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In this paper we give a framework for describing how abstractsystems can be used to compute if no
randomness or error is involved. Using this we describe a class of classical “physical” computation
systems whose computational capabilities in polynomial time are equivalent toP/poly. We then
extend our framework to describe how measurement and transformation times may vary depending
on their input. Finally we describe two classes of classical“physical” computation systems in this
new framework whose computational capabilities in polynomial time are equivalent toP/poly and
P/log⋆.

1 Introduction

To answer the question of exactly how much various physical systems are capable of computing, we
must first have a good abstract description of them, balancing simplicity with descriptive power. This
paper discusses such a description.

In [6] Horsmanet al. argue convincingly that, in general, we cannot make use of a physical system
for computation unless we have a way of interacting with it that allows us to predict the nature of its
output given a particular input. Building on this idea, we will define the systems we wish to compute
from in terms of how we can interact with them.

In [5] Beggset al. describe how a Newtonian kinematic system can be used to tackle a problem
that’s uncomputable for a Turing machine; computing the characteristic function of any given subset
of N. Similarly, they achieve oracle-like results using “experiments” consisting of either a precise set
of scales [2], or of a cannon and a wedge [4], calling a Turing machine combined with such classical
physical experiments an “analogue-digital device”.

A key aspect discussed in Beggset al.’s later papers is that the time taken for their examples of oracle-
like queries to be carried out must depend on what is being queried, thereby restricting the speed with
which certain problems can be solved. This culminated in Beggset al.’s “analogue-digital Church-Turing
thesis” [3], which states: “no possible abstract analogue-digital device can have more computational
capabilities in polynomial time thanBBP//log⋆.” Though this thesis was very well justified, Beggset
al. (perhaps wisely) avoided giving a formal mathematical description of these analogue-digital devices.
Here we shall attempt to give such a description. However, whilst in the thesis the analogue-digital
devices always have finite, possibly unbounded, precision to their actions, due to complications that arise
from exactly how this error is treated,1 we shall avoid defining inexact systems and instead focus here
on giving a robust framework for describing computation on systems without any error or randomness,
with the hope that this will eventually lead to a more generaland inclusive framework.

1For example, how do we describe the outcome of applying a transformationT with an error bound ofε? If we take it to be
a probability distribution then what distributions and probability measures are appropriate?
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In [3] Beggset al. suggested that the class of problems solvable by analogue-digital devices with
infinite precision (and therefore without error) in polynomial time is likely P/log⋆ and2 at mostP/poly.
In this paper we prove that theP/poly result is true for a restricted class of error-free systems that we
believe are physically reasonable. We then apply an additional restriction to these systems to obtain the
P/log⋆ result.

2 Computation Systems

The goal of almost any task is to obtain something from something else. Hence we shall build up our
framework for describing physical computation by beginning with an abstract description of a system that
can manipulate some space via a fixed set of operations and observe it via a fixed set of measurements3.

Definition 2.1. A computation systemis a quadrupleC = (X ,Π,T ,x0) where:

• X is a non-empty set,

• Π is a finite non-empty set of finite partitions4 of X ,

• T is a finite non-empty set of transformationsT : X → X and

• x0 ∈ X .

The idea behind this quadruple is as follows. The setX describes the possible configurations that
a device acting upon the system can be in. The setΠ describes the set of measurements that can be
performed in a single step by such a device without altering its configuration. The setT describes the
set of actions that the device can perform in a single step to alter its configuration. The pointx0 is the
configuration that the device begins in.

A finite partition of X can be regarded as describing measurement of it, as any measurement ofX
is essentially a process assigning a particular value to each element ofX . In other words, as in rough
set theory [7] we have some attribute valuationV : X → {1, . . . ,n}. If we then define an equivalence
relation∼ on X by letting x1 ∼ x2 iff V (x1) = V (x2), then the equivalence class generated by this is a
finite partition onX . So if α = X/∼ andA ∈ α thenA = {x ∈ X | V (x) = a} for somea ∈ {1, . . . ,n}.

Example 2.2. Let A be an alphabet, andB 6∈ A be the blank tape symbol. So letAB = A ∪{B}, then
A Z

B is the set of bi-infinite strings fromAB and the set of possible Turing tape configurations for a Turing
machine with tape alphabetA is:

A
T T =

⋃

m,n∈Z

{(xi)i∈Z ∈ A
Z

B | xi = B if i < m or i > n}.

For anya ∈ AB, let 〈a〉 = {(xi)i∈Z ∈ A T T | x0 = a} then the tape reading partition is:

R(A ) = {〈a〉 | a ∈ AB}.

Define⊳ and⊲ to be the left and right shifts ofA TT respectively and for eacha ∈ AB let ra be the
“replace witha” operation, that is if(wi)i∈Z = ra((xi)i∈Z) thenw0 = a andwi = xi if i ∈ Z\{0}. The set
of Turing tape transformations onA TT is then:

W (A ) = {IA T T ,⊳,⊲}∪{ra | a ∈ AB},

2This notation is explained in Definitions 3.6 and 3.7.
3Note that these measurements will differ from quantum measurements in the sense that what is being observed is not

necessarily altered by the measurement.
4A partition α of a setX , is a set of disjoint subsets ofX such that

⋃

A∈α A = X . It is finite if |α| is finite.
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whereITT
A

denotes the identity map onA TT . Finally, letBZ = (bi)i∈Z wherebi = B for all i ∈ Z.
Then a Turing machine with an alphabet ofA can be described as the computation systemT M(A )=

(A Z
B ,{R(A )},W (A ),BZ).

We can also describe an oracle Turing machine with oracleA ⊆ A ∗ as a computation system by
taking a Turing machine with two tapes and giving the second an additional transformationOA,a : A Z

B →
A Z

B . Where for some elementa ∈ A , the transformationOA,a changes the symbol the second tape head
is pointing at toa if the finite string of non-blank tape symbols to the right of the head is a word inA,
otherwise it changes it toB.

We shall allow a device acting onC to also have access to a Turing machine, rather than acting
solely onC = (X ,Π,T ,x0). This is because the computational power of a computation system be would
severely, and arguably, unnecessarily restricted by an inability to perform operations that are trivial to
a Turing machine. For example recording or copying the information obtained during a computation.
Further, we want the inputs into our system to be finitely knowable objects, such as those described by
finite words, so the Turing tape is where the inputs can be put in to our device.

As we shall see below, the manner in which we describe how a device acts upon a computation
system is similar to how a Turing machine acts upon a Turing tape. Its actions are defined by a set of
rules whose implementation is also dependant on an set of internal states.

Definition 2.3. A set of statesis a finite setS containing at least three elementss0, sa andsr, called the
initial, acceptingandrejectingstates respectively.

The initial states0 is the internal state that a device always starts in. For any computation the device
will always halt if it reaches eithersa or sr.

Definition 2.4. LetA be an alphabet andS be a set of states. AnA ∗-programonC = (X ,Π,T ,x0) andS
is a finite set of rulesQ which describes how a device acting onC and a Turing machine with tape alphabet
A behaves. Each rule takes the form(si,α ,A,s j,T ) wheresi ∈ S \ {sa,sr}, s j ∈ S, α ∈ Π∪{R(A )},
A ∈ α andT ∈ T ∪W(A ), this rule can be read as “if the device is in statesi, perform measurementα ,
then if it is at a point in the subsetA go to states j and perform actionT ”.

Mathematically this means the following. Suppose that the device is at the configurationx ∈ X with
w ∈ A TT written on its tape and an internal state ofsi, then if there is some rule inQ beginning with
(si,α) the device then performs anα measurement. There are two cases; ifα 6= R(A ) then if it is the
case thatx ∈ A and there is a rule(si,α ,A,s j,T ) ∈ Q then this rule is applied. If insteadα = R(A ), then
if it is the case thatw ∈ B and there is a rule(si,R(A ),B,sk,U) ∈ Q then this rule is applied. In either
of the above cases, if no appropriate rule exists then the internal state becomessr. If the internal state
becomes eithersa or sr then the device halts.

Applying the rule(si,α ,A,s j,T ) to a device at(x,w,si) results in it becoming(T (x),w,s j) if T ∈ T

and(x,T (w),s j) if T ∈W (A ).
In order for the above process to be deterministic we requirethat all rules beginning with the same

internal state must have the same partition, so for any(si,α ,A,s j,T ),(sk,β ,B,sl ,U) ∈ Q, if si = sk then
α = β . We also require that if two rules begin with the same state, partition and subset, then they
must also end with the same state and transformation so for any (si,α ,A,s j,T ),(sk,β ,B,sl,U) ∈ Q, if
(si,α ,A) = (sk,β ,B) then(s j,T ) = (sl ,U).

Definition 2.5. A device implementing anA ∗-programQ on a computation systemC takes as its input
a wordw ∈ A ∗, written onto its Turing tape as the configurationw†. It then repeatedly applies the rules
of Q to (x0,w†,s0) until it either reaches the internal statesa and “accepts”w or it reaches the internal
statesr and “rejects”w. If w is accepted we writeϕC

Q(w) = T and if it is rejected we writeϕC
Q(w) = F.

Otherwise, if neithersa nor sr is ever reached, then the computation never ends andϕC
Q(w) is undefined.
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Definition 2.6. Let C = (X ,Π,T ,x0) be a computation system. A subset5 A ⊆ A ∗ is computable using
C if there exists anA ∗-programQ onC such that for anyw ∈ A ∗:

ϕC
Q(w) = T ⇐⇒ w ∈ A,

ϕC
Q(w) = F ⇐⇒ w 6∈ A.

It is worth noting that the partitions ofΠ do not fully describe the information a device acting on
C = (X ,Π,T ,x0) can extract fromX , as the device can also transformX by someT ∈ T . Indeed if we
know thatx ∈ A andT (x) ∈ B then we also know thatx ∈ A∩T−1(B).

Example 2.7. Consider the computation system of the formCφ = ([0,1),{α},{T },φ), where we have
α = {[0, 1

2), [
1
2,1)} andT (x) = 2x−⌊2x⌋ for anyx ∈ [0,1). We can then compute the binary expansion

of the numberφ to arbitrarily many places usingCφ . To do this, take an{0,1}∗-programQ, which firstly
takes anα measurement of the starting numberφ . Eitherφ ∈ [0, 1

2) and the first binary digit ofφ is 0, or
φ ∈ [1

2,1) and the first binary digit ofφ is 1. SoQ records this result on the Turing tape before applying
the transformationT to φ , which effectively deletes its first binary digit. This process can then repeated,
with Q taking anα measurement ofT (φ) to obtain the second digit ofφ , and so on.

When defining the set of transformations on a computation system we could have chosen for our
transformations to be continuously applicable, meaning that the value ofT z(x) varies continuously with
z∈ [0,∞) andT z2 ◦T z1(x) = T z1+z2(x) for z1,z2 ∈ [0,∞). We consider our devices to be acting in conjunc-
tion with Turing machines, as these work in discrete time we can only really consider transformations
that are implemented discretely. However objects in our ownworld can only be altered through con-
tinuous processes, to account for this in such a scenario we takeT (x) to be the result of continuously
applying a process given byT to x for a fixed multiple of a single Turing machine time step. As mul-
tiplying the time taken by a constant factor does not change the usual complexity classes we have the
following notion for the computation time of computation systems.

Definition 2.8. A time function for anA ∗-programQ on a computation systemC = (X ,Π,T ,x0) is a
function t : N→ N such that for anyw ∈ A ∗ inputted into the device, the number of times we apply the
rules ofQ before the computation halts is bounded byt(|w|). Clearly, if ϕC

Q(v) is undefined for some
v ∈ A ∗ thenQ does not have a time function.

We say that a problemA ⊆ A ∗ is computable usingC in polynomial time if there exists anA ∗-
programQ onC with a polynomial time function.

Computingn digits of a numberφ using the computation systemCφ in Example 2.7 takes at leastn
rule applications. There are 2k words of lengthk in {0,1}∗, so whilst we could encode the characteristic
function of a arbitrary setA ⊆ {0,1}∗ in φ , computing the membership ofA usingCφ would in general
be impossible in polynomial time.

However, restricting computation systems to being only able to solve problems in polynomial time
is not, in general, a restriction at all. All oracle Turing machines are examples of computation systems,
hence the class of all problems computable by computation systems in polynomial time is just the class
of all problems.

3 Classical Physical Computation Systems andP/poly

Suppose we have some system of objects. Classical physics each of these objects possess a set of quan-
tities (position, momentum, velocity etc.) which can each be described by some real number in some

5Which we shall sometimes refer to as a problem.



Richard Whyman 45

particular dimension. The dimension of any physical quantity is expressed as a product of the basic
physical dimensions (length, mass, time etc.) each raised to an integer power. It does not make sense to
take the exponent of a physical quantity but we can multiply and divide by arbitrary physical quantities.
Adding together two physical quantities is possible if theyhave the same dimension. We can also take
thenth root of a physical quantity if its basic physical dimensions are all multiples ofn.

In order to manipulate the objects of a classical physical system we manipulate their physical quan-
tities. This suggests that the transformations we are able to perform on a classical physical system must
be able to send physical quantities to physical quantities,and thus must be built up from some finite
composition of additions, multiplications and rational powers.

Definition 3.1. A multi-variable polynomial function with rational powersonRm is a functionF : Rm →
R such that for some fixedI ∈N, r1, . . . ,rI ∈ R andq11, . . . ,qIm ∈Q:

F(x1, · · · ,xm) =
I

∑
i=1

ri

m

∏
j=1

x
qi j
j ,

for any(x1, · · · ,xm) ∈Rm. We call the numbersr1, . . . ,rI the coefficients ofF . In the cases whereqi j =
a
b

andb 6= 1 the function f (x) = xqi j may either have two real roots, in which case we takexqi j to be the
greatest of these roots, or it may have zero real roots, in which case we takexqi j to be undefined.

We call a transformationT :⊆Rm →Rm is aclassical transformationonRm if there are multi-variable
polynomial functions with rational powersF1, . . . ,Fm such that:

T







x1
...

xm






=







F1(x1, · · · ,xm)
...

Fm(x1, · · · ,xm)






,

for anyx1, . . . ,xm ∈ R. We denote the set of classical transformations onRm by ClT m.

Note that whilst transcendental functions such as cos and sin are not constructable as classical trans-
formations, applying a rotation by an angleθ about the origin to any(x,y) ∈ R2 results in(xcos(θ)−
ysin(θ),xsin(θ) + xsin(θ)). As the values of cos(θ) and sin(θ) are fixed such a map is a classical
transformation. Indeed, the application of anym×m matrix is a classical transformation inClT m.

In order to measure the objects of a classical physical system we are similarly restricted to measuring
their physical quantities, which can only be done to some finite degree of accuracy. Knowing that a
particle is at a positionx to within an error ofε means knowing it is within the open ball of radiusε
centred atx. Knowing that a particle is within a setU as well as a setV means knowing that it is in the
setU ∩V . Applying a classical transformationT to x before measuring that it is within the setA and
then applying its inverse means knowing this quantity is within the setT−1(A).

Definition 3.2. For anyx∈Rm and anyε > 0, in the Euclidean metric we denote the open ball and closed
balls of radiusε centred atx asBε(x) andBε respectively. LetClM1

0 = {Bε(x),Bε(x) | x ∈R,ε ∈ (0,∞)}
then we defineClMm inductively onN as follows:

• ClMm
0 = {Bε(x),Bε(x),U ×V | x ∈ Rm,ε ∈ (0,∞) andU ∈ClMl,V ∈ClMm−l for somel < m},

• ClMm
k+1 = {U ∪V,U ∩V,Rm \U,T−1(U) | U,V ∈ClMm

k andT ∈ClT m is invertible},

• ClMm =
⋃

k∈NClMm
k .

A subsetX ⊆ Rm is then calledclassically measurableif X ∈ ClMm. A finite partition α of X is a
classically measurable partitionif every A ∈ α is in ClMm.
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Rather than always having to apply the same classical transformation to every of the element ofX ,
since we are able to determine which element of a classicallymeasurable partitionα a pointx ∈ X is in,
we are surely capable of applying a different classical transformation for each partition element.

Definition 3.3. A transformationT : X → X is classically constructableif there is some classically
measurable partitionα of X , such that for anyA ∈ α , T |A ∈ClT m and dom(T ) = X .

Definition 3.4. A classical physical computation system(CPCS) is a computation system of the form
C = (X ,Π,T ,x0) where:

• Π contains only classically measurable partitions and

• T contains only classically constructable transformations.

Note that the above conditions imply thatX must itself be a classically measurable subset ofRm

for somem ∈ N, since it is equal to the finite union of classically measurable sets. Denote the class of
problems computable using a CPCS in polynomial time byPCPCS.

The following example shows that both of the above conditions on CPCS’s are necessary forPCPCS

to not be just the class of all problems.

Example 3.5. We can compute any problemA ⊆ {0,1}∗ in polynomial time using the computation
systemC1 = (R,{αA},{p, t},0) where:

αA = {x ∈ R | the binary representation of⌊x⌋ is 1w for somew ∈ A},

which is not necessarily classically measurable. The transformations inC1 arep(x) = x+1 andt(x) = 2x
for any x ∈ R, so they are clearly classically constructable. Now if the integer part of a numbery ∈ R

has a binary representationb1b2 · · ·bk, then the binary representation of⌊t(y)⌋ is b1b2 · · ·bk0 and the
binary representation of⌊p(t(x))⌋ is b1b2 · · ·bk1. We can therefore input the wordw ∈ {0,1}∗ into R

as a number with a binary representation of 1w via a linear number of applications ofp andt to 0. By
applying the measurementαA onto the resultant number we can determine whetherw ∈ A.

Alternatively consider the computation systemC2 = (R,{{(−∞,0), [0,∞)}},{p, t,T },0) where p
andt are the same as before and:

T (x) =

{

1 if x ∈ αA,
−1 otherwise.

This is not necessarily classically constructable sinceαA above is not necessarily a classically measur-
able partition. As above, we can determine whetherw ∈ A in linear time by inputting it intoR as a
number with a binary representation of 1w and then applying the transformationT and the measurement
{(−∞,0), [0,∞)} to it. This works asT−1({(−∞,0), [0,∞)}) = αA.

We can relatePCPCS to the non-uniform complexity classP/poly, which is often defined in terms of
boolean circuits, but can also be defined as follows.

Definition 3.6. Let F be a class of functions of the formf : N→ A ∗, we then callF anadvice class.
The non-uniform complexity classP/F is the class of all problemscomputable in polynomial time with
advice fromF . That is,A ∈ P/F , for anyA ⊆ A ∗, if there existsB ∈ P and anf ∈ F such that:

w ∈ A ⇐⇒ 〈w, f (|w|)〉 ∈ B.

We then say thatf is used to help computeA in polynomial time.
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Definition 3.7. Let f be an advice function, if there exists a polynomial functionp : N → N such that
| f (n)| = O(p(n)), then we say thatf is apolynomially growing advice function. We call the class of all
polynomially growing advice functionspoly.

An advice functiong is a logarithmically growing advice functionif |g(n)| = O(log(n)). The class
of all logarithmically growing advice functionsis log.

We call an advice functionh : N→ A ∗ a prefix function if for any m < n, the wordh(m) is a prefix
word of h(n). That is, for anyn ∈ N, by takingh(n) we obtain a finite prefix word of some constant
infinite sequence of symbols inA ∞. We denote this sequence byh(∞).

Finally we denote the class of allpolynomially growing prefix advice functionsby poly⋆ and the
class of all logarithmically growing prefix advice functions by log⋆.

As shown in [1] that whilstP/log 6= P/log⋆ it so happens that for computing in polynomial time
restrictingpoly to poly⋆ does not change the non-uniform complexity class.

Proposition 3.8. P/poly = P/poly⋆.

This follows from the fact that any advice functionf : N→ A which grows at a rate ofO(nm) can
be substituted for a prefix advice functiong : N→ (A ∪{e})∗ defined recursively byg(0) = f (0) and
g(n+1) = g(n)e f (n+1) for anyn ∈ N. This advice function then grows at a rate ofO(nm+1).

Theorem 3.9. PCPCS = P/poly.

Proof. (⊇) Let A ⊆ {0,1}∗ be such thatA ∈ P/poly, then by Proposition 3.8, we haveA ∈ P/poly⋆.
Then letg : N → {0,1}∗ be a polynomially growing prefix advice function that can be used to help
computeA, that is|g(n)|6 cna for somec,N,a ∈N and anyn > N. Define a numberφg to have a binary
expansion of 0.g(∞), then consider a computation system of the formCφg , as in Example 2.7. This is a
CPCS since the partition{[0, 1

2), [
1
2,1)} in Cφg is clearly classically measurable and the transformationT

it is a classically constructable sinceT (x) = 2x if x ∈ [0, 1
2), andT (x) = 2x−1 if x ∈ [1

2,1).
We can then computeA in polynomial time usingCφg . To do this we take a{0,1}∗-programQ, which

on inputw ∈ {0,1}∗ computes the firstc|w|a symbols ofg(∞) by computing the firstc|w|a binary digits
of φg. The device then has the wordg(|w|) written on its tape, from which it can compute polynomially
in |w| whetherw ∈ A. ThereforeA ∈ PCPCS and thusPCPCS ⊇ P/poly.

(⊆) Conversely letC = (X ,Π,T ,x0) be a CPCS,C can be described entirely by a finite set of real
numbers as follows. The multi-variable polynomial function with rational powersF in Definitions 3.1 is
defined entirely by the finite set of numbers{I,r1, . . . ,rI ,q11, . . . ,qIm}, consequently any classical trans-
formation is defined entirely by some finite set of numbers. Similarly, balls inRm are defined by finitely
many real numbers that describe the coordinates of their centres and radii. Any classically measurable
partition α in Π is defined entirely by its finite construction from balls and classical transformations,
therefore there is a finite set of real numbers{y1, . . . ,yl} and a finite wordvα describingα ’s construction
from them. SinceΠ andT are a finite sets they can then also be defined in terms of a finiteset of real
numbers, we can similarly write the coordinates ofx0 as a finite set of reals. Denote the combined set of
all these numbers byDC and the word describingC’s construction from themvC.

In general the way we obtain the digits of the elements ofDC is by expanding or contracting the
configuration space, and though the transformations ofT may not commute, the digits that we can
at bestdetermine by a given finite sequence of transformations doesnot change with rearranging the
order their application. This is because the digits obtainable instead depend on the rate of expansion and
contraction given by the rational powers of the transformations’ components. Letp(n,k) be the number
of ways in which we can writen ∈N as a sum ofk non-negative integers, it can be shown thatp(n,1) = 1
and p(n,k) = ∑n

l=1 p(l,k−1) for anyk ∈ N\{0,1}. If the order does not matter, the number of distinct
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ways in which we can applyn transformations fromT is p(n, |T |), which grows polynomially inn.
Therefore, the number of digits obtainable from the elements of DC grows polynomially inn.

For any given polynomial functionp, we can then encodeDC as a single advice functionfC,p which
on inputn givesvC followed by the signed binary digits [8] of each of the elements of DC that can be at
best determined afterp(n) transformations and measurements ofC. If A is computable in timeO(p(n))
usingC, then through the polynomial advice functionfC,p we have thatA ∈ P/poly.

4 Timed Computation Systems

One problem with our framework for computation systems thusfar is that it does not adequately account
for how the time a measurement takes to be carried out may vary. Indeed, as discussed by Beggs and
Tucker [2–4] the time it takes to measure a quantity may depend on the quantity itself.

Hence we require that our computation systems be equipped with a function that describes how long
it takes for a measurement to be carried out in terms of the current configuration of the computation
system.

Definition 4.1. A timed computation systemis a 5-tupleC = (X ,Π,T ,x0,κ) where(X ,Π,T ,x0) is a
computation system andκ : Π×X → N∪{∞}. We callκ themeasurement time functionof C .

The value ofκ(α ,x) then describes how many time steps of a Turing machine it takes to measurex
for the partitionα . A value of∞ means that this measurement takes forever. Like with a computation
system, a device acting on timed computation system is allowed access to a Turing machine. The way in
which such a device acts is described as follows.

Definition 4.2. Let A be an alphabet, letC = (X ,Π,T ,x0,κ) be a timed computation system and letS
be a set of states. Atime-awareA ∗-programQ on C andS is a finite set of rules which describes how
a device acts onC and Turing machineT M(A ).

Each rule inQ takes the form(si,α ,A,s j,U) wheresi ∈ S \ {sa,sr}, α ∈ Π∪{R(A )}, A ∈ α ∪ /0,
s j ∈ S andU ∈ Π∪T ∪W (A ), this can be read as “if the device is in statesi and is known to be within
the subsetA of the partitionα then go to states j and commence actionU ”.

Consider a rule of the form(si,R(A ),A,s j,U), then, as in anA ∗-program, this rule will be applied
to a device in a configuration of(x,w,si) if w ∈ A. Similarly if the actionU is in T ∪W (A ) then a rule
with this action is applied exactly if it were in anA ∗-program. Applying the rule(si,α ,A,s j,U) to a
device at(x,w,si) results in it becoming(U(x),w,s j) if U ∈T and(x,U(w),s j) if U ∈W (A ). Applying
such a rule takes 1 time step.

If the actionU is in Π then it is a measurement onX which may take more than a single time
step to perform. When the device is at configurationx ∈ X then the measurement takesκ(U,x) time
steps to carry out. In the mean time the device may act on its Turing tape and take single time step
measurements of the tape. In this interim a rule beginning with (s,U,A) can be applied ifA = /0. If the
device commences a transformation or begins a new measurement on X whilst the measurement ofU
is being carried out then the process is disrupted and is ceased. If x ∈ B for someB ∈U , then once the
measurement ofU is completed the outputB is temporarily recorded and rules beginning with(s,U,B)
can be applied. When the device begins a new measurement or commences a transformation onX , then
the outputB is forgotten.

In any of the above cases, if no rule that can be applied existsthen the internal state becomessr.
If the internal state becomes eithersa or sr then the device halts. In order for the above process to
be deterministic we once again require that, for any(si,α ,A,s j,T ),(sk,β ,B,sl,U) ∈ Q, if si = sk then
α = β , and if(si,α ,A) = (sk,β ,B) then(s j,T ) = (sl ,U).
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Just like for computation systems, we say that a problemA ⊆ A ∗ is computable using a timed
computation systemC if there exists time-awareA ∗-programQ on C that computes it. SimilarlyA is
computable usingC in polynomial if some suchQ has a polynomial time function.

5 Timed Classical Physical Computation Systems,P/poly and P/log⋆

As in [2] consider a precise set of scales, we can measure whether a massx is greater or less than a given
massy by placing these masses in each basket of the scale. Below each basket we place a detector which
will signal if the above basket touches it. This measurementcan then be described as a measurement of
the partitionαy = {[0,y],(y,∞)}. Clearly, the closer the massx is to the massy, the longer it will take
for the scale to tip down on its heavier side onto the detectorbelow. Indeed ifx = y the scales should
never tip, and hence the measurement will take an infinite amount of time. In [2] Beggset al. suggest
that measurement time forαy on x should be given by:

d
√

|x− y|
< κ(αy,x)<

c
√

|x− y|
,

for some constantsc,d ∈ (0,∞). Indeed in [4] Beggset al. demonstrate that the time take for all mea-
surements utilising a cannon and a smooth wedge should be bounded above and below by an inverse
polynomial function of the distance between the position ofthe height of the cannon (which is what is
being measured) and the cusp of the wedge.

This leads us to the following suggestion of what a reasonable requirement on the measurement time
function of a CPCS should be.

Definition 5.1. Let ∂ (A) be the boundary of a setA ⊆ X in the Euclidean metric, the set of boundary
elements of a partitionα is then∂ (α) =

⋃

A∈α ∂ (A).
The measurement time functionκ on a classical physical computation systemC = (X ,Π,T ,x0)

takesinverse polynomial measurement timefor anyα ∈ Π if there exists a strictly increasing polynomial
function p : N→ N such that for anyx ∈ X :

κ(α ,x) = p

(⌈

1
infy∈∂ (α) |x−y|

⌉)

.

Definition 5.2. A timed computation systemC = (X ,Π,T ,x0,κ) is a timed classical physical compu-
tation system(TCPCS) if(X ,Π,T ,x0) is a classical physical computation system andκ takes at least
inverse polynomial measurement time.

Denote the class of problems computable using a TCPCS in polynomial time byPTCPCS. It so happens
though that TCPCS’s have the same computation power in polynomial time as CPCS’s.

Theorem 5.3. PTCPCS = P/poly

Proof. (⊇) For any problemA ⊆ {0,1}∗ such thatA ∈ P/poly, let g : N → {0,1}∗ be a polynomially
growing prefix advice function that can be used to help computeA, that is|g(n)|6 cna for somec,N,a ∈
N anyn > N. DefineCg = ([0,1),{α},{T },ψg,κ) to be a TCPCS whereα = {[0, 1

3), [
1
3,

2
3), [

2
3,1)}, and

T (x) = 3x−⌊3x⌋. The numberψg has a ternary expansion that consists of the infinite wordg(∞) with
an extra 2 inserted after every digit. Alsoκ(α ,x) = maxk∈{0,1,2,3} |x−

k
3|

−1, for eachx ∈ X .
We have constructedψg such that every other digit is a 2 in order to ensure thatT l(ψg), for anyl ∈N,

is always bounded away from the boundary of each element ofα . We will now consider separately the
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case wherel is even and the case wherel is odd. Suppose thatl is even, thenT l(ψg) ∈ [ k
3,

k+1
3 ) where

k = 0 or 1, as any even digit ofψg is always a 0 or a 1. Further more,T l(ψg) 6∈ [ k
3,

k+1
3 − 1

9) as any
odd digit of ψg is a 2 and soT l+1(ψg) ∈ [2

3,1). Similarly T l(ψg) 6∈ [ k+1
3 − 1

27,
k+1

3 ) as T l+2(ψg) ∈

[0, 2
3). Therefore ifl is even|T l(ψg)−

k
3| >

1
27 for any k ∈ {0,1,2,3}. Now if l is odd thenT l(ψg) ∈

[2
3,1), further moreT l(ψg) 6∈ [8

9,1) sinceT l+1(ψg)∈ [0, 2
3), andT l(ψg) 6∈ [2

3,
20
27) sinceT l+2(ψg)∈ [2

3,1).
Therefore|T l(ψg)−

k
3|>

2
27 for anyk ∈ {0,1,2,3}. Hence for anyT l(ψg) the time taken to perform an

α measurement on it is at most11/27 = 27 time steps.
We can then computeA in polynomial time usingCg via a time-awareA ∗-programQ similar to

the programQ in the proof of Theorem 3.9. The programQ computes the firstcna symbols ofg(∞) by
determining the first 2cna ternary digits ofψg in Cg, it then computesA in polynomial time using this
advice. As each transformation takes 1 step and each measurement takes at most 27 steps, and so to
determine the first 2cna ternary digits ofψg takes at most 56cna steps, which is polynomial inn.

(⊆) Conversely, letC = (X ,Π,T ,x0,κ) be a TCPCS. Then a CPCS defined to byC = (X ,Π,T ,x0)
can compute any problem as quickly asC , unlessC is able to obtain some information by performing a
measurementα on somex ∈ X and counting how many steps the measurement took. Hence we need to
define a CPCS in which every partition of the form:

βα ,n = {{x ∈ X | κ(α ,x)< n},{x ∈ X | κ(α ,x)> n}},

can be determined inq(n) times steps for some polynomial functionq.
Let C′ = (X ×R,Π′,T ′ ∪U ∪V ∪{ f+, f−},(x0,0)) be a CPCS. For every open ballBε(x) used

in the construction of some classically measurable set, in some partition ofΠ, the setΠ′ contains the
partition {Bε(x)×R,(X ×R) \ (Bε(x)×R)}. Similarly for every closed ball, used in some classically
measurable set construction,Π′ contains{Bε(x)×R,(X ×R)\(Bε(x)×R)}. We can extend anyT ∈T

to a classical transformationT ′ on X ×R such thatT ′(x,y) = (T (x),y) for any (x,y) ∈ X ×R. So let
T ′ ∈ T ′, if T ∈ T . LetU ′ ∈ U if U is a classical transformation used in the construction of anelement
of a partition ofΠ. Hence throughΠ′ and U a device acting onC′ can perform any measurement
of Π in a fixed finite number of time steps. For any(x,y) ∈ X ×R we let f+(x,y) = (x,y + 1) and
f−(x,y) = (x,y− 1). For every ball of centrez in a partition ofΠ′ we have a transformationhz ∈ V

which is such that for any(x,y) ∈ X ×R:

hz(x,y) =
(

x−
x−z

y|x−z|
,y

)

.

Applying hz to the ballBε(z) results inBε+ 1
y
(z). Finally, asκ takes inverse polynomial measurement

time for anyα ∈ Π, the set ofx ∈ X such thatκ(α ,x)< p(n), corresponds to the set of elements at least
a distance of1n from the boundaries ofα . We can therefore determineβα ,n by constructing it from balls
of the formBε+ 1

y
(z) and the transformations ofU .

Therefore, any problem computable in polynomial time byC is computable in polynomial time by
C′ and soPTCPCS ⊆ PCPCS. ConsequentlyPTCPCS ⊆ P/poly by Theorem 3.9.

The above result is somewhat contradictory to the suggestedcomputational power ofP/log⋆ for
classical physical systems with infinite precision given byBeggset al. in [3], since from [1] we know
thatP/log⋆( P/poly. There is a remedy though, as the computational power inCg above came from its
initial configuration, not its measurements. If the initialconfiguration ofCg was an algebraic number6

6We denote the set of real algebraic numbers byA.
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then its digits would be computable in polynomial time on a Turing machine and thus a device acting on
Cg would not be computationally more powerful. However, we would still be able to obtain the same
computational power asCg above if we were able to apply a transformation that mapped analgebraic
element of[0,1) to an arbitrary real numberφg. We thus have the following restriction.

Definition 5.4. A timed classical physical computation systemC = (X ,Π,T ,x0,κ) with X ⊆ Rm, is
algebraically actingif x0 ∈ Am, and everyT ∈ T is classical transformation defined on the whole ofX
such that the coefficients of every multi-variable polynomial function with rational powers used in its
construction are all inA.

Denote the class of problems computable using an algebraically acting TCPCS in polynomial time by
PATCPCS. This restriction is arguably natural as square matrices with algebraic coefficients are examples
of algebraically acting classical transformations. So arerational rotations, as cos(θ) and sin(θ) are
algebraic numbers ifθ is a rational multiple ofπ.

It should be noted that if we were to restrict our systems to having only transformations with algebraic
coefficients whilst allowing for the initial configurationx0 to be an arbitrary element ofRm, the result is
a computation system with the same computational power in polynomial time as general TCPCS’s. This
is because such a device is able to use the coordinates ofx0 as a resource of arbitrary real coefficients,
effectively allowing the device to carry out arbitrary classical transformations. However, if we restrict
the initial configuration as well, we have the following result.

Theorem 5.5. PATCPCS = P/log⋆.

Proof. (⊇) For any problemA ⊆ {0,1}∗ such thatA ∈ P/log⋆, let g : N→ {0,1}∗ be a logarithmically
growing prefix advice function that can be used to help compute A, say for somec,N ∈ N any n > N,
|g(n)|6 c log(n). DefineDg = ([0,1],{αg},{T0,T1,R}, 1

2,κ) to be an algebraically acting TCPCS where
αg = {[0,φg],(φg,1]} with the numberφg having a binary expansion of 0.g(∞). The transformations are
T0(x) = x

2, T1(x) = x+1
2 , andR(x) = 1

2 for any x ∈ [0,1). The measurement time function is such that
κ(αg,x) = |x−φg|

−1 for eachx ∈ [0,1).
Let y ∈ [0,1) have a binary expansion of 0.b1b2 . . .. Applying T0 to y gives a number with a binary

expansion of 0.0b1b2 . . ., and applyingT1 to y gives a number with a binary expansion of 0.1b1b2 . . ..
Hence by repeated applications ofT0 andT1 to 0 we can approximate any number in[0,1) with a finite
binary expansion.

We can therefore determineφg to arbitrarily many places inDg. To see this, suppose that we know
that the firstl binary digits ofφg area1 . . .al , we can then generate a numberzl with a binary expansion of
of 0.a1 . . .al1 and apply the measurementαg to it. If we learn thatzl ∈ (φg,1] then we know thatφg < zl

and so the firstl+1 binary digits ofφg area1 . . .al0. If we learn thatzl ∈ [0,φg] then we know thatφg > zl

and hence the firstl+1 binary digits ofφg area1 . . .al1. Additionally, if κ(αg,zl)> 2l+1 then we know
that |zl −φg| 6 2−(l+1) and thus the firstl +1 binary digits ofφg must bea1 . . .al1. Once we know this,
we can reset the system to1

2 usingR and generate a new number with a more accurate binary expansion.
Using this process we can determineφg to L binary places inO(∑L

j=12j) = O(2L) time steps.
On inputw ∈ {0,1}∗ we can then determinec log(|w|) places ofg(∞) in polynomial time using the

above procedure,asO(2c log|w|) = O(|w|c). Hence we can computeA in polynomial time usingDg via a
{0,1}∗-program that determines the firstc log|w| symbols ofg(∞) before computingA using this advice.

(⊆) Conversely, letC = (X ,Π,T ,x0,κ) be an algebraically acting TCPCS, as in the proof of The-
orem 3.9 we can construct a logarithmically growing prefix advice function fC that encodes the finite
description ofT , the polynomial functions that define the measurement timesof eachα ∈ Π for κ and
x0 in fC (0). The prefix advice functionfC gives fC (0) followed by logarithmically many digits of each
of the real numbers that are used to define the elements of the partitions inΠ.
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Then any problemA computable in polynomial time usingC is computable in polynomial time with
logarithmically growing advicefC . This is because the only information obtainable fromC that is not
given immediately byfC is within Π, and so in order to obtainl signed binary digits of a real number
used to define an elementA ∈ α of some partitionα ∈ Π the device needs to be in a configuration that
is within a distance of 2−l of the boundary ofA. Measuring this configuration takes at least 2l time
steps. If a partition is useful for the computation ofA then we also cannot use any transformation in
T to reliably reduce this measurement time. As for example, ifX = R andα = {(−∞,φ ],(φ ,∞)} then
a transformationT that maps numbers aroundφ away from it whilst keeping these numbers within the
same elements ofα must have a fixed point atφ since by the constructionT is continuous. But then by
the construction ofT , the numberφ must be algebraic and hence computable in polynomial time bya
finite program on a Turing machine. Similarly for a generalX ⊆ Rm if we can transform away from the
boundary of some partition ofX using a algebraic classical transformation then that part of the boundary
must be algebraically defined and hence computable in polynomial time.

We thus obtain the Beggset al.’s suggested computational power for infinite precision analogue-
digital devices by preventing our TCPCS’s from applying transcendental transformations. Indeed, a key
point to take from the proof of Theorem 5.5 is that requiring that measurements take inverse polynomial
time is only a restriction to the computational power of an infinite precision classical physical system if
its transformations and initial configuration are also restricted to being computable in polynomial time
onRm with the Euclidean topology [8]. We of course chose our transformations to be constructed from
multi-variable polynomial functions with rational powersas per the reasoning at the start of Section 3, we
do not know of any physical justifications for allowing a moregeneral extension. However, the TCPCS
we used in the(⊇) part of our proof of Theorem 5.5 uses only rational coefficients, so we could further
restrict our classical transformations to being only rationally acting. An extension of this result to a class
of differentiable manifolds should also be possible.
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