of engines 2 2 2
Rated output Fo 2×15.6 kN 2×111.2 kN 2×287 kN
Rolling resistance Fr 1221 N 11.48 kN 33.84 kN

Fuel flow at 7% Fo 0.024 kg·s−1 0.101 kg·s−1 0.228 kg·s−1

Fuel flow at 30% Fo 0.067 kg·s−1 0.291 kg·s−1 0.724 kg·s−1

B. Experimental Setup

The routing and scheduling part of the algorithm has been

programmed in Java and the speed optimization part has

been written in the MATLAB programming language. All

experiments were carried out on an Intel i3-2120 PC with

3.16 GB of RAM, running Windows 7. In order to empirically

derive the most suitable values of k and p (considering

both tractability and optimality) as described in Algorithm

1, sensitivity analysis was conducted (see Section V-C). The

observations from the sensitivity analysis fed directly into the

parameter settings for the computational experiments, and the

results in Section V-E were obtained with a setting of p = 5
(line 2 in Algorithm 1) and k = 3 (line 4) for the k-QPPTW

algorithm. Similarly to [17], the number of generations for the

PAIA based speed profile generation was Gen = 40.

C. Parameter Analysis

As described in Section III-A, the proposed k-QPPTW

(Algorithm 1) introduces two parameters: k (the number of

generated k-shortest routes) and p (the number of discretized

points on the Pareto front), which help to keep the problem

tractable. As the values of these two parameters not only affect

the tractability of the problem but also the optimality of the

solutions, sensitivity analysis is conducted in this section to

justify the choice of the parameter settings used in Section

V-E. The appropriate value of k was investigated by running

experiments for the three different ZRH instances included

in Table II. The parameter k was varied from 1 to 10.

In theory, fewer shortest routes mean a more constrained

search space, and hence a lower probability of finding better

solutions. Since the number of arrival/departure aircraft varied

for the different ZRH instances, the calculated TT (total

taxi time) and TF (total fuel consumption) also varied. In

order to more clearly show the performance of the k-QPPTW

algorithm against different k values across different instances,

the baseline solutions defined as 100% were obtained using

k = 1. Solutions corresponding to other values of k are

then reported as the percentage with respect to the baseline

solutions. The results are shown in Fig. 8.
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solution (100%) with k = 1.

Fig. 8 confirms that with bigger values of k, both time and

fuel efficiency are improved, meaning that better solutions are

found. For ZRH M, such improvement is still notable even

when k = 10. However, the most sharp improvement for all

three instances happened when k = 3.

Considering the tractability of the problem, the running time

against different values of k was also investigated, and the

results are shown in Fig. 9.
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As PAIA based speed profile generation [16] is the most

computational expensive part of the k-QPPTW algorithm, the

runtime increases accordingly as k is increased. Therefore,

k = 3 was selected as a good compromise between tractability

and optimality for the following experiments. The heuristic

speed profile generation approach [16] improves the computa-

tional efficiency of k-QPPTW considerably, as the most time

consuming elements of the PAIA algorithm are no longer used

and the decision variable space is much reduced. However, it

is worth mentioning again, as explained in [16], that despite

the greatly improved search speed efficiency, the heuristic

approach may not be feasible when more generalized speed

profiles, more realistic aircraft performance models, and more

objectives are considered.

p was set to 5 in the above parameter analysis. From

Algorithm 1, it can be concluded directly that the runtime

due to different values of p is a multiple of the corresponding

runtime due to k. Therefore, p was set to 5 to provide

sufficient trade-off solutions for the economic optimization

without sacrificing too much computational efficiency.

D. A Heuristic Airport Ground Movement Simulator

As discussed in [16], the previous research on airport ground

movement can be classified into the 1st and 2nd generations,

which use empirically determined constant speed or predicted

constant speed, respectively. The AR framework can be said

to represent the 3rd generation, and a comparison between

the approaches would be interesting. Previously, routing and

scheduling were based on constant speeds (or bounds) without

any consideration of how this would impact on the real

operational scenario. In practice, instructions to pilots which

were based on time constraints may need to be violated due

to acceleration/deceleration characteristics and physical speed

constraints. Furthermore, fuel consumption estimation which

assuming an average thrust setting will be inaccurate since the

real speeds will differ from the assumed constant speed.

In order to provide a fair comparison of these differ-

ent approaches, a heuristic ground movement simulator is

introduced in this section for the 1st and 2nd generation

approaches to mimic the behaviour of pilots who try to follow

the given instructions, taking into account acceleration and

physical speed constraints. The instructions are represented

by a set of timings associated with nodes, determining the

traversal time of aircraft along edges. Trying to comply with

these timings in the best possibly way will minimize TWe

violations. The simulator re-creates the speed profile with

acceleration/deceleration and constant speed phases, trying to

comply with these timings. At the beginning of each edge,

the aircraft accelerates/decelerates from speed v0 with the

maximum acceleration/deceleration rate amax = ±0.98 m·s−2

(as per the heuristic speed profile generation approach [16],

this is the most time and fuel efficient way of taxiing) for t1,

until it reaches speed v2 as given in (6). It then continues

at speed v2 until the end of edge e for t2. Time t2 is

calculated using remaining time treme for edge e to meet

the timing as given in (7). The speed v2 at the end of the

edge e is calculated from (8) since the distance travelled

during acceleration/deceleration and constant speed phases

has to be equal to the total distance de of edge e. As in

[16], maximum speed constraints are applied respectively for

straight or turning segments. Moreover, the simulator bounds
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v2 to such a value that it is still feasible to break (with

rate amax) to reach the nearest turning/holding segment at

an acceptable speed.

t1 =
v2 − v0

amax

(6)

t2 = treme − t1 (7)

v0 · t1 +
1

2
· amax · t2

1
+ v2 · t2 = de (8)

5

6

7

8

9

10

0 5 10 15 20

 

S
p

e
e
d

 (
m

/s
)

0

2

4

6

8

10

12

14

16

 

0

2

4

6

8

10

12

14

16

Taxi time (s)

0 50 100 150 200

Constant speed

Simulated speed 

profile

Scheduled timings

turning segment

Fig. 10: Simulated speed profile for scheduling based on

constant speed.

Fig. 10 illustrates one example of re-creating a realistic

speed profile for an arriving aircraft. In this case, the routing

and scheduling is based on the 2nd generation approach, where

the taxi speeds are predicted using statistical methods [51].

At the start (0 s), the aircraft exits the runway with the actual

speed v0 = 5.14 m·s−1. It has to accelerate in order to meet

the first timing given by the scheduling. The simulator aims to

reach as high speed v2 as possible, then to stay at v2 for the rest

of the first edge. In doing so, the period spent on v2 (the largest

source of fuel burn) and the total taxiing time for this edge are

minimized. Therefore, the re-created speed profile assumes the

most time and fuel efficient way of following the instructions

and provides upper bounds for comparison with the proposed

AR framework. After the first timing (edge), the speed has to

be reduced back to the instructed (assumed) constant speed of

8.86 m·s−1. Otherwise, the aircraft will arrive at the following

edges ahead of the instructed timings. Until time 90 s, the

aircraft can comfortably meet the timings by taxiing with the

given constant speed. However, for turning at time 100 s, the

aircraft has to reduce its speed to the turning speed. As a

result, for the subsequent edges, the aircraft has to accelerate

to catch up with the delay caused by turning. The delay is

successfully eliminated at time 140 s. The similar situation

repeats for turning at time 190 s. Finally, the end of the route

is reached with a small delay around 10 s.

E. Results

In this section, the proposed AR framework is compared

with the 1st and 2nd generation approaches in terms of the total

taxi time and fuel consumption, the realism of the produced

taxiing planning, the average thrust settings, and planned effi-

cient routes. The 1st and 2nd generation approaches are based

on QPPTW [22]. The 1st generation approach is based on the

assumed constant speed: 8 m·s−1 for straight segments and

5.14 m·s−1 for turns, according to [19]. The 2nd generation is

based on the predicted speed using the statistical method [51].

Cost-effective results are derived using the AR approach (the

3rd generation).
1) Comparison of the 1st, 2nd and 3rd generations: Table

IV and V show comparative results for the 1st, 2nd and 3rd

generation approaches using the real data. For the real data, as

it does not provide aircraft detailed positions, detailed discrim-

ination of different taxi phases could not performed. Therefore,

fuel burn is estimated using: a) the calculated thrust based on

the averaged constant speed from the data; b) the assumed

averaged thrust of 5% according to [8]; and c) the assumed

averaged thrust of 7% according to [52]. Fuel burn estimations

for the 1st and 2nd generation approaches are obtained using

the simulated speed profile given by the simulator. For the 3rd

generation approach, results are obtained using both the PAIA

and heuristic based speed profile generation methods. The fuel

burn is estimated using the corresponding fuel flow from the

ICAO engine emissions database as detailed in [16].
It can be seen from the results that the 1st generation

approach is sensitive to the assumed constant speeds. Setting

up appropriate speeds is a prerequisite to gaining improve-

ments in airport operational performance. Appropriate speeds

are not only airport dependent, but also scenario dependent.

For example, in the cases of ZRH M and ZRH H, using

the 1st generation approach did not improve either time or

fuel efficiency with respect to the real data. This is due to

the assumed constant speeds for these two scenarios being

lower than the actual speeds calculated from the real data.

For ZRH, the scheduled taxi times using the 1st generation

approach are higher than those of the 2nd generation approach

for all instances, while for MAN, it is the opposite. That

is, the assumed constant speed is underestimated for ZRH

compared to the recorded speeds, but overestimated for MAN.

Such observations are also evident in Table V (the 2nd and

3rd rows). The 2nd generation approach improves the airport

efficiency with respect to the real data, since the predicted

speeds take into account the airport configuration and the real

operational practice. Therefore, the 2nd generation approach is

more realistic than the 1st generation approach. However, it is

worth pointing out that the 2nd generation approach is based

on the predicted speeds, i.e. past experiences. Therefore, for

MAN, as the predicted speeds are lower than the assumed

constant speeds used in the 1st generation approach, the effi-

ciency is inferior to those of the 1st generation approach. It is

argued here that one of the objectives of using decision support

tools is to explore any potential benefits that may be gleaned

from different practices and review the current regulations. The

2nd generation approach confines its search space and may

miss potential benefits unless the current behaviour changes.
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TABLE IV: Detailed savings in time and fuel as a result of employing the AR.

Instance

Algorithm Objective ZRH L ZRH M ZRH H MAN L MAN M MAN H

Real
data

Actual taxi time (s) 8165 9672 17377 5073 9225 15147
Time per aircraft (s) 389 284 355 507 710 721
Fuel (calculated thrust based on constant speed) (kg) 1401 1660 2982 871 1776 3137
Fuel (Average thrust 5%) (kg) 1380 1634 2936 857 1722 3015
Fuel (Average thrust 7%) (kg) 1649 1954 3510 1024 2070 3636

1st gen,
constant
speed

Scheduled time (s) 6334 10800 18010 3258 4686 8109
Simulated time (s) 6452 10923 18255 3278 4727 8167
Time per aircraft (s) 307 321 373 328 364 389
Simulated fuel (kg) 1266 2113 3540 678 1126 1990

2nd gen,
predicted
speed

Scheduled time (s) 6299 8131 13586 3823 5184 8793
Simulated time (s) 6495 8755 14403 3848 5216 8901
Time per aircraft (s) 309 258 294 385 401 424
Simulated fuel (kg) 1313 1945 3143 738 1185 2190

AR (PAIA)

AR time (most time efficient) (s) 3456 5851 9408 1614 2847 4893
Time per aircraft (s) 165 172 192 161 219 233
AR time (most fuel efficient) (s) 3776 6538 10468 1798 3178 5503
Time per aircraft (s) 180 192 214 180 244 262
AR fuel (most time efficient) (kg) 1004 1692 2673 480 968 1682
AR fuel (most fuel efficient) (kg) 885 1479 2423 413 832 1460

AR (Heuris-
tic)

AR time (most time efficient) (s) 3425 5850 9440 1614 2844 4909
Time per aircraft (s) 163 172 193 161 219 234
AR time (most fuel efficient) (s) 3915 6719 10689 1867 3249 5618
Time per aircraft (s) 186 198 218 187 250 268
AR fuel (most time efficient)(kg) 1033 1736 2754 485 988 1740
AR fuel (most fuel efficient) (kg) 895 1487 2426 417 841 1478

TABLE V: Average thrust settings.

Instance

Algorithm ZRH L ZRH M ZRH H MAN L MAN M MAN H

Constant speed 5.16 5.16 5.16 5.17 5.27 5.23
1st generation simulated 6.65 6.48 6.51 7.30 7.14 7.20
2nd generation simulated 7.01 8.22 7.98 6.38 6.81 6.82
AR (PAIA) most time efficient 12.36 12.28 11.97 12.77 12.62 12.54
AR (Heuristic) most time efficient 13.03 12.73 12.43 12.96 12.24 12.04
AR (PAIA) most fuel efficient 8.96 8.47 8.78 8.68 8.18 8.19
AR (Heuristic) most fuel efficient 8.61 8.17 8.51 8.29 8.42 8.40

Simulated taxi times introduce delays for all instances, due

to unrealistically instructed speeds not considering detailed

acceleration/deceleration and physical constraints.

Comparisons between the 3rd and the first two generation

approaches show the superiority of using the proposed AR

framework. Table IV provides two extreme solutions from the

Pareto optimal solution set. In all cases, both fuel and time

efficiency have been greatly improved. The most fuel efficient

solution gives the most time inefficient taxiing. However, these

are still considerably less than those of the real data, and the

1st and 2nd generation approaches. Similarly, the most time

efficient solution gives the most fuel inefficient taxiing, but

savings in fuel consumption are still obtained. This is largely

due to the reduced total taxi times, but also the reduced number

of acceleration events, as will be discussed later.

Table V reveals that, perhaps in contrast to ‘common sense’,

a slightly higher average thrust setting surprisingly improves

both time and fuel efficiency. This observation is only true if

the detailed acceleration/deceleration and physical constraints

are considered in the thrust settings. This complies with the

discussion in Section I. Since optimal speed profile generation

methods take into account the optimal acceleration thrust level

and its duration beforehand and are seamlessly embedded

within the routing and scheduling algorithm, the resulted taxi

planning will optimize the duration spent on ‘acceleration’

and ‘taxi at constant speed’, the two largest sources of

surface fuel consumption. This observation can be clearly

observed in Fig. 11, where a comparison of speed profiles

is generated by the AR (PAIA) and simulated speed profiles

based on the 2nd generation approach. In this comparison,

for the 2nd generation approach, the average speeds are set

to those which were calculated using time from the obtained

AR speed profiles (11.22 m·s−1 for the most time efficient

and 10.64 m·s−1 for the most fuel efficient) to provide a

fair comparison. In both cases, the simulated speed profiles

resulted in more time and fuel consumption (g1=184.2 s,

g2=50.28 kg and g1=191.22 s, g2=49.89 kg, respectively)

compared to the AR results (g1=165.07 s, g2=46.90 kg and

g1=174.11 s, g2=42.20 kg). This is due to the higher number

of acceleration/deceleration events and longer constant taxi

phase during the first 70 s. Furthermore, from 130 s to the end

of taxi, excessive acceleration/deceleration is observed for the

simulated speed profiles. Clearly, setting the constant speed

to an appropriate value for each segment individually would

result in a speed profile similar to the one generated by the

AR. However, setting these speeds can be only achieved by

searching for the optimal speed profiles, such as using methods

in [16], which is at the heart of the AR.



12

 

S
p

e
e
d

 (
m

/s
)

0

2

4

6

8

10

12

14

16

 

0

2

4

6

8

10

12

14

16

Taxi time (s)

0 50 100 150 200

0 50 100 150 200AR (PAIA)

Simulator

(a)

 

S
p

e
e
d

 (
m

/s
)

0

2

4

6

8

10

12

14

16

 

0

2

4

6

8

10

12

14

16

Taxi time (s)

0 50 100 150 200

0 50 100 150 200

(b)

Fig. 11: Comparison of speed profiles generated by AR (PAIA)

and simulated 2nd generation, (a) most time efficient, (b) most

fuel efficient.

The results given by the simulator (no matter whether it is

the 1st or 2nd generation approaches) resemble the research

carried out by NextGen [53] to some degree, where optimal

speed profiles are generated after the routing and scheduling.

However, as the search for optimal speed profiles is carried

out in a post processing manner in [53] and constrained

by the constant speed assumption in routing and scheduling,

results are generally inferior to those from the 3rd generation

approach.

For the 1st and 2nd generation approaches, some timings

will be missed due to unrealistic instructions, no matter how

hard pilots (the simulator) try to comply with them. Missing

timings by only a small deviation from the given instructions

may not cause serious problems if the simulated speed still

complies with time windows. Time window violations due to

unrealistic instructions are more serious, as these will cause

conflicts with other aircraft. Table VI summarizes missed

timings and time window violations for both the 1st and 2nd

generation approaches. This problem is more serious for higher

traffic situations and when taxi planning is based on a higher

constant speed assumption, as the schedule is normally tighter

in these scenarios. For the 3rd generation, as the instruction

is based on the detailed speed profiles, assuming perfect

execution (this is achievable through automatic control, or the

generated speed profile could be relaxed into a speed envelope

considering pilot behaviour variations), there are no missed

timings or violations of time windows.

The results obtained by the 3rd generation approach are

comparable to each other. As PAIA produces better speed

profiles than the heuristic does, once they are incorporated

into the AR framework, the results are also better in terms

of both time and fuel efficiency. The running time of the AR

(PAIA) is considerably higher than that of the heuristic based

approach, as indicated in Table VII. However, as mentioned

in [16], the PAIA based approach provides more flexibility

to incorporate more objectives and more complex aircraft

performance models.

In the AR approach, the planned route of the aircraft can

differ from the generated shortest routes due to the time

windows imposed by other taxiing aircraft. An example of

this scenario is illustrated in Fig. 12.

Gate B4

Aircraft 
270

19:04:09

Aircraft 
418

k-shortest
route

Longer route 
induced

by another aircraft

runway

runway





(a) (b)

Fig. 12: Snapshot of aircraft 270 taking a longer route (solid

line) compared to the k-shortest route (dashed line) due to

time window constraints induced by two other aircraft.

(a) (b) (c)

Fig. 13: The shortest route in terms of constant speed (a), the

fastest (b) and the most fuel efficient (c).

Similarly, aircraft may not follow the predicted shortest

route even if time windows are available. Fig. 13 shows 3
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TABLE VI: Results for simulator.

Instance

Algorithm Metric ZRH L ZRH M ZRH H MAN L MAN M MAN H

1st gen,
constant
speed

Delay per A/C (s) 6 4 5 2 3 3
Missed timings 38% 25% 35% 28% 31% 30%
Violated time windows 0 0 3 0 0 0

2nd gen,
predicted
speed

Delay per A/C (s) 9 18 17 2 2 5
Missed timings 30% 59% 49% 25% 35% 38%
Violated time windows 0 0 9 0 0 0

TABLE VII: Running times of algorithms (min.).

Instance

Algorithm ZRH L ZRH M ZRH H MAN L MAN M MAN H

AR (PAIA) 243 382 606 132 219 332
AR (Heuristic) 5 7 13 4 4 6

example routes from ZRH. For the predicted shortest route

(Fig. 11a), the most time efficient speed profile is (g1 = 178

s, g2 = 56 kg), whereas the most fuel efficient one has (g1
= 206 s, g2 = 47 kg). The fastest route is shown in Fig. 13b

with (g1 = 173 s, g2= 54 kg). The fastest route is quicker than

the predicted shortest route due to shorter turns. The most

fuel efficient route is illustrated in Fig. 13c with (g1 = 193

s, g2 = 44 kg). The lower fuel consumption is caused by a

lower number of segments compared to the shortest route and

thus fewer accelerations. Specifically, the most fuel efficient

route has only 3 turning segments compared to 4 in the case

of the shortest route. In the current implementation of the

AR framework based on the k-shortest path approach, the

predicted shortest route is dominated by the fastest and the

most fuel efficient routes. Therefore, it is discarded. Depending

on the operational period, as will be discussed in the next

section, the fastest and the most fuel efficient routes will be

selected and one of the feasible speed profiles for these two

routes complying with all of the time windows will be adopted.

In the worst case scenario, if no speed profiles for these two

routes are feasible, an extra holding time will be added to all

speed profiles until time windows are again available. It is

worth pointing out that, in this case, the discarded predicted

shortest route may provide better solutions. This is one of

the drawbacks of using the k-shortest path approach. Future

study is needed to investigate other MSPP approaches to better

address this problem.

2) Decision Making and Cost-Effective Operation: As dis-

cussed in Section IV, many factors have to be considered

when it comes to decision making: a) different interests among

the stakeholders; b) different operational periods; and most

importantly c) the cost implications of such a choice. The

proposed conceptual economic optimization framework fulfils

these considerations. Although in this paper, results only

consider airlines’ interests and different operational periods,

airports’ interests will be readily accommodated once the coef-

ficient cairport is properly derived. Fig. 14 shows Pareto fronts

after routing and scheduling using the k-QPPTW algorithm

for ZRH H and MAN L. As caircraft is scenario dependent,

different strategies to route and schedule aircraft are adopted

for different operational periods. During busier times, aircraft

taxi more rapidly, which burns fuel more inefficiently but

places an emphasis on shorter taxi time. Conversely, during

quieter times, aircraft taxi less rapidly, placing an emphasis

on more efficient fuel consumption.

Table VIII summarizes the detailed potential savings in both

time and fuel by deploying the economic optimization results.

The results are compared with the 1st and 2nd generation

approaches. Due to the more realistic speed for routing and

scheduling, both time and fuel efficiency have been greatly

improved. Savings in fuel consumption for MAN are greater

than ZRH using the AR framework. This is due to the fact that

MAN has more turning segments than ZRH. Unlike the 1st

and 2nd generation approaches, optimized speed profiles take

this factor into account. However, the extra accelerations and

decelerations are required in the simulated speeds for the 1st

and 2nd generation approaches, hence more fuel consumption.

This indicates that more benefit will be gained using the

proposed AR framework for airports with a more complex

layout.

VI. CONCLUSIONS

In this paper, a new holistic Active Routing framework

is introduced for efficient airport ground operations. The

framework seamlessly integrates the multi-objective optimal

speed profile generation approach proposed in [16], the MSPP

based on the k-shortest path approach, and the economic

optimization framework. The contributions of this paper are

summarized below:

1) The proposed framework provides a systems approach

for benefit assessment of the speed profile (trajectory)

based air traffic management concept.

2) A detailed comparison of the current operations, the 1st,

2nd and 3rd (the proposed AR framework) generation

approaches. Great improvement in both time and fuel

efficiency have been achieved using the proposed AR

approach. This is due to adopting more realistic speed

profiles within the routing and scheduling function.

3) A higher thrust setting during the acceleration phase is

suggested as this will reduce the ‘taxi at constant speed’

phase and the overall taxi times, hence the fuel burn.

This will only cause a slight increase in the overall av-

erage thrust level. However, this claim is only true when
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Fig. 14: Global Pareto front (top), corresponding economic cost (bottom) for (a) ZRH H, (b) MAN L .

TABLE VIII: Economic optimization results.

Algorithm Metric ZRH L ZRH M ZRH H MAN L MAN M MAN H

Actual time and 5% avg thrust Ctotal (e) 1061 1305 6747 659 1361 6205

1st generation simulated Ctotal (e) 963 1664 7412 514 870 3604

2nd generation simulated Ctotal (e) 997 1512 6096 562 920 3943

AR with econ. optimization

Ctotal (e) 666 1148 4380 311 638 2452
Economic solution time (s) 3776 6538 9617 1798 3178 5012
Time per aircraft (s) 180 192 196 180 244 239
Saving w.r.t. actual taxi time 54% 32% 45% 65% 66% 67%
Saving w.r.t. 1st gen time 41% 40% 47% 45% 33% 39%
Saving w.r.t. 2nd gen time 42% 25% 33% 53% 39% 44%
Economic solution fuel (kg) 885 1479 2534 413 832 1559
Saving w.r.t. 5% fuel 36% 9% 14% 52% 52% 48%
Saving w.r.t. 1st gen fuel 30% 30% 28% 39% 26% 22%
Saving w.r.t. 2nd gen fuel 33% 24% 19% 44% 30% 29%

the speed profile is optimized. Otherwise, unnecessary

deceleration will follow and fuel efficiency will not be

gained. The maximum acceleration thrust should take

passenger comfort and safety issues into consideration.

The value chosen in this paper is according to [54].

Airports are thus advised to review their current practice

with respect to the solutions given by the AR. It is

argued that decision support tools should be able to

explore practices that have not been widely used before

to allow more room for efficiency improvement.

4) Airport ground operations involve many stakeholders

with various interests. Furthermore, the airport opera-

tional environment changes during the day. The pro-

posed conceptual economic optimization framework can

capture these various changes and provide the most cost-

effective solution that will be more easily accepted and

tailored to the current operational scenario.

The proposed AR framework also paves the way for a

number of further research developments:

1) For the airport ground operations research: a) Nonlinear

aircraft ground movement behaviour should be properly

modelled as this will define the generated speed profiles.

b) Different taxiing behaviours, including single and

double engine taxiing, and pilot behaviours such as brak-

ing with/without reducing the thrust settings, should be

considered in the speed profile generation, and routing

and scheduling function. c) More objectives, such as

emissions and noise, should be included in decision

making as these will affect decisions regarding airport

regulations. d) More constraints such as the time for

aircraft engines to spool up, and various uncertainties,

should be considered either in speed profile generation,

or in the routing and scheduling. e) Constraint handling

mechanisms deserve more investigation, since infeasible

speed profiles are currently discarded and holding is

applied only when no feasible speed profiles are found,

however it might be beneficial to keep infeasible speed

profiles and apply different holding times to them. f)

Currently, calculating the optimal speed profiles and

integrating them into the routing and scheduling is ex-

tremely computational demanding and is not suitable for
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on-line decision support, thus it is worth exploring some

pre-processing techniques to reduce the complexity of

the airport taxiway layout so that complete optimal

speed profiles for this reduced set can be pre-calculated

and stored in a database; this is envisioned as the key

to bring the proposed AR framework up to on-line

decision support. The preliminary results in [55] using

such an approach indicate that fast computational time is

achievable. g) There is currently a lack of accurate fuel

estimation models for airport ground operations, how-

ever, with the aircraft engine performance data and fuel

consumption data logged by airlines through the flight

radar recorders, the proposed AR framework could be

calibrated and serve as the airport ground fuel estimation

tool. h) As the generated speed profiles consider taxiway

configurations, the proposed AR framework could also

be employed to search for the optimal airport layout.

2) The problem addressed in this paper also imposes sev-

eral challenges for MSPP research, especially for the

fully connected and directed multigraph problem: a) As

any two connected nodes have multiple parallel edges,

the search space becomes enormously large and the

problem becomes intractable. Although the k-shortest

path approach has been employed in this paper, setting

up a proper value for k is problem dependent and

can only be derived empirically. Furthermore, as the

k-shortest paths are determined based on the constant

speed, which is different from any of the realistic speeds,

the available k routes and time windows may not provide

a good starting point for further search. b) If the defini-

tion of the speed profile is relaxed into a speed profile

envelope to accommodate variations and uncertainties,

the weight matrix pertaining to each edge may become

non-additive, therefore, enumerative approaches may not

be feasible in this case. Investigation of metaheuristic

based MSPP approaches may provide a good solution to

such a case. c) Metaheuristic based MSPP approaches

may also provide an integrated solution to scheduling

so that the solution is not based on the first come first

served mechanism.

3) The challenges facing airport ground movement, such as

reducing environmental impact due to congestion and

inappropriate acceleration, and collaborative decision

making within dynamic environment, are also relevant to

other modes of public transportation. The proposed AR

framework provides a systematic two-level framework

and resilient approach in response to such challenges.

This is indeed the integrated optimization method men-

tioned in [56] which is perceived as the key future tech-

nology for energy-efficient train operation for urban rail

transit. As mentioned in [56], the aim is to cooperatively

maximize the utilization of regenerative energy through

synchronization of the accelerating/braking actions, and

minimize the tractive energy consumption through the

optimized speed profile. Energy-optimal speed control

of an individual electric vehicles also demonstrated

significant energy saving [57]. The authors concluded

that future research needs to address how to achieve

a system-level optimum. The proposed AR framework

will be directly transferrable in this case. As the conclu-

sion, although the proposed AR framework is largely

for airport ground movement, it will directly impact

wider engineering sectors: e.g. transportation, logistics,

precision agriculture and automated passenger/freight

systems.
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[36] M. Iori, J.-J. Salazar-González, and D. Vigo, “An Exact Approach for the

Vehicle Routing Problem with Two-Dimensional Loading Constraints,”
Transportation Science, vol. 41, no. 2, pp. 253–264, 2007.

[37] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, and D. Reeson, “Hybrid
Metaheuristics to Aid Runway Scheduling at London Heathrow Airport,”
Transportation Science, vol. 41, no. 1, pp. 90–106, 2007.

[38] N. Winchester, D. McConnachie, C. Wollersheim, and I. A. Waitz,
“Economic and emissions impacts of renewable fuel goals for
aviation in the {US},” Transportation Research Part A: Policy and

Practice, vol. 58, no. 0, pp. 116–128, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S096585641300181X

[39] J. Ferguson, A. Q. Kara, K. Hoffman, and L. Sherry, “Estimating
domestic {US} airline cost of delay based on European model,”
Transportation Research Part C: Emerging Technologies, vol. 33, no. 0,
pp. 311–323, 2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0968090X11001471

[40] J. M. Sánchez Losada, P. Davila Garcı́a, and J. Caamaño Eraso, “Airport
management: the survival of small airports,” International journal of

transport economics, vol. 39, no. 3, pp. 349–368, 2012.

[41] T. Keeler and T. Conoscenti, “Airport Costs and Congestion,” The

American Economist, no. 14, pp. 47–53, 1970.
[42] R. Doganis and G. Thompson, “Establishing airport cost and revenue

functions,” Aeronautical Journal, vol. 78, no. 763, 1974.
[43] A. Bottasso and M. Conti, “The cost structure of the UK airport

industry,” Journal of Transport Economics and Policy (JTEP), vol. 46,
no. 3, pp. 313–332, 2012.

[44] J. C. Martı́n, H. Rodrı́guez-Déniz, and A. Voltes-Dorta, “Determinants of
airport cost flexibility in a context of economic recession,” Transporta-

tion Research Part E: Logistics and Transportation Review, vol. 57, pp.
70–84, 2013.

[45] A. Voltes-Dorta and Z. Lei, “The impact of airline differentiation on
marginal cost pricing at UK airports,” Transportation Research Part A:

Policy and Practice, vol. 55, pp. 72–88, 2013.
[46] T. Mathisen, F. Jørgensen, and G. Solvoll, “Marginal costs pricing of

airport operations in Norway,” Research in Transportation Economics,
vol. 45, pp. 49–56, 2014.

[47] J. C. Martı́n and A. Voltes-Dorta, “The dilemma between capacity
expansions and multi-airport systems: Empirical evidence from the
industry’s cost function,” Transportation Research Part E: Logistics and

Transportation Review, vol. 47, no. 3, pp. 382–389, 2011.
[48] A. J. Cook, G. Tanner, and S. Anderson, “Evaluating the true

cost to airlines of one minute of airborne or ground delay:
final report,” University of Westminster, Tech. Rep., 2004. [On-
line]. Available: https://www.eurocontrol.int/sites/default/files/content/
documents/sesar/business-case/evaluating true cost of delay 2004.pdf

[49] Flightradar24 AB, “flightradar24,” http://www.flightradar24.com, 2014,
accessed: 2014-10-14.

[50] A. E. Brownlee, J. A. Atkin, J. R. Woodward, U. Benlic, and E. K.
Burke, “Airport Ground Movement: Real World Data Sets and Ap-
proaches to Handling Uncertainty,” in Proceedings of the 10th Inter-

national Conference on Practice and Theory of Automated Timetabling

(PATAT 2014), 2014, pp. 462–464.
[51] S. Ravizza, J. A. Atkin, M. H. Maathuis, and E. K. Burke, “A combined

statistical approach and ground movement model for improving taxi time
estimations at airports,” Journal of the Operational Research Society,
vol. 64, no. 9, pp. 1347–1360, 2012.

[52] ICAO, “ICAO Engine Emissions Databank,” 2013, [Online]
http://www.caa.co.uk/default.aspx?catid=702&pagetype=90.

[53] V. H. L. Cheng and G. Sweriduk, “Trajectory design for aircraft taxi
automation to benefit trajectory-based operations,” in Asian Control

Conference, 2009. ASCC 2009. 7th, Aug 2009, pp. 99–104.
[54] D. Bakowski, D. Foyle, B. Hooey, C. Kunkle, and K. Jordan, “NextGen

flight deck surface trajectory-based operations (STBO): Speed-based taxi
clearances,” in Proceedings of the Sixteenth International Symposium on

Aviation Psychology, 44, vol. 49, 2011.
[55] M. Weiszer, J. Chen, and P. Stewart, “A real-time Active Routing

approach via a database for airport surface movement,” Transportation

Research Part C: Emerging Technologies, vol. 58, Part A, pp. 127–145,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0968090X1500251X

[56] X. Yang, X. Li, B. Ning, and T. Tang, “A Survey on Energy-Efficient
Train Operation for Urban Rail Transit,” IEEE Transactions on Intelli-

gent Transportation Systems, vol. 17, no. 1, pp. 2–13, Jan 2016.
[57] X. Wu, X. He, G. Yu, A. Harmandayan, and Y. Wang, “Energy-Optimal

Speed Control for Electric Vehicles on Signalized Arterials,” IEEE

Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2786–2796, Oct 2015.

Jun Chen received his B.Sc. degree in Electrical
Engineering and Automation from Nanjing Univer-
sity of Science and Technology, China, and M.Sc.
degree in Software Engineering from Tongji Uni-
versity, China. He received his second M.Sc. degree
with distinction and Ph.D. degree, both in Systems
Engineering and Control from the University of
Sheffield, UK.

He joined the School of Engineering, University
of Lincoln, UK, initially as a Research Fellow in
2010, and is now a Senior Lecturer in Artificial

Intelligence and Control. To date, he has published more than 30 papers
in the field of model-based predictive control, evolutionary multi-objective
optimization, interpretable fuzzy systems, and data-driven modelling.

http://www.sciencedirect.com/science/article/pii/S0305054899000374
http://www.sciencedirect.com/science/article/pii/S096585641300181X
http://www.sciencedirect.com/science/article/pii/S0968090X11001471
http://www.sciencedirect.com/science/article/pii/S0968090X11001471
https://www.eurocontrol.int/sites/default/files/content/documents/sesar/business-case/evaluating_true_cost_of_delay_2004.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/sesar/business-case/evaluating_true_cost_of_delay_2004.pdf
http://www.flightradar24.com
http://www.sciencedirect.com/science/article/pii/S0968090X1500251X
http://www.sciencedirect.com/science/article/pii/S0968090X1500251X


17

Michal Weiszer received the B.S. degree in process
control of raw materials transportation, M.S. and
Ph.D. degrees in industrial logistics in 2008, 2010
and 2013, respectively, all from Technical University
of Kosice, Slovakia.

From 2013 he has been a Research Fellow in Sys-
tems Research Group at the School of Engineering,
University of Lincoln. His research interest include
multi-objective optimization, scheduling, simulation
and applications to transportation systems.

Giorgio Locatelli is a lecturer and PhD supervisor
at the University of Leeds (UK), School of Civil
Engineering. He has a Bachelor and Master of
Science degree in mechanical engineering (2006)
and a PhD in industrial engineering, economics
and management from the Polytechnic of Milan
(Italy) (2010). His main research topic is economics
and project management in the nuclear industry
with a focus on small modular reactors. Giorgio
works also as a consultant and visiting academic
for several institutions. He is author of more than

80 international publications, the majority of them focused on procurement
and management of infrastructures, Sustainability, Nuclear power, project
management, Megaprojects, Energy Systems, Energy economics and policy.

Stefan Ravizza graduated from the ETH Zurich,
Switzerland (Swiss Federal Institute of Technology)
in Mathematics. He gained a Bachelor of Science
and a Master of Science with distinction where he
specialized in Operations Research. Afterwards, he
received a PhD in Computer Science at the Univer-
sity of Nottingham, United Kingdom. The title of his
thesis is ”Enhancing Decision Support Systems for
Airport Ground Movement”. Now, Stefan Ravizza
works as a consultant for IBM Global Business Ser-
vices focusing on advanced analytics and cognitive

computing.

Jason A. Atkin is an Assistant Professor in the
Automated Scheduling, optimizAtion and Planning
(ASAP) research group in the School of Computer
Science at the University of Nottingham. Dr Atkin
initially worked as a software engineer, consultant
and team leader, before joining the University of
Nottingham in 2003. His research currently involves
finding fast solution methods for real world prob-
lems, using exact, heuristic and hybrid algorithms.
He currently leads the air transportation modelling
and optimization within ASAP, having been working

in this area since 2003, and has algorithms running live at Heathrow airport.

Professor Paul Stewart received his BEng degree in
Automatic Control and Systems Engineering in 1996
and his PhD in Model Reference Control of Perma-
nent Magnet AC Motors for Traction Applications
from the University of Sheffield UK. He currently
holds the Research Chair in Energy and Environment
in the Institute for Innovation in Sustainable Engi-
neering at the University of Derby UK. He has been
Principal Investigator on many aerospace projects
with partners such as Airbus and the USAF. He was
Founding Head of the School of Engineering at the

University of Lincoln, Chairman: UK and Republic of Ireland IEEE Industrial
Electronics Chapter (2009 - 2010), is Senior Member of the IEEE, Fellow of
the Institution of Mechanical Engineers and a Chartered Engineer.

Professor Edmund Burke is Vice-Principal for Sci-
ence and Engineering at Queen Mary University of
London. He obtained his PhD in Computer Science
and Mathematics from the University of Leeds. He
is a Fellow of the Operational Research Society,
the British Computer Society and the Institute of
Mathematics and its Applications. Prof Burke is
Editor-in-chief of the Journal of Scheduling, Area
Editor (for Combinatorial Optimization) of the Jour-
nal of Heuristics, Associate Editor of the INFORMS
Journal on Computing and Associate Editor of the

IEEE Transactions on Evolutionary Computation. He is also a member of the
Advisory Board of the EURO Journal on Computational Optimization and he
is a member of the Editorial Board of Memetic Computing. Since 1995, he has
led the organization of the international series of conferences on the Practice
and Theory of Automated Timetabling (PATAT). He has edited/authored 14
books and has published over 250 refereed papers.


	I Introduction
	II The Active routing (AR) framework
	II-A Shortest Path Problems for Airport Ground Movement 
	II-B Description of the AR Framework

	III A Multi-Component and Multi-Objective Approach
	III-A An Implementation Instance of the MSPP and the AR
	III-B Constraint Handling

	IV Economic Optimization and Decision Making
	V Experimental results and discussion
	V-A Description of the airport data
	V-B Experimental Setup
	V-C Parameter Analysis
	V-D A Heuristic Airport Ground Movement Simulator
	V-E Results
	V-E1 Comparison of the 1st, 2nd and 3rd generations
	V-E2 Decision Making and Cost-Effective Operation


	VI Conclusions
	References
	Biographies
	Jun Chen
	Michal Weiszer
	Giorgio Locatelli
	Stefan Ravizza
	Jason A. Atkin
	Professor Paul Stewart
	Professor Edmund Burke


