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a b  s  t  r a  c t

This paper presents  a novel method for  tracking and  characterizing  adherent  cells  in monolayer  culture.

A  system of cell tracking employing  computer  vision techniques  was applied  to time-lapse  videos  of

replicate  normal human uro-epithelial cell  cultures  exposed to different concentrations  of adenosine

triphosphate  (ATP)  and a selective purinergic  P2X antagonist (PPADS),  acquired  over a  24  h period.  Sub-

sequent  analysis  following feature extraction demonstrated  the  ability  of the  technique  to successfully

separate  the  modulated  classes  of cell  using evolutionary algorithms. Specifically,  a  Cartesian  Genetic

Program (CGP)  network was evolved  that  identified average migration  speed,  in-contact angular veloc-

ity,  cohesivity  and  average cell  clump size  as  the principal  features  contributing  to  the  separation.  Our

approach  not only  provides non-biased  and  parsimonious  insight  into modulated  class behaviours, but

can  be  extracted as  mathematical  formulae  for the  parameterization  of computational models.

© 2016 The Authors.  Published  by  Elsevier Ireland  Ltd.  This  is  an open access article  under  the  CC  BY

license  (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Urothelium is a remarkable epithelial tissue that lines the blad-

der and associated urinary tracts forming the tightest and most

efficient self-repairing barrier in the body. In response to physical

or other damage, the urothelium switches rapidly and transiently

from a stable, mitotically-quiescent barrier into a highly prolifera-

tive state. The mechanisms that facilitate this switch are  central to

the  pathophysiology of the bladder, but are poorly understood.

The urothelium is  reported to  respond to  mechanical and chem-

ical stimulation by releasing soluble factors, including adenosine

triphosphate (ATP), which are proposed to play a  role in  mediat-

ing neuronal signalling (Birder, 2011). In  addition, the urothelium

expresses purinergic P2X and P2Y receptors and channels that are

responsive to ATP released from autocrine or paracrine sources

(Shabir et al., 2013). The outcome of such signalling is  incompletely

understood, as it could have a  feedback role in modulating neuronal

signalling, but alternatively could play a more direct role in urothe-
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lial barrier repair (Shabir et al., 2013). It has been further suggested

that aberrant expression of receptors and/or mediator release by

the urothelium is  involved in  dysfunctional diseases of  the blad-

der, including idiopathic detrusor instability and interstitial cystitis

(Birder and de Groat, 2007).

Despite the reported expression of these channels and receptors

by the urothelium, consensus has been confounded by  inconsisten-

cies in  experimental approaches, including the species, specificity

of reagents, and the nature of the tissue preparation (reviewed

(Yu and Hill, 2011)).  We have developed a  cell culture system for

investigating normal human urothelial (NHU) cells and tissues in

vitro. In  previous work using this culture system, we showed that

stimulation of P2  receptors with exogenous ATP enhanced scratch

wound repair, as did addition of the ecto-ATPase inhibitor ARL-

67156, which prevents the breakdown of autocrine-produced ATP.

By contrast, blockade of P2X activity inhibited scratch wound repair

in either the presence or absence of ATP (Shabir et al., 2013). This

indicates that ATP is  one of the major factors released upon urothe-

lial  damage and that it is likely to contribute to urothelial barrier

repair.

To understand further the effect of ATP and P2X signalling on

urothelial cell phenotype, time-lapse videos have  been generated

of low density urothelial cell cultures to  which exogenous ATP and

selective antagonists of P2X have been applied. This paper describes
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Fig. 1. Schematic model of Wnt/�-catenin signalling crosstalk with EGFR/ERK and cell:cell contact-mediated �-catenin regulation in NHU cell proliferation.

Reproduced with permission from (Georgopoulos et  al., 2014).

Fig. 2.  Sample frame from time-lapse video of NHU cells in culture.

the development of an automated method for objective measure-

ment of these videos using computer vision techniques, followed

by the extraction of features, with the aim of identifying key char-

acteristics of cell behaviour related to  differences in the population.

Replicate cell cultures are prepared in parallel and recorded over a

24-h period using standard videomicroscopy. The digital videos are

then processed using custom cell tracking software implemented

using a range of computer vision techniques. The resulting tracking

data is then subjected to  two methods of analysis with the aim of

characterizing the behaviour of the cell cultures. The first is  the

extraction of a  set of features informed from previous research

and specified by the biological motivation for this study. The sec-

ond approach is  the application of a  novel classifier employing

evolutionary algorithms −  computer programs whose operation is

inspired by the processes of Darwinian evolution. These algorithms

have the potential to provide power classifiers, as well as revealing

those biological properties that contribute to the classification.

Section 2 of this paper describes the underlying biological pro-

cesses of the urothelium in  greater depth and then provides an

overview of current modelling, along with an introduction to evo-

lutionary algorithms. The processes and methodology adopted in

our work are described in Section 3,  and results, with statistical

analysis, are presented in Section 4.  Finally, conclusions and future

work are considered in  Section 5.

2. Background

2.1. The urothelium – a relevant tissue-specific experimental cell

system

Urothelium, the transitional epithelium found lining the bladder

and associated urinary tract functions as a stable, but self-

repairing urinary barrier. This barrier function is attributable to

urothelium-specific specialisations acquired during differentiation

of the superficial cells, with surface membrane plaques composed

of uroplakins (Hu et al., 2002) and well-developed intercellular

tight junctions (Smith et al., 2015)  Within the urothelium, indi-

vidual cells are maintained in a mitotically-quiescent state until,
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Fig. 3. The process used for detecting cell  locations within a  video, and tracking of detected cells between video frames.

Fig. 4. Example tracking of a single cell over a  24-h video, sampled every 5 min. Tracking began when the cell was  right of centre, and continues until it approaches the  lower

left  hand side of the reference frame.

following damage to the barrier, cells from all layers switch to a pro-

liferative phenotype in order to  effect efficient barrier repair (Varley

et al., 2005). The balance between the paradoxical processes of

regeneration and differentiation is critical to maintaining an effec-

tive urinary barrier, but the mechanisms that regulate urothelial

tissue homeostasis and the switch between quiescent and regen-

erative (self-repair) phenotypes are poorly understood.

We  have developed a  robust and experimentally-tractable cul-

ture system for isolated normal human urothelial (NHU) cells in

which regenerative and functionally-differentiated barrier states

can be replicated (Baker et al., 2014). In the simplest case, NHU
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Fig. 5. Example calculation of cell migration speed (pixels/frame).

Fig. 6.  Direction of travel of cell migration.

Fig. 7.  Example calculation of cell migration persistence over two consecutive frames.

cells maintained in  low calcium, serum-free conditions adopt a

“basal” epithelial cell phenotype, in which cells grow as non-

stratified, highly proliferative and migratory cultures that become

contact-inhibited at confluence (Southgate et al., 1994). By mod-

ifying E-cadherin (adherens) contacts (by switching exogenous

calcium from low [0.09 mM]  to near-physiological [2 mM],  or

by retroviral transduction of a dominant negative E-cadherin

(H-2Kd-E-cad) construct), we have shown that the stability of

E-cadherin cell–cell contacts is responsible for differentially reg-

ulating population growth through the Epidermal Growth Factor

Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and

Phosphatidylinositol 3-Kinase (PI3-K)/AKT signalling pathways

(Georgopoulos et al., 2010). Stable adherens junctions down-

regulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity

to promote proliferation at low cell density. Functional inactiva-

tion of E-cadherin interferes with the capacity of NHU cells to

form stable calcium-mediated contacts and attenuates E-cadherin-

mediated PI3-K/AKT induction, but enhances NHU cell proliferation

by promoting the autocrine-driven EGFR/ERK pathway, which

(via GSK3� phosphorylation and inactivation of the destruction

complex) activates �-catenin-TCF signalling. Furthermore, if EGFR

activity is  blocked, then NHU cells are  seen to  be responsive

to  canonical Wnt  signalling – either provided by addition of

exogenous Wnt  ligand or endogenously if NHU cells are cultured

with palmitic acid to enable post-translational palmitylation of

autocrine-produced Wnt  ligands (Georgopoulos et al., 2014). This

has revealed a  complex, contextual interrelationship wherein the

inherent capacity for self-repair is carried via at least 3 autocrine-

regulated intracellular pathways that interact (“crosstalk”) through

regulation of the activity/availability of key pathway components

(minimally E-cadherin, EGFR, pERK, �-catenin, and pAkt), as sum-

marized in  Fig. 1.

The E-cadherin-defined adherens junction effectively acts as

a  master regulator through which urothelial cells individually
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Fig. 8. Example CGP network with 10 inputs I0-I9, three columns of processing

nodes and one output O1.

“sense” and effect control over their neighbours to regulate

population growth. The system is highly context-specific and self-

regulating, with the local density of cells in the population and

the propensity for cells to form cell:cell bonds affecting recep-

tor  availability and the downstream pathways that are activated.

There is further regulation through specific (both positive and

negative) feedback between the signalling pathways. Disruption

of population homeostasis (eg by  scratch-wounding a  conflu-

ent contact-inhibited culture) results in cells of the population

responding locally. These interactions are  complex and, as we have

shown previously when we revealed the PI3K pathway contribu-

tion (Georgopoulos et al., 2010), can be informed by insight from

modelling.

The observation that NHU cell cultures are proliferative, but

reversibly contact-inhibited at confluence was  used as the basis to

develop the agent-based computational framework called Epithe-

liome (Walker et al., 2004b). The non-deterministic nature of

the Epitheliome was  shown to predict regenerative behaviour in

scratch-wounded monolayers (Walker et al., 2004a)  and predicted

an unidentified growth activation pathway present at low den-

sity in physiological [2  mM]  calcium cultures. This observation led

directly to  the identification of the cell contact-mediated PI3-K/Akt

signalling pathway described above (Georgopoulos et al., 2010).

The current study has been in part motivated by the need iden-

tified in our previous modelling work to accurately classify the

behaviour of in vitro cell cultures under different experimental con-

ditions and ultimately, carries the goal of automated extraction of

rules and parameters to reliably inform computational models.

2.2. The state of the art in the modelling of biological tissues

Previously, we have used agent-based models (ABMs) in  order

to simulate NHU cells at the level of the individual cell,  and make

predictions about the emergent population-level behaviour under

different culture conditions. Briefly, in an ABM, each individual

real world entity (in this case, biological cell) is  represented by

an equivalent virtual entity, or  “software agent” which performs

simple behaviours and interacts with its local neighbours using pre-

programmed rules. We have explored the contact-mediated effects

on cell population growth (Walker et al., 2004b; Walker et al., 2010)

and wound healing (Walker et al., 2004a; Walker and Southgate,

2013)  using an agent-based representation of NHU cells in  low and

physiological calcium conditions.

These models included rules for cell migration, adhesion and

proliferation according to the immediate neighbours and extracel-

lular conditions of individual agents. These rules, as is the case for

other ABMs of cellular systems, were derived from the observa-

tion of small numbers of individual cells in culture using time-lapse

microscopy. Where such data were unavailable, rules were based

on assumptions or  hypotheses relating to  how cells would reason-

ably be expected to  behave under various conditions: the latter

Fig. 9. Automated calculation of cell migration persistence. Average migration speeds are shown in F-distribution form for Control, 10 �M ATP and 50 �M ATP Videos: small

circles  mark the mean of the group and the bars the 95% confidence interval.



Z. Zhang et al. / BioSystems 146 (2016) 110–121 115

Con trol 10u M ATP 50u M ATP
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ig

ra
ti
o
n
 S

p
e
e
d

Fig. 10. Calculation of cell migration persistence using manual tracking.
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Fig. 11. Average migration speed (pixels per  frame).

being drawn from both the literature and “domain knowledge” of

researchers working with the experimental system.

Assumptions and approximations relating to  the qualitative and

quantitative nature of cell behaviour are thus inherent in ABMs

(as with other modelling approaches), giving rise to epistemic

uncertainty in the model predictions. Recent research effort has

focused on the development of uncertainty analysis techniques in

order to attempt to quantify the effects of epistemic and aleatory

(stochastic-based) uncertainty in predictive models (Alden et al.,

2013). Though robust, such methods have the disadvantage of being

computationally intensive, requiring large numbers of simulations

exploring a potentially large parameter space. However, the auto-

mated tracking and evolutionary analysis techniques described

here offer an alternative approach to reducing the problem of

uncertainty in models. If agent rules can be directly informed by

statistically-sound and objective observations of cell behaviour

extracted directly from microscopy image sets, this will increase

confidence in the accuracy of model predictions and substantially

reduce the search space of any subsequent exploration of model

uncertainty.
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Fig. 12. Post-contact migration speed (pixels per frame).
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Fig. 13. In-contact migration speed (pixels per frame).
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Fig. 14. Average angular velocity (migratory persistence) (radians per frame).

2.3. Cell tracking and characterization

A range of cell tracking and characterization methods is

described in the literature. Meijering et al. (Meijering et al.,

2012)  reviewed various computational approaches and quantita-
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Fig. 15. Post-Contact Angular Velocity (radians per frame).
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Fig. 17. Cohesivity (average number of contacts per cell).

tive measures for tracking and characterizing cells using time-lapse

microscopy. Whilst exploring the requirements for tracking cells,

it is clear that a number of stages, including pre-processing of the

source images, appropriate tool selection and verification, need
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Fig. 18. Average cell clump size (number of cells).
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to  be considered carefully to ensure that the approach adopted is

optimal for the particular application under consideration. This is

reflected by the range of other approaches presented in  the lit-

erature: Srinivas and colleagues described a  multimodal imaging

approach to  cell tracking using MRI, fluorescence, SPECT, PET and
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bioluminescence (Srinivas et al., 2013), and although effective, is

resource intensive and time consuming to  the point where it can

become logistically prohibitive. More recent methods have been

proposed which claim efficient tracking performances (such as

(Seeto and Lipke, 2016), (Amat et al., 2015) and (Paintdakhi et al.,

2016)). Other factors, such as the reliability of tracking cells as they

leave and enter the field and depth of view are also of major con-

sideration; Chatterjeea et al. proposed using matching and linking

of bipartite graphs, which they claim does not require an explicit

motion model, is  highly scalable and can effectively handle the

entry and exit of cells from the field of view (Chatterjee et al., 2013).

Having reviewed these existing techniques, there remains a

strong motivation for developing bespoke tools that can be tai-

lored to match the image quality and characteristics of the cell

cultures under consideration. Such an approach also permits the

tuning of tools to ensure that  performance is  adequate to facilitate

analysis of cell cultures within a  practical time scale. Finally, it is

important that the results of this processing are compatible with

other novel characterisation and classification approaches, such as

evolutionary algorithms.

2.4. An introduction to evolutionary algorithms

The evolutionary analysis techniques employed in this work,

Evolutionary Algorithms (EAs) (Chiong et al., 2012) are members of

the artificial intelligence family, or more precisely computational

intelligence, as they depend on a form of learning inspired by Dar-

winian evolution. They are in effect a  number (or population)  of

candidate solutions (individuals) to  a classification problem that are

repeatedly refined (or evolved)  over a  number of iterations (gen-

erations) until a  suitably accurate classifier algorithm is obtained,

or the computational resources have been exhausted. The proce-

dure for finding a  classifier, for example to discriminate one cell

culture from another, can be summarized as follows: A popula-

tion of individuals (candidate solutions) is  randomly initialized. The

effectiveness or fitness of each individual to correctly classify data

previously obtained from the cell cultures is  determined using a

fitness function. The fittest individual (the one with the highest fit-

ness score determined by  the fitness function) is retained and the

others discarded. Copies (or clones)  of this fittest individual are then

generated and subtly modified (or mutated) to form a  new popula-

tion of individuals. The fitness of this new population of individuals

is then evaluated in the same way using the fitness function, and

the  process is repeated over a number of generations until a suf-

ficiently fit classifier is obtained, or the number of predetermined

generations has been reached. Many different types of evolutionary

algorithm have been developed which specify, not only the char-

acteristics of the evolutionary process, but also the representation

of the individual candidate solutions.

3.  Methods

The automated analysis of cell motion comprises the following

sequence of analysis: capturing images of cells in culture at regular

intervals by videomicroscopy, tracking cells within the video on a

frame-by-frame basis using custom-written software followed by

characterization of cell movement through the extraction of specifi-

cally designed features. Each of these stages is  considered in further

detail in the following sections.

3.1. Cell culture and videomicroscopy

Normal human urothelial (NHU) cells were established in  cul-

ture as finite (non-immortalized) cell lines and maintained as

detailed elsewhere (Southgate et al., 1994). Cultures were seeded in

12 well plates and exposed to  100 �M PPADs (pyridoxalphosphate-

6-azophenyl-2′,4′-disulphonic acid) or  0.1% DMSO (as vehicle

control) for 10 min, before addition of 0, 10 or 50 �M ATP in

replicates of four. Cultures were observed using ×4  objective by

differential interference contrast videomicroscopy (Olympus IX81

microscope) in  an environmental chamber with an automated

mechanical stage. Time-lapse videos were compiled from individ-

ual images captured digitally every 5 min  over a 24 h time period.

A sample frame from one such video is illustrated in Fig. 2.

3.2. Cell tracking

Custom-written software was developed to undertake auto-

mated cell tracking using the OpenCV computer vision pro-

gramming library (Bradski, 2000). In  order to  track the relative

movement of cells within a video, each frame undergoes processing

to identify the likely locations of cells. This process takes the raw

videos as an input, performs common pre-processing to each frame,

and then either tries to identify the likely location of cells, or track

the location of previously located cells. These steps are explained in

further detail below, as previously reported by the authors (Zhang

et al., 2015).

Each video frame initially undergoes Gaussian blurring to

remove noise, followed by simple thresholding against a  prede-

termined fixed value, resulting in a binary image separating the

foreground and background (i.e. the cells from the frame back-

ground). Further processing (in the form of a  distance transform)

is then applied to this binary image, resulting in  frames where the

centres of large cells (or groups of cells) are assigned a  large value,

the edge of cells a  lower value, and the background a  value of 0.  In

order to  efficiently estimate the locations of the centres of cells, the

local maxima of the distance images are computed. Local maxima

are then selected from the highest to lowest scoring, with a small

area around each selected maxima being filtered out to  reduce the

number of selections made within the body of a cell. The (x,y) coor-

dinates of the selected maxima are then used as estimations of  the

locations of cells within the frame.

To estimate the location of a  cell within a  frame, given the loca-

tion within the previous frame, the distance image around the

previous cell location is  first multiplied by a  simple Gaussian filter.

The maximal pixel value in  this region can then be used to esti-

mate the new cell location. This approach, although simplistic, is

demonstrated to be effective. The usage of the distance image pro-

motes matches with the centre of cells, whilst the application of

the Gaussian filter means that matches are preferred that are close

to the original location of the cell.

Although the process for tracking cells works well, it is  unable to

consistently identify and track cell locations for the duration of the

videos. In order to detect as many cells as possible, a  large number of

potential cell locations are initially calculated, with many of these

quickly converging to the same locations. Similarly, the cell tracking

process can occasionally fail to track the location of cells within

frames, meaning that if cell detection were only to be performed on

the first frame of the video then many cells would not be  tracked

in the latter parts of the video. These difficulties associated with

tracking cells can be due to cell proliferation (giving rise to new

cells), cell death (the loss of cells), and cells moving in  and/or out

of the field of view.

In  order to  cope with these issues, an approach was adopted

where duplicated cell locations are removed from the tracking pro-

cess and cell detection is performed at regular intervals to find

new candidate locations. This approach is  found to be effective and

results in location data for a  sufficient number of cells over the

duration of the video to adequately describe the cell population.

The entire cell tracking process is summarized in Fig. 3.
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Table 1

Summary of features extracted from  cell culture videos.

Feature No. Feature Name Description

1 Average Migration Speed Average speed of cells over the  period of tracking

2  Post-Contact Migration Speed Average migration speed of cells over three frames after

leaving a clump of cells

3  In-Contact Migration Speed Average migration speed of cells when in contact with five

or  more other cells (a clump)

4  Average Angular Velocity (or

Migratory Persistence)

Rate of change in migration direction of cells between two

video  frames

5  Post-Contact Angular Velocity Rate of change in migration direction of cells after leaving

a  clump

6  In-Contact Angular Velocity Rate of change in migration direction of cells when in a

clump

7  Cohesivity Average number of contacts per cell

8  Average Cell Clump Size Average size of clump in number of cells

9  Average Contact Duration Average duration of cell contact with clump

10  Cell Count Difference between the maximum number of cells tracked

during the  video from the number tracked at the beginning

Fig. 21. Evolved CGP network solution that achieved 94% classification accuracy between cell cultures with and without PPADS. Inputs (0)–(9) represent features 1–10 as

defined  in Table 1.  The bold nodes and paths represent the  active network (whilst greyed-out nodes and paths are not used, but may  have been instrumental in the evolution

of  the classifier in previous generations).

3.3. Feature extraction

Once the location of individual cells has been identified for each

frame of the video in the form of (x,y) coordinate pairs, it is possible

to  extract features with the aim of describing the cell population

behaviour. This was undertaken using the MATLAB programming
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environment and to illustrate the processing applied, a  single cell

from a video analysed is taken as an example to  demonstrate how

features of interest are calculated. The selected cell was  tracked

from a video of NHU cell culture with 50 �M  exogenous ATP. As

this cell was successfully tracked from the beginning to the end of

the video, its path can be shown graphically as depicted in Fig. 4.  It

is interesting to note the significant change in cell behaviour from

the  start of tracking (near the centre of the graph) to  end of track-

ing (when the cell leaves the lower left hand side  of the reference

frame); initially, the cell’s course is  erratic, but subsequently sta-

bilizes. The extraction of other features from the tracking data is

anticipated to help us relate such changes in behaviour to factors

in the environment, such as interactions with other cells, including

intercellular adhesion or  subsequent separation.

3.3.1. Choice of features

The choice of features to  extract from the videos was made

on the basis of characteristics previously associated with cell

behaviour and the computational feasibility of their extraction.

Features can broadly be considered in two groups: (i) those that

describe a cell’s behaviour over the entire time it was  successfully

tracked, and (ii) in terms of behaviour delimited by interaction, or

more specifically, contact with other cells – described here as either

in-contact or post-contact. The number of cells sharing the contact,

or clump size, is  also of interest. From visual inspection of the videos

and for the purpose of this investigation, a  clump has been defined

as a group of five or more cells. The features are summarized in

Table 1; all dynamic features are expressed in  units of pixels per

frame.

Further explanation of how the features Average Migration Speed

and Average Angular Velocity have been defined is given below.

3.3.2. Average migration speed

The speed of an object is  the rate of change of its position. In

this case, the aim is to  obtain the migration speed of a cell from a

video, which can be determined by calculating the number of pixels

travelled over a  certain time interval. The time interval applicable

in  this context is  that between two consecutive video frames, at

a frame rate of one every 5 min. The migration speed is therefore

simply obtained by calculating the Euclidean distance between the

two pairs of coordinates for the cell between consecutive frames.

This is shown graphically in  Fig. 5 where the initial position of the

cell is at coordinates (74,32) and in the subsequent frame, coordi-

nates (75,33). Hence, the distance travelled by this cell over time dt

(5 min), and subsequently, its speed, can be calculated. The migra-

tion speed of all cells tracked during the entire video was  calculated

in the same way.

3.3.3. Average angular velocity (or migratory persistence)

In cell migration, persistence is one of the features in  which

biologists are most interested and can be described as the tendency

of cells to change direction. Hence, obtaining the direction of travel

of the cell in each frame of the video is  essential for calculating

migration persistence.

Fig. 6  shows how the angle of the vector formed from the coor-

dinates of the cell in consecutive frames of the video can be used to

determine the direction of travel. Angular Velocity is defined here

as the rate of change of the direction of travel of a cell over sub-

sequent frames. Fig. 7 illustrates an example calculation over two

consecutive frames.

3.4. Cell culture classification

The aim of extracting features such as those described in Sec-

tion 3.3 is to permit characterization and, hence, classification of

a cell culture. This can be achieved to some degree by simply

Table 2

Example function set providing a lookup table for functions F1 to  F5 used in the

network illustrated in Fig. 8.

Function Arithmetic Operation

F1 +

F2  –

F3  *

F4  /

F5  mean

Table 3

Automated average migration speed and average angular velocity values for a con-

trol culture with no  ATP, a  culture with 10 �M ATP and a  culture with 50 �M ATP.

Cell Culture Video Cell Culture Description

1–4 Control

5–8 10 �M ATP

9–12  50 �M ATP

13–16 Control +  PPADS

17–20 10 �M ATP  +  PPADS

21–24 50 �M ATP  +  PPADS

observing the differences in measurements obtained by  extract-

ing these features from tracking data obtained from the respective

cell videos. However, there are  situations in  which such a  simple

approach is  insufficient to provide a  full understanding of the dif-

ferences between cell cultures (eg following drug treatment). The

relationship between the features defined in Table 1 is  complex and

not well understood. In such situations, conventional, statistically-

based classifiers do not always provide the best results and for

this reason a computational intelligence approach was  applied, in

this case an evolutionary algorithm. Such approaches also have the

advantage of being able to  provide an insight to the characteristics

of the cell culture that leads to this classification.

3.4.1. Application of evolutionary algorithms

For the work described here, Cartesian Genetic Programming

(CGP) (Miller and Turner, 2015)  was used: a  form of  Genetic Pro-

gramming that  comprises a  fixed, non-cyclic directed graph, as

shown in  Fig. 8.  This graph is  effectively a  network of processing

elements that can be reconfigured during the evolutionary pro-

cess in two  fundamental ways: by selecting the function for each

node from a  predefined list, and specifying to which other nodes

each input and output of the node are  connected. In  the exam-

ple shown in  Fig. 8,  the features 1–10 extracted in  Table 1 are

presented to inputs I0-I9. These are then processed by the follow-

ing three columns of nodes, each executing an arithmetic function

taken from a  set F1...F5, typically primitive arithmetic operations

such as illustrated in Table 2; the result of the network is presented

at output O1.

There are two ways in which CGP provides an advantage

over other classification techniques. First of all, for highly non-

linear complex data sets, such as those found in  measurements

of dynamic behaviours, CGP has been shown to evolve high per-

formance classifiers (Lones et al., 2014). Secondly, unlike other

machine learning techniques, once a  high performing classifier has

been evolved, a  mathematical expression defining this classifier

can be easily obtained by decoding the resulting CGP network. As

previously mentioned, this can provide valuable insight into those

features obtained from the dynamics of the cell culture that play a

defining role in its classification.

4. Results

In  total 24 time-lapse videos were generated from six  classes

of NHU cell cultures comprising combinations of control cultures,
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Table 4

Automated average migration speed and average angular velocity values for a  control culture with no  ATP, a  culture with 10 �M ATP  and a  culture with 50 �M ATP.

Cell Culture Video Average Migration Speed (pixels/frame) Average Angular Velocity (rads/frame)

Control1 3.52 1.31

Control2 3.75 1.35

Control3 3.45 1.37

Control4 3.56 1.36

10  �M ATP1 3.04 1.52

10  �M ATP2 3.09 1.39

10  �M ATP3 3.08 1.52

10  �M ATP4 3.01 1.46

50  �M ATP1 2.00 1.79

50  �M ATP2 2.22 1.74

50 �M ATP3 2.06 1.77

50 �M ATP4 1.83 1.85

with and without ATP and PPADS, as detailed in  Table 3, and were

analysed using the methods described above in Section 3.

4.1. Evaluation of results

An initial evaluation of the results obtained considered a subset

of three classes of NHU cell cultures: (i)  a  control culture with no

ATP; (ii) a culture with 10 �M ATP; and (iii) a culture with 50 �M

ATP. The average cell migration speeds and average angular velocity

for each video were calculated and are presented in Table 4.

By applying analysis of variance (ANOVA), it can be seen in Fig. 9

that the separation between the three classes for migration speed

was statistically significant. Verification of these results was con-

firmed by comparing with manual tracking of 15 random cells for

each experimental condition as shown in Fig. 10.  Similarly, results

for angular velocity, shown in  Fig. 10, also demonstrated good sep-

aration between the three sets of culture conditions.

4.2. Full feature set results

In addition to  cell migration speeds and migratory persistence,

we are particularly interested in the nature of the contact between

cells. This relates to  the physical extent of the contact that forms

between them and to what extent interacting cells make transient

or more sustained contacts. The features, previously defined in

Table 1, that characterize the behaviour of cells whilst in contact

and post-contact throughout the videos are shown in Figs. 11–20.

4.3.  Application of evolutionary algorithms

It can be seen in the results presented in Section 4.2 that cell cul-

tures containing PPADS cannot be clearly distinguished from those

cultures without PPADS in every case. As the relationship between

the features is complex and not well understood, an evolutionary

algorithm was used in an attempt to  generate an effective classifier

and provide some insight on the role of the features in the classifi-

cation. A CGP network was used, described by  the parameters listed

in Table 5. In total, five runs of 10 separate experiments were under-

taken, achieving an average accuracy of 91.4% on independent test

set data.

An evolved CGP network that successfully classifies cell cultures

with and without PPADS to an accuracy of 94% is  shown in  Fig. 21.

The features defined in Table 1 were presented to the inputs of the

network and the value obtained at the output is  used to  obtain the

classification result.

The added advantage of applying evolutionary algorithms in  this

way is that the evolved network can easily be described as a  con-

ventional mathematical expression. This provides valuable insight

into the features most significant in the classification process and

their relationship. For example, in  the example provided in Fig. 21,

it can be seen that this particular classifier is  dependent on inputs:

Table 5

Parameters specifying the CGP network used to evolve classifiers to discriminate

between cell cultures with and without PPADS.

Parameter Value

Number of inputs 9

Number of outputs 1

Number of columns 70

Number of rows 1

Mutation rate 1.0%

Population size 10

Function set

Arithmetic operators: +-* / SQR SQRT CUBE

Constants: 0 1

Logical operators: AND OR NAND NOR NOT

Number of generations 10,000

(0),  (5), (6) and (7), which, with reference to Table 1,  can be equated

to  features: average migration speed, in-contact angular velocity,

cohesivity and average cell clump size, respectively.

5. Discussion and conclusions

This paper has described a novel approach to the character-

ization and classification of replicate cell cultures through the

application of cell tracking to  time-lapse videos. A number of  fea-

tures have been proposed that provide a means of describing cell

behaviour in  terms of migration speed and migration persistence,

both while in  contact with other cells and post-contact. This pro-

vides a  unique opportunity to infer behaviour with respect to cell

contact in  a  fully automated way. It  has also been demonstrated

how evolutionary algorithms can be  used to successfully classify

cell cultures even when this is  not clearly indicated by  considering

the extracted features alone.

In the specific example of NHU cells studied here, we previously

reported that in  scratch assays, where the repair of damage inflicted

on a  confluent population of cells is monitored to  the closure of the

wound, the effect of exogenous ATP was to  enhance wound repair.

In support of these observations, inhibition of ATP breakdown

was shown to enhance the rate of repair, whereas PPADs, a  selec-

tive  antagonist of the ATP-activated P2X receptor, was  inhibitory

(Shabir et al., 2013). These observations led us to  predict that  ATP

had a  positive effect on cell migration and it was  unexpected here

that in sparse cell cultures, the effects of exogenous ATP was to

reduce migration speed. These observations, along with the equiv-

ocal effect of the P2X antagonist PPADS, suggests that the response

of NHU cells to ATP may  be more context dependent than hitherto

thought and other urothelial-expressed ATP-modulated receptors,

such the P2Y G protein-coupled receptors (Shabir et al., 2013) may

be relevant. The novel method of analysis presented in this paper

provides the means by which predominant affected parameters and

the mechanisms responsible can be fully examined in  an automated

and objective way.
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