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Abstract

Many children have difficulty producing movements well enough to improve in sensori-motor learning. Previously, we
developed a training method that supports active movement generation to allow improvement at a 3D tracing task
requiring good compliance control. Here, we tested 7–8 year old children from several 2nd grade classrooms to determine
whether 3D tracing performance could be predicted using the Beery VMI. We also examined whether 3D tracing training
lead to improvements in drawing. Baseline testing included Beery, a drawing task on a tablet computer, and 3D tracing. We
found that baseline performance in 3D tracing and drawing co-varied with the visual perception (VP) component of the
Beery. Differences in 3D tracing between children scoring low versus high on the Beery VP replicated differences previously
found between children with and without motor impairments, as did post-training performance that eliminated these
differences. Drawing improved as a result of training in the 3D tracing task. The training method improved drawing and
reduced differences predicted by Beery scores.
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Introduction

Previously we created a method for training children to develop

better compliance control to enable them to improve their manual

actions, including drawing and or handwriting [1]. The training

method was developed to overcome a problem faced by children

in sensori-motor learning, and thus, to allow them to learn

effectively. Also, because it is automated, the training method does

not, in principle, require the presence of a trainer. Here, we

expand on this work by examining learning in a broader context

and whether training has a wider benefit (i.e. transfer of learning).

Previously, we tested children diagnosed as having Developmental

Coordination Disorder (DCD). Developmental Coordination

Disorder is understood to be a perceptuo-motor disorder [2]

where children exhibit poor gross motor control, poor fine motor

control, or both [3]. Now we test school children who exhibit a

range of fine motor coordination abilities. We also test whether the

training transfers to improved drawing ability.

Active prospective control is required for effective
sensorimotor learning

Sensori-motor learning has been characterized as involving two

stages [4]. The first stage is to produce a movement that

approximates that represented by the skill. Subsequently, practice

of the qualitatively correct, but quantitatively poor movement

yields quantitative improvement and development of the skill. In

general, it can be difficult for children to produce the initial

approximation required for practice to yield effective sensori-

motor learning. This is clearly seen in very early childhood and

infancy (i.e. [5]) but is also evident later in childhood when skilled

and targeted actions are considered i.e. the development of

throwing (see [6–7]). So, then, the issue becomes how to aid or

train children to produce qualitatively appropriate movements. A

traditional approach used by teachers and movement therapists to

overcome this problem is to model desired movement skills with

the hope that the learner will approximate some form of the

required skill and then improve with practice. Accordingly, the

expert will move the limbs of the learner through a desired form of

movement (called ‘‘active assist’’). Similar robotic approaches to

therapy have been developed to move the passive limbs of the

learner through the to-be-acquired movements; in effect, these

robotic approaches ‘‘replace’’ the therapist (for reviews, see [8–9]).

Generally, however, passive robotic approaches to therapy for

adults have not been found to be effective [10–12]. Moreover,

passive training of movements in healthy adult populations

appears not to lead to robust learning (for examples, see [13–14]).

It is not entirely clear why passive training is ineffective.

However, there are several plausible explanations. One possibility

is that because the muscles are inactive, the sensory support for

control of the muscles (e.g. muscle spindles and golgi receptors in

tendon) are also inactive. This is consistent with work showing that

1) kinesthesis is significantly better in the context of actively

controlled posture and movement [15–17], and 2) somatosensa-

tion is intrinsic to the control of joint posture and movement [18].

In the performance of actions, the current state of the motor

apparatus must be perceived relative to the constraints imposed on

the action by the environment to allow effective motor control —

effective proprioception is essential for this. An alternative
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explanation is that the absence of prospective control that renders

passive movements ineffective for sensori-motor learning; pro-

spective control is the guidance of movements based on future-

specific information [19–25]. Snapp-Childs, Casserly, Mon-

Williams, and Bingham [26] tested these alternatives by compar-

ing the performance of young, healthy adults who were trained

with either an active or a passive version of a 3D tracing task; the

passive task was a haptic tracking task in which participants

grasped a stylus moved by a PHANTOM Omni and moved their

limb to track the movements of the stylus. The musculature was

active, but the generation of the movements did not entail

prospective control and active generation of movement trajectories

that anticipated the path of movement along the target path. The

goal of that study was to investigate whether effective motor

learning would be allowed by passive control (i.e. control lacking

an active prospective perceptual component). The results showed a

clear advantage of active training over the passive version (where,

again, the passive training was passive in that there was a lack of

prospective control and not the quiescence of the musculature).

Variability, stiffness, and compliance control
One of the hallmarks of typical motor development is increased

movement consistency with age or experience. Younger children

have more variable motor skills relative to older children and it

appears to be consistent across a wide variety of tasks [27–29]. For

example, Snapp-Childs and Bingham [27] showed that younger

children (4-years old) produced more variable obstacle crossing

behaviors when compared to older children (6-years old) and

adults. Likewise, Deustch and Newell [28] showed that the

constancy of continuous isometric force production (with the index

finger) improved with increasing age (from 6–10 years of age). It is

not entirely understood how children manage to increase their

consistency when performing whole body, dynamic actions such as

in the case of crossing obstacles while walking. However, for upper

limb movements and control, a common strategy for performing

in the face of high variability is to adopt high muscular stiffness

(which is the inverse of compliance) [30–31]. High stiffness usually

reduces the effect of perturbations, but is exhausting to maintain so

low stiffness is typically used later in the learning process once

variability decreases (for a review, see [30]). With recent advances

in robotics, researchers have been able to exploit such features of

motor control. For example, Ben-Pazi and collaborators used

virtual reality technology (PHANTOM Omni) to externally

impose increased viscosity and inertia on children’s movements

when performing a handwriting task [32]. They showed imposing

these constraints yielded improvements in control resulting in

improved handwriting performance.

Previously, we created and tested a method for training children

to develop better compliance control (compliance is the inverse of

stiffness) to enable them to improve their manual actions [1]. The

rationale was that school aged children (6+ years old) can generate

task-appropriate amounts of force but their inconsistent perfor-

mance levels interferes with proper stiffness control. To address

this, we created a 3D tracing task that employed computer

graphics and force feedback haptic virtual reality technology

(PHANTOM Omni) [1]. The technology allowed us to vary task

parameters in a way that enabled children to succeed. Moreover,

the training itself was structured so that early in training the

precision required to do the task was low. Training progressed

from lower to higher precision (and limb compliance) require-

ments as the children achieved task mastery. High self-efficacy was

maintained in this way. The end result was that the training was

successful and all of the children greatly improved.

Present study
One of the limitations of the Snapp-Childs et al. study [1] was

that it did not examine whether the training had a wider benefit.

Here, we examine learning in a broader context and whether

training has a wider benefit. Studies involving school-aged

children often test the participants using a standardized test (e.g.

Movement ABC and others in the UK, Beery VMI or Peabody

and others in the US) and use the test scores as part of the

inclusion criteria e.g. [33–34]. Here, we also tested children with a

standardized test (Beery VMI) but did not exclude children on the

basis of this test. Instead, we used it as information about fine

motor coordination skill. We selected the Beery VMI because it

tests fine motor control tasks related directly to handwriting [35–

37] (and the target of our method of training is improved

handwriting) and also because the Beery is a popular assessment

choice that is used widely by clinicians and researchers in the US

[34], [38]. First, we directly investigated the relation between

performance by school children (second graders, 7–8 year olds in a

local public primary school) on the Beery VMI and on a 3D

tracing task. Second, we investigated whether our training method

and task yielded improvements in performance of a drawing task.

We also examined the relation of performance on the Beery VMI

to the performance in the drawing task. An advantage of this

approach is that we were able to use continuous (regression)

analysis in addition to discrete or categorical analysis of variance to

relate the continuous variations in performance in each of the

tasks, namely, Beery, 3D tracing, and drawing.

The first question was whether Beery scores would predict

baseline performance in our 3D tracing task and then, if so,

whether the training regime would yield a similar improvement in

performance in posttest as observed in the previous study, so as to

eliminate the (Beery-predicted) performance differences observed

in baseline. We predicted that baseline performance of the 3D

tracing task should vary as a function of the Beery scores. The 3D

tracing task has a strong visuo-motor component, so we predicted

that it is the performance on the VMI subtest that should best

predict 3D tracing performance. Second, we predicted that

training on the 3D tracing task would yield improvements that

eliminate the differences in performance observed in baseline as a

function of Beery scores.

The training in the 3D tracing task is intended to yield

improvements in handwriting and drawing performance, enabled

by improved compliance control. So, the second question we

examined was whether training on the 3D tracing task would yield

improvements in performance of the drawing task and if so, would

these vary as a function of scores on the Beery inventory. We

predicted that training on the 3D tracing task should yield

improvements in the drawing task. We also predicted that, before

training, performance on the drawing task should vary as a

function of the Beery scores. Again, because this task has a strong

visuo-motor component, we predicted that it would be the VMI

subtest that would best predict drawing performance. Unlike the

3D tracing task, we predicted that the Beery scores would still

predict drawing performance after training, though we expected

the relationships to be maintained because we anticipated

relatively equal improvement.

Methods

Participants
Twenty-eight children, 7- and 8-years old, were recruited from

four 2nd grade classrooms in a local elementary school. All

children, save one, were right-handed. Several children yielded

incomplete data sets because they were absent from some of the
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testing sessions or because they failed to keep the stylus in contact

with the touch screen during the handwriting tests. So, only 23

children yielded complete data included in the analyses. Of these

children, 8 were female and 15 were male.

Ethics Statement
This study was approved by the Indiana University Institutional

Review Board. The children participated with informed assent

with (written) informed consent from their parents/guardians.

Procedure and Apparatus
Before testing began, the parents/guardians evaluated their

child using the Developmental Coordination Disorder Question-

naire (DCD-Q ’07) [39]; these were completed by the parents/

guardians at home. The children were tested for all sessions at

their school. During the first testing session, all participants were

evaluated by a trained clinical psychology doctoral student using

the Beery-Buktenica Developmental Test of Visual-Motor Inte-

gration (Beery). The participants also completed a drawing task

and a 3D tracing task. In a number of subsequent sessions,

participants completed a customized sensori-motor training

program. After training, participants repeated the assessments of

drawing and handwriting and 3D tracing.

Beery. There are three components of the Beery: tests of 1)

visual-motor integration (VMI), 2) visual-perception (VP), and 3)

motor coordination (MC). The Beery VMI consists of 24 items

(geometric forms) that are to be copied with pencil and paper. The

VP and MC use the same geometric forms as the VMI, but the

goals are different. In the VP, the goal is to choose one form, from

a few slightly different alternatives, that is exactly the same as the

stimulus. The alternatives can be very slightly different in form or

size. In the MC, the goal is to trace inside (double) lines that define

the stimulus forms.

Drawing. In the drawing test, participants were seated at a

table in front of a tablet PC (Toshiba Portégé M750 tablet PC,

screen size 163 mm by 260 mm, using CKAT software to manage

stimulus presentation, user interface, and data collection as

described by Culmer and collaborators [40]). The task was to

view a form, then to copy (not trace) the form on the computer

screen using a handheld stylus in the dominant hand. When a trial

started, the upper half of the screen contained a black rectangular

frame (1266.5 cm for Paths A, B, and C; 10610 cm for Path D)

around a black line form and the lower half of the screen

contained a green rectangle of equal dimensions to the black

frame.

Participants looked at the form inside the black frame, then they

placed the hand held stylus on the green rectangle at the location

where they would start copying the form (see Figure 1a). Once the

stylus was inside the rectangle for 200 ms, the green rectangle

disappeared and was replaced with a white rectangle (same color

as the background) with a black border around it – similar to the

rectangle in the upper portion of the screen containing the form to

be copied. Once participants began to draw the form, an ‘‘OK’’

button appeared in the upper right-hand corner of the screen (see

Figure 1b). When participants finished copying the form, they

tapped this button with the stylus, completing the current trial and

beginning the next one.

Participants performed three practice trials (a horizontal line

segment, one cycle of a sine wave, and a circle) that were not

analyzed, to become familiar with the task and interface. Then,

participants completed three repetitions of each of four forms

(shown in Figure 1c), for a total of twelve trials. The paths had

equal maximum height, maximum width, and wavelength, but

varied in amplitude and orientation. Each crest and trough of

Form A had equal amplitudes, resulting in waves with heights of

46 mm. Amplitude sequentially varied over the crests of Form B,

but not the troughs, resulting in waves with heights of 16, 31, and

46 mm. Amplitude sequentially varied over both the crests and

troughs of Form C. Thus, individual waves had sides of unequal

height. The distances between neighboring maxima and minima

were 16, 23.5, 31, 38.5, and 46 mm. Form D was the result of a

45u clockwise rotation of Form C. The variations in amplitude

resulted in different path lengths. Form A was 527 mm long, Form

B was 365 mm, and Form C and D were 392 mm.

3D tracing. The 3D tracing task was similar to that described

and used in two previous studies [1], [26]. In this task, participants

performed variations of the same three-dimensional tracing task

while seated at a table. The basic task was to push a brightly

colored fish along a visible curved path viewed on a computer

screen from a starting location (a plain square) to a finishing point

(a checkered square) while racing a competitor fish. The

participants grasped a stylus that was attached to a desktop force

feedback haptic virtual reality device (PHANTOM Omni from

Sensable Technologies) and used the stylus to feel the wire path

and push the fish.

The PHANTOM is an impedance control device where the

user moves the stylus and the device reacts with a force if a virtual

object is encountered; the PHANTOM, thus, has displacement as

an input and force as an output. The mass and friction of the

PHANTOM has been made small by careful mechanical design.

In this experiment, participants could ‘‘feel’’ the 3D path once

they encountered it; phenomenologically, it was as if the stylus was

‘‘magnetically attracted’’ to the path. The force pulling the stylus

was modeled as a virtual spring where the stiffness of the spring

Figure 1. Illustrations of the drawing task and the four target
forms copied by participants.
doi:10.1371/journal.pone.0092464.g001
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could be altered. The spring had a virtual length of <0.5 cm from

the center of the path so the force dropped to zero if the stylus

moved .0.5 cm from the path. The spring stiffness (and

consequently the level of ‘‘attraction’’ or support) was paramet-

rically varied to alter task difficulty. The forces pulling the stylus

towards the spring were set at eight different levels corresponding

to forces of approximately 3.04N, 2.77N, 2.02N, 1.08N, 0.83N,

0.57N, 0.35N and 0.13N.

The curved paths were similar to a toy, commonly found in

pediatrician waiting rooms, consisting of brightly colored curved

‘roller coaster’ wires with beads on them that can be pushed along

the wires by a child. However, doing this using a stylus to push the

beads along the wire would be, and is for our task, very difficult.

Hence, for our task, the path ‘magnetically attracted’ the stylus to

hold it on the path. The ‘magnetic strength’ was parametrically

varied, as described above, to alter task difficulty. At Baseline and

Post-Training, participants attempted two trials at each of eight

levels of support (‘magnetic attraction’), on the path pictured in

Figure 2a, while racing a competitor fish that took 20 s to travel

the path from start to finish. From earlier studies, it was clear that

most children would spend a very long time to complete a path

and would become very frustrated with the lack of progress. So,

each trial was terminated if a child could not complete more than

one half of the path within 60 s.

The training program consisted of up to five 20-minute training

sessions that were separated by at least one week. During the

training sessions, participants performed a series of 3D tracing

tasks that were very similar to those in the Baseline/Post-Training

sessions, but varied in length, curvature, and torsion (see Figure 2a,

b, c). During training, participants raced against two different

competitors; one competitor completed the path in 30 s while the

other completed the path in 10 s. The first training session started

with the highest level of support (‘magnetic attraction’), slowest

competitor, and shortest path. The goal of the training was to

allow the children to progress at their own pace through the

different combinations of levels of attraction, paths, and compet-

itors, so we used a ‘‘two-wins-in-a-row’’ rule to determine when

the children progressed. After the participant ‘‘beat’’ the slowest

competitor two times-in-a-row they progressed to the faster

competitor. Once the participant beat both competitors they then

moved to the next longest path with slowest competitor. After all

paths and competitors were ‘‘beaten’’, the level of support was

decreased and the participant re-started with the shortest path and

slowest competitor.

Data analysis
DCD-Q. The scores reported here are the raw scores from the

DCD-Q.

Beery. The scores reported here are the norm-referenced

percentile scores for the VMI, VP and MC.

Drawing. The two-dimensional coordinates of the stylus were

recorded at 120 Hz. These data were filtered using a dual-pass,

second-order Butterworth filter with a 10 Hz cut-off frequency.

We calculated three variables for each of the forms that

participants produced: the scale factor, rotation, and shape

accuracy [41]. See Figure 3 for illustration. To do this, we used

a technique called ‘point-set registration’. In this technique, point-

sets were generated for the participant-generated paths and

reference paths by resampling the spatial coordinates, using linear

interpolation, at a resolution of 1 mm. We then used a robust

point-registration method [41–42] to determine the transforma-

tion that makes the participant-generated path most closely match

the reference path. The transformation consisted of translation,

rotation and isotropic scaling components. Scale factor is the

isotropic scaling component of the transformation; that is, scale

factor is how much growing or shrinking is required to make the

participant-generated paths best match the size of the reference

paths i.e. an oversized participant-generated path results in a scale

factor ,1. Rotation is the angular offset between the participant-

generated and reference paths; less rotation indicates a better

match between the produced and reference paths. Shape accuracy

was calculated by evaluating the mean distance between corre-

sponding points on the transformed input path and the reference

path and, thus, represents how well the participant was able to

recreate the qualitative properties of the form irrespective of input

scale, location or rotation errors. Lower values represent less

‘error’ and therefore better shape accuracy.

3D tracing. The three-dimensional Cartesian coordinates of

the virtual stylus tip and fish were recorded at 50 Hz. These data

were filtered using a dual-pass, second-order Butterworth filter

with a 5 Hz cut-off frequency. Using these data with the known

coordinates of the target trajectory (the path), we computed trial

duration (the time it took for a participant to travel from the

starting to finishing locations) to evaluate performance.

Statistical analyses. First, to examine the overall learning

for both the 3D tracing and drawing tasks, we performed paired

sample t-tests; an a priori alpha level was set at 0.05. Then, we

used regression analyses to examine the contribution of the Beery

VMI scores to explaining performance. First, we used a model

selection technique (using Mallows’ Cp score [43]) to determine

the best model using only a subset of potential predictors. The

model selection function performed a search for the best subsets of

variables using an efficient branch-and-bound algorithm – it

returned Mallows’ Cp scores (where a Cp score close to or smaller

Figure 2. The PHANTOM Omni with the display. The display
shows the path used in baseline and posttest trials.
doi:10.1371/journal.pone.0092464.g002

Figure 3. Illustration of the computer based method used to
analyze drawn reproductions of the target forms.
doi:10.1371/journal.pone.0092464.g003
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than p represents a better fit) for various combinations of

predictors. For the 3D tracing task, the potential predictors were:

support level (1–8), session (baseline, posttest), repetitions within

sessions (1–2), and the three individual Beery scores (VMI, VP,

and MC). For the drawing task, the potential predictors were:

session (baseline, posttest), scale, rotation, repetitions within

sessions (1–3), figure (A–D), and the three individual Beery scores

(VMI, VP, and MC). Using the selected subset of predictors, we

then performed multiple regression on the dependent measures.

Results

DCD-Q and Beery VMI
First we examined scores for the DCD-Q and the Beery VMI to

describe the characteristics of population tested. The DCD-Q and

the three components of the Beery VMI were distributed across

most of the possible ranges for scores, respectively. Thus, some of

the scores fell into the range typically associated with Develop-

mental Coordination Disorder (DCD); although in this study,

none of the children were diagnosed as DCD. The median scores

were: 61 (DCD-Q; with eight children falling under the threshold

for ‘‘probable’’ or ‘‘suspected’’ DCD); 25 (VMI); 63 (VP); 23 (MC).

Of the children with low DCD-Q scores, four also scored below

the 10th percentile on either the VMI or MC from the Beery.

Using Shapiro-Wilk, Shapiro-Francis, and Skewness/Kurtosis

tests, we tested the distributions for potential departures from

normality. None were different from normal (p.0.05 in all cases).

We tested the inter-correlations among these scores. The DCD-Q

did not correlate well with scores from the Beery. The r-values

were as follows: for VMI, r = 0.2; for VP, r = 0.11; and for MC,

r = 0.19. Components of the Beery exhibited reasonably good

inter-correlation. The r for VMI-VP was 0.34. For VMI-MC, it

was 0.56. For VP-MC, it was 0.62.

3D tracing
Overall, we found that training in the 3D tracing task yielded

significant learning as revealed by a baseline and posttest

comparison (t22 = 3.3, p,0.01, one-tailed).

Relation between Beery VMI and 3D tracing
For the 3D tracing task, the potential predictors were: session

(baseline, posttest), level of support (1–8), repetitions within

sessions (1–2), and the three individual Beery scores (VMI, VP,

and MC). Using Mallow’s Cp score we selected a subset of

predictors. The model that had the best Cp score (5.12) contained

five predictors: session, support level, and the three individual

Beery scores (VMI, VP, and MC).

We then performed a regression on duration using session (with

baseline and posttest coded as +1), level of support (coded as 1–8)

and the VMI, VP, and MC scores as predictors. We also included

the (3) two-way interactions between session and the three Beery

scores, and the (3) two-way interactions between support level and

the three Beery scores (but not those between the Beery scores),

and the (3) three-way session by support level by Beery score

interactions as predictors. The overall model was significant

(F(15,720) = 33.4, p,0.001) and accounted for 41% of the variance.

The significant single factors were session (t4 = 2.3, p,0.02) and

support level (t4 = 28.0, p,0.001). However, there were signifi-

cant two-way interactions (session by level: t4 = 27.3, p,0.01;

support level by VP score: t4 = 23.4, p,0.001) and one three-way

interaction (session by support level by VP score: t4 = 3.1, p,0.01).

To investigate these effects, we computed means for duration as

a function of session (baseline, posttest), support level (1–8), and

VP score (high and low, split by the median). These are shown in

Figure 4. At baseline, children with higher VP scores were faster at

completing the 3D tracing task. At posttest, however, there were

no differences between children. This is further reflected in

separate analyses for the baseline and posttest data. Using the

baseline data with VP and support level as factors, we found that

the model accounted for 30% of the variance. Support level was

significant (t2 = 7.6, p,0.001) as was VP by support level (t2 = 2

2.8, p,0.01). Next, we performed the same analysis on posttest

data only. The model only accounted for 3.4% of the variance and

none of the factors were significant.

Drawing
Overall, we found that training in the 3D tracing task yielded

improvements in the drawing task with respect to shape accuracy

(t22 = 2.1, p,0.02, one-tailed). There was no difference between

baseline and posttest with respect to scale (t22 = 20.2, p.0.5, one-

tailed) or rotation (t22 = 0.4, p.0.3). The copies, however, tended

to be larger than the original (one-sample t-test, with m= 1: t45 = 2

15.3, p,0.001; 95% confidence interval: 0.76, 0.82) and slightly

rotated (one-sample t-test, with m= 0: t45 = 14.6, p,0.001; 95%

confidence interval: 4.00, 5.28).

Relation between Beery VMI and Drawing
For the drawing task, the potential predictors were: session

(baseline, posttest), scale, rotation, repetitions within sessions (1–3),

figure type (forms A–D), and the three individual Beery scores

(VMI, VP, and MC). Using Mallow’s Cp score we selected a subset

of predictors. The model that had the best Cp score (3.39)

contained five predictors: session, figure type, scale, rotation, and

VP.

We performed a regression on shape accuracy using scale factor,

rotation, VP score, session (with baseline and posttest coded as –

/+1), figure type (coded as 1–4) as predictors. We also included all

two-way interactions and three-way interactions involving session

as predictors. The overall model was significant (F(21,530) = 19.4,

p,0.001) and accounted for 43% of the variance. The significant

single factors were session (t4 = 2.5, p,0.02), figure type (t4 = 2

3.2, p,0.002), scale factor (t4 = 24.8, p,0.001), and VP score

(t4 = 5.6, p,0.001). However, there were significant two-way

interactions (session by scale: t4 = 22.6, p,0.01; session by VP

score: t4 22.4, p,0.02; figure type by scale: t4 = 2.9, p,0.01;

figure type by VP score: t4 = 22.5, p,0.02; scale by VP score:

t4 = 25.2, p,0.001) and one three-way interaction (session by

scale by VP score: t = 2.5, p,0.02). The figure type effects

reflected the fact that one of the figures was easier to copy than the

others, namely, the horizontal wave with varying amplitude.

Errors decreased over sessions from baseline to posttest. Errors

were smaller as the scale factor approached 1, meaning that errors

were larger as figures were drawn larger than the targets to be

copied. See Figure 5 where the proportional relation between

reproduction scale and error is shown. Errors were larger for lower

VP scores and smaller for higher VP scores.

To illustrate these effects, we computed means for scale factor

and for shape accuracy as a function of session (baseline, posttest)

and VP score (above and below the median). These are shown in

Figure 6 (scale factor is shown in Figure 6A, shape accuracy is

shown in Figure 6B). For children with high VP scores, scale

factors were larger indicating that they were producing shapes

closer to the correct scale. Also, children with higher VP scores

produced more accurate shapes than children with lower VP

scores. With training on the 3D tracing task, scale factors increased

and shape accuracy improved (especially for children with higher

VP scores). This is further reflected in separate analyses for the

baseline and posttest data. Using the baseline data with VP, figure
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type, and scale factor along with their two-way interactions as

factors, we found that the model accounted for 38% of the

variance. VP score was significant (t5 = 5.197, p,0.001) as was VP

by figure type (t5 = 22.258, p,0.03) and VP by scale factor

(t5 = 25.054, p,0.001). Next, we performed the same analysis on

posttest data only. The model accounted for 45% of the variance.

Again, VP score was significant (t5 = 2.294, p,0.03). Additional

significant factors were scale factor (t5 = 25.800, p,0.001), figure

type (t5 = 24.215, p,0.001), and the scale factor by figure type

interaction (t5 = 4.124, p,0.001).

Discussion

The goal of the present study was to examine the influence of a

new training method in a broader context. Previously, Snapp-

Childs et al. [1] tested a method for training good manual

compliance control in children with Developmental Coordination

Disorder (DCD) by comparing baseline-posttest differences in

performance by typically developing children and children with

DCD. Before training, the task was effectively impossible for the

children with DCD to perform without strong support. After

training, they could do the task as well as typically developing

children. Thus, large differences between the groups were evident

in baseline performance but these differences were eliminated in

posttest performance. Snapp-Childs et al. [26] further tested the

approach used in this training method by comparing learning in

groups of participants who either trained passively, by performing

Figure 4. Mean trial durations as function of session, support level, and VP score. A) Mean duration computed by VP scores (high or low)
relative to the median score as a function of session (baseline, posttest) and support level (1 = high, 8 = low). B) Mean durations computed by VP
scores (high or low) relative to the average as a function of session (baseline, posttest) and support level (1 = high, 8 = low).
doi:10.1371/journal.pone.0092464.g004

Figure 5. Scale factors plotted as a function of corresponding
shape accuracy scores. As the size of the copied forms deviated from
the size of the target form, shape accuracy scores worsened.
doi:10.1371/journal.pone.0092464.g005
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a haptic tracking task, or actively, by performing the active 3D

tracing task with progressive reduction of support. The results

showed far superior learning by the active group as compared to

the passive group. In the present study, we investigated the

application of this approach to the training of good manual

compliance control with young school-aged children and the

utility of the Beery VMI in predicting children’s performance.

The primary hypotheses tested in this study of young school-

aged children were that: 1) Beery scores would predict baseline

performance in a 3D tracing task and a drawing task, 2) training of

good manual compliance control (first described by Snapp-Childs

et al. [1]) would alter any such relationships and 3) training on the

3D tracing task would improve drawing performance. We found

evidence supporting all three hypotheses. First, we found that one

of the three component scores of the Beery was useful in predicting

performance in the 3D tracing and the drawing tasks, but that

training altered the utility. That is, for the 3D tracing task, the VP

score was useful in predicting performance at baseline, but not at

posttest. For the drawing task, the VP score was useful in

predicting performance at baseline and posttest. In advance, we

had expected the VMI to be the more relevant assessment,

especially for the drawing task, simply because it entails the

copying of geometric forms. Moreover, previous work has shown

that VMI scores are predictive of handwriting quality for children

with handwriting problems [44]. However, surprisingly, it was the

visual perception (VP) score, not the visual-motor integration

(VMI) score or the motor coordination (MC) score that predicted

performance. In fact, the VP score predicted the baseline

performance on the 3D tracing task in a way that was similar to

the classification of participants in our previous study [1] as being

typically developing or as having DCD. That is, those with lower

VP scores performed substantially worse on the 3D tracing task

before training. Also, for the drawing task, the VP score interacted

with the scale in that children with higher VP scores produced

shapes that were both more similar in size to the target forms and

better in shape accuracy. Conversely, children with lower VP

scores produced copies that were both less similar in size to the

target forms and worse in shape accuracy.

Why did the VP score of the Beery predict the performance in

the two tasks, 3D tracking and drawing? The VP task in the Beery

requires participants to discriminate subtle differences in complex

forms both in respect to the forms themselves and their scale. It

tests sensitivity and attention to detail in complex pattern

perception. In contrast, the MC task only tests the ability to stay

within the lines (i.e. a steady hand). And, while the VMI task tests

complex figure copying, it does so with little consideration for scale

and more subtle deviations in form production. In respect to the

drawing task, our computer-based analyses revealed that the

specific scale of the reproduction was important to the successful

drawing of the form itself. The perceptual task is essentially the

same in the two cases, that is, in the VP subtest of the Beery and

our drawing task. In respect to the 3D tracing task, Snapp-Childs

et al. [26] showed that visual prospective control is the key to

successful skilled performance of this task, that is, visual perception

of the torsion and curvature of the path in anticipation of moving

the stylus over that path. Thus, good visual discrimination of form

and scale is again required and once again, the perceptual ability

in the two tasks, the VP Beery task and 3D tracing, is the same.

This interpretation is consistent with previous work that has found

the association between visual-perceptual abilities and motor skill

performance to be task-specific [45].

We also examined whether the training on the 3D tracing task

yielded improvements in the drawing task (i.e. was there transfer of

learning?). Training in the 3D tracing task yielded improvements

in drawing performance. While training improved overall shape

accuracy, it also appeared to increase differences between children

with low versus high VP scores. This result may be a bit

disappointing but is not that surprising. Again, the drawing task

demanded (visual) attention to detail in addition to sufficient

control of the hand/arm. That is, high visual perceptual ability

underpins accurate performance – being able to notice subtle

changes in contour and shape is primary for being able to

accurately reproduce figures. This interpretation is consistent with

the notion that movement stability is a function of perceptual

ability [46].

Future directions
Transfer of learning or the changes in drawing performance,

although significant, were small. However, the amount of training

at the 3D tracing task was also modest. Much more difficult paths

can be tested both during training and posttest. In addition, an

earlier study [1] included a second parameter in addition to the

level of support (attraction), namely, amount of friction along the

path. Higher levels of this friction were found to cause unskilled

participants to come off the path. Thus, continued and extensive

training in compliance control is available through use of this

additional parameter, especially when coupled with increased

complexity of path shape, and likely this would yield larger

changes in drawing performance. In future, we will also investigate

differences in effective training using 3D as compared to 2D paths

lying in a horizontal plane as well as the generalization of these

changes to ‘‘pen-and-paper’’ writing.

Figure 6. Mean scale factor and shape accuracy as a function of
session and VP score. A) Scale factor by VP scores (high or low)
relative to the median score as a function of session (baseline, posttest),
B) Shape accuracy by VP scores (high or low) relative to the median
score at baseline and posttest.
doi:10.1371/journal.pone.0092464.g006
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Conclusions

In sum, this approach to training is showing good promise as a

means to help children improve in performance of fine motor

manual tasks like drawing or potentially, handwriting, and the

results indicate that the methods might be well applied within the

public schools.
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