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Many diurnal photoreceptors encode vast real-world light changes effectively, but how

this performance originates from photon sampling is unclear. A 4-module biophysically-

realistic fly photoreceptor model, in which information capture is limited by the number

of its sampling units (microvilli) and their photon-hit recovery time (refractoriness),

can accurately simulate real recordings and their information content. However,

sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also

cause adaptation by reducing the bump/photon gain when multiple photons hit the

same microvillus simultaneously. Here, we use a Random Photon Absorption Model

(RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to

quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how

quantum-gain-nonlinearity already results from photon sampling alone. In the extreme

case, when two or more simultaneous photon-hits reduce to a single sublinear value,

quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the

quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in

light adaptation depends upon the likelihood of multi-photon-hits, which is strictly

determined by the number of microvilli and light intensity. Specifically, its contribution to

light-adaptation is marginal (≤1%) in fly photoreceptors with many thousands of microvilli,

because the probability of simultaneous multi-photon-hits on any one microvillus is low

even during daylight conditions. However, in cells with fewer sampling units, the impact

of quantum-gain-nonlinearity increases with brightening light.

Keywords: photoreceptor, light adaptation, Random Photon Absorption Model (RandPAM), sublinear summation,

quantum-gain-nonlinearity, photon sampling, multi-photon-hits

INTRODUCTION

Fly photoreceptors can sample light changes across a truly astronomical input range—from a
few photons in nightly shadows to billions in direct sunlight (Van Hateren, 1997)—and adapt
this information in their limited (40–60mV) output range. Although mechanistic understanding
of photoreceptor adaptation is still incomplete (Hardie and Postma, 2008), recent research has
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elucidated its fundamental framework. Here, the biophysical
fly photoreceptor model, which successfully uses stochastic
sampling rules for simulating responses of real cells to a vast
range of light stimuli (Song et al., 2012; Song and Juusola, 2014),
has been influential. It utilizes a bottom-up approach to integrate
signals from biophysically realistic sub-modules. Akin to a real
fly photoreceptor, this design incorporates many thousands of
independent photon sampling units (microvilli), which jointly
act as the cell’s photo-sensitive light-guide, the rhabdomere (Blue
part in Figure 1B; Boschek, 1971).

Experiments indicate that each microvillus houses a full set
of phototransduction reactants, from the rhodopsin molecules
to the light-gated ion channels (Hardie and Postma, 2008).
Because phototransduction reactions are stochastic and
compartmentalized in single microvilli, they convert unitary
photon-hits into unitary bioelectric responses, Quantum Bumps
(QB), with a non-zero probability. Such information sampling
can be modeled as a two-step process. First, a microvillus
samples the photon(s) hitting it (Figure 1C). Second, if its
internal reactions progress successfully, the absorbed photon
energies are transduced into QBs (Figure 1D) (Hecht et al., 1942;
Fuortes and Yeandle, 1964; Howard et al., 1987; Henderson et al.,
2000). Most notably, each QB leaves a microvillus refractory
for 50–300ms, during which it cannot respond to a new
photon. Finally, the QBs, arising from all the microvilli in the
rhabdomere, sum up the graded macroscopic Light Induced
Current (LIC) (Dodge et al., 1968; Juusola et al., 1994; Juusola
and Hardie, 2001), which, in turn, drives the photoreceptor’s
voltage response.

Simulations imply that two mechanisms largely govern a fly
photoreceptor’s light adaptation: (i) its sample rate (QB rate)
saturates, as more microvilli become refractory; and (ii) its
sample waveform (QB size) shrinks due to Ca2+-dependent
feedback and reduced electromotive force as the cell depolarizes
(Juusola and Hardie, 2001; Song et al., 2012). Our model
predicts that in normal daylight each mechanism contributes
about 50% (Song et al., 2012; Song and Juusola, 2014). Notably,
these two modes of adaptation (i and ii) are distinct from that
of an alternative explanation, the sublinear bump summation
hypothesis, which was also introduced recently (Pumir et al.,
2008).

The sublinear bump summation hypothesis states that when
more than one photon hits the same microvillus at the
same time, multiple rhodopsins can be activated, but the
resultant QB will be smaller than the sum of those produced
independently. This could reduce the QB/photon gain by several
folds (Pumir et al., 2008). However, the problem is that the
likelihood of simultaneous multi-photon-hits has not been
quantified, and therefore, their contribution to light adaptation is
unknown.

The main aim of this paper is to quantify the probabilities for
two or more photons hitting the same microvillus at the same
time, and to elucidate what these events would mean to gain
control in light adaptation. We do this by using the Random
Photon Absorption Model (RandPAM) for a fly photoreceptor.
RandPAM constitutes the first module of the complete fly
photoreceptor model (Song et al., 2012; Song and Juusola,

2014). The complete model simulates the QB outputs of 30,000
microvilli, which sum up realistic whole-cell responses to any
light intensity time-series stimulus (Figure 1 and Appendix).
This was only possible because RandPAM provided realistic
photon sequence input to all the microvilli. Here, we give
RandPAM’s underlying assumptions and describe its derivation
in detail.

In this paper, RandPAM is used to analyze the momentary
input-output gain across the microvilli population, by
calculating their average quantum charge. This is defined
as the ratio between the total output charge of all bumps
and the total number of incoming photons. Importantly,
this definition removes the temporal dynamics from the
analysis. We show how gain control emerges from photon
sampling alone when a given photoreceptor has a finite
number of sampling units (microvilli). This means that multi-
photon-hits and their sub-linear summation predetermine an
elementary form of gain control, which exists even without
a phototransduction cascade adapting the subsequent QB
waveform.

RandPAM treats each microvillus as an individual photon-
sampling unit, and employs a compound binomial process
to describe how photons are absorbed by a given number
of microvilli. This approach further allows us to vary
parametrically the key structural constraints, such as the
number of microvilli, and quantify their impact on light
adaptation. We show that for photoreceptors with many
microvilli, the probability of simultaneous multi-photon-hits
is minute, and thus these coincidences affect input-output
gain only marginally. A typical fly photoreceptor has tens
of thousands of microvilli (Boschek, 1971), each of which
rarely experiences simultaneous multi-photon-hits, even in
bright daylight (≤ 1%). However, for a photoreceptor with
significantly fewer sampling units, such as the stick insect
(Carausius morosus) (Frolov et al., 2012), multi-photon-
hit induced gain control could play a bigger role in light
adaptation.

RANDOM PHOTON ABSORPTION MODEL
(RandPAM)

Fly Photoreceptor Structure
A rhabdomere (Figure 2) lies on a fly photoreceptor’s
apical surface. Each of its microvilli can be treated as an
independent photon-sampling unit, and their collective photon
absorptions define a photoreceptor’s photon capture dynamics.
Photons (dots) fall stochastically on to the stacked layers
of microvilli (bars). A microvillus may thus be hit by no
(A), one (B), two or multiple photons at once (C). Photons
may also travel across one layer (D), but be captured at
another (E).

Rhabdomeres of different species have different numbers
of microvilli, which likely reflects each species’ structural
adaptations to different lifestyles and habitats. For example,
the outer photoreceptors (R1–R6) of a dawn/dusk-active slow-
flying fruit fly (Drosophila melanogaster) have 30,000 microvilli,
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FIGURE 1 | Schematic of the biophysically realistic Drosophila photoreceptor model. (A) The complete model’s (Song et al., 2012) first three modules

represent the phototransduction in the rhabdomere, which transduces light input (a dynamic flux of photons) into macroscopic output, light-induced current (LIC). (B)

The rhabdomere contains 30,000 photon sampling units, microvilli (blue bristles). Each microvillus contains full phototransduction cascade reactions, and can

transduce single photon (green dots) energies into unitary responses, quantum bumps (QB) of variable amplitudes and latencies. (C) In the 1st module, photons are

randomly distributed over 30,000 microvilli (each row of open circles indicate a photon sequence absorbed by a single microvillus over time). (D) The light input (green

trace) can be reconstructed by adding up all the photons distributed across the microvilli. (E) In the 2nd module, the successfully absorbed photons in each

microvillus are transduced into QBs (a row of QB events). In each microvillus, the success of transducing a photon into a QB depends upon the refractoriness of its

phototransduction reactions. The photons hitting a refractory microvillus cannot evoke QBs, but will be lost. This means that a microvillus cannot respond to the next

photons until its phototransduction reactions have recovered from the previous photon absorption, which takes about 50–300ms. (F) In the 3rd module, QBs from all

the microvilli integrate the dynamic macroscopic LIC.

whereas those of a midday-active fast-flying blowfly (Caliphora
vicina) have 90,000 (Song et al., 2012). Theory and simulations
suggest that a photoreceptor’s total microvillus tally may
constrain its signaling performance (Howard et al., 1987; Song
et al., 2012; Song and Juusola, 2014).

In the next sections, we explore the structural limits of
fly photoreceptors’ encoding capabilities further. We ask: (i)
whether an elementary form of gain control could directly
result from the sampling process alone, (ii) and, how much can
sublinear bump summation contribute to their light adaptation.
But before we answer these questions, we define the underlying

assumptions, and derive the relevant probabilities involved in
photon sampling.

Light Absorption by Poisson Process
Assumptions
For deriving the light absorption statistics of a fly photoreceptor,
the following assumptions were made explicitly:

(1) The input to the model is the number of photons absorbed
by a photoreceptor. For each light stimulus, we assume
that 100% of its photons hit rhodopsin molecules, and
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FIGURE 2 | Schematic of photon absorption process by a population of

microvilli in a fly photoreceptor. Microvilli (blue bristles) are stacked densely,

layer by layer, at the side of the cell, forming the light-guide (rhabdomere). Light

input at a time bin, 1t, is the number of photons to be absorbed. These

photons (green dots) enter the rhabdomere from above, propagate through its

length, and are randomly distributed over 30,000 microvilli. Photons either hit a

microvillus, being absorbed, or miss it, continuing to travel down to the next

layers for possible absorption. (A–E) illustrates how photon absorption

dynamics can differ at a particular time. (A) A microvillus that does not capture

a photon; (B) A microvillus that captures one photon; (C) Two photons fall

onto the same microvillus at the same time; (D) A photon can pass one

microvillus layer, but (E) is captured at another layer. Light absorption

statistics, which describe the probabilities of (A–E), follow Poisson distribution,

if the assumptions in Section Light Absorption by Poisson Process are made.

these are converted to meta-rhodopsins. We further assume
that the number of photons is fixed at a given intensity.
This assumption is made specifically because we aim to
quantify how the internal photon transductions constrain
light adaptation, where the Poisson variations in the external
light flux play no role.

(2) The light input only varies in intensity (quantified as
photons/s). Although each photoreceptor type has its own
specific photopigment, rhodopsin, with specific wavelength
absorption probabilities that define its spectral sensitivity,
assumption two is justified. Experiments have shown that
each absorbed photon elicits a similar QB, irrespective of the
energy that triggered it (Wu and Pak, 1975). This observation
follows the principle of univariance (Rushton, 1972),
here meaning that a photoreceptor’s spectral sensitivity
does not influence the QB waveform size, but only its
absorption probability (Wu and Pak, 1975). Accordingly, the
effective light intensity can be estimated with the specific

photoreceptor type’s spectral sensitivity function. Or, it can
be gauged experimentally by counting QBs in dim light.
From these counts, QB rates at brighter conditions can be
extrapolated, without considering the wavelength, as we did
in this study.

(3) All microvilli absorb photons independently. In the
rhabdomere, as light travels down the stacked microvillus
array, slightly fewer photons should reach the bottom than
the top layers (Figure 1B). Therefore, the bottom microvilli’
photon hits depend upon the absorption of the layers above.
For simplicity, this argument is ignored in the following
calculations.

(4) All microvilli in the rhabdomere have the same photon
absorption probability. Microvillus lengths vary in the
rhabdomere (Figure 1B). Microvilli shrink along the
longitudinal axis and taper across the same cross-section,
being longest in the middle. Presumably then, the smaller the
microvillus, the smaller is its photon absorption probability.
Thus, the top and middle microvilli’ photon absorption
probabilities are perhaps larger than those at the bottom
or at the side (Stavenga, 2003). This assumption simplifies
calculations by eliminating the role of geometry in the
microvillar array.

(5) The number of photons absorbed within one microvillus at
any time is independent of the past events. This assumption
follows the observation that the quantum bump occurrences
seem random and independent (Fuortes and Yeandle, 1964;
Henderson et al., 2000).

Derivation
Given the assumptions above, if we define a random variable x
as the number of photons absorbed by one microvillus at one
particular time-bin, x follows a binomial distribution:

P(x) =

(

Nph

x

)

(
1

Nu
)x (1−

1

Nu
)Nph−x, (1)

where Nu is the number of microvilli in the rhabdomere (in a
Drosophila R1–R6 photoreceptor, Nu = 30,000), and Nph is the
number of photons in the light pulse at one time-bin, 1t.

Equation (1) can be used to describe the photon absorption
probability of a single microvillus. This is because the average
probability that one photon hits a given microvillus is 1

Nu
, and

that x photons hit the same microvillus is
(

1
Nu

)x
. The probability

that the other Nph − x photons miss this microvillus is (1 −

1
Nu

)Nph−x. In addition, there are

(

Nph

x

)

ways to select this set

of x photons.
Subject to certain conditions, approximations could be made

to P(x) (Bevington and Robinson, 2003). If Nph and Nu are much
larger than x, then:

P(x) ≈
(Nph)

x

x! ( 1
Nu

)x(1− 1
Nu

)Nph

≈ 1
x! (

Nph

Nu
)xe−

Nph
Nu

=
(λM)xe−λM

x!

, (2)
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where λM =
Nph

Nu
is the average number of photon-hits to

each microvillus in the rhabdomere, assuming equal photon
absorption probabilities for all microvilli (assumption 4). The
result is a Poisson distribution, and the approximation in
Equation (2) is valid if x ≪

√

Nph, x ≪ Nu, and 1 ≪ Nu are
satisfied.

In practice, all approximations made in Equation (2) are valid
near the region of x = λM, if Nph ≪ N2

u . In this situation, both

x = λM =
Nph

Nu
≪Nu and x≪

√

Nph are satisfied. If x differs much

from λM, P(x) is essentially zero anyway. The conditionNph≪N2
u

holds for most fly photoreceptors. For a typicalDrosophila R1-R6
photoreceptor, it is well satisfied even at very bright intensities.
Direct sunlight may carry 107−9 photons/s to a photoreceptor’s
receptive field (Warrant and Mcintyre, 1992), but when using a
reasonable integral time interval (less than 5ms), the sampled
number of photons is: Nph < 5× 106 ≪ N2

u = 9× 108.
For the ease of calculation, a random photon absorption

model based on Poisson statistics is sometimes better than that
based on binomial statistics, especially at dim light conditions
(Nph < 103 photons/s). If the input were sampled at 1 kHz and
each 1ms were considered as one time-bin, the average number
of photons absorbed by the photoreceptor at each time-bin would
be less than one (x < 1). This situation would cause problems
when calculating the absorption probabilities according to
Equation (1).

Realization of Random Photon Absorption Model

(RandPAM)
In the section Derivation, a single microvillus is viewed as
an independent photon-sampling unit. Following assumption
(3) and (4), the random number of absorptions for different
microvilli (xm,m = 1, 2 . . . . . . . sNµ) are independent,
identically distributed Poisson random variables with mean

λM =
Nph

Nu
. However, there is an important physical constraint,

which prevents us from calculating the number of absorbed
photons for each microvillus with the Poisson distribution.
Because we assume that the total number of incoming
photons is a known fixed number (assumption 1) and that
all the photons become absorbed, the photon-hits of all
microvilli must add up to the input level, but not be higher

(Pro(
∑Nu

m=1 xm > Nph) = 0). This constraint would
be violated if photon absorptions for all microvilli were
realized through a Poisson distribution. Because the sum of
independent Poisson variables still follows Poisson distribution,
the mean of which equals to the sum of the individual means.

This gives
∑Nu

m=1 xm ∼ Poisson(Nph), which means that
the total number of absorbed photons may be higher than

the total number of incoming photons (Pro(
∑Nu

m=1 xm >

Nph) > 0).
Here, we propose a practical way to solve this problem

by considering the whole rhabdomere as a single unit. From
Equation (1), one can calculate P(x), which is the probability
of a single microvillus being hit by (i.e., it absorbs) x photons.
The distribution that describes the number of microvilli that
absorbs exactly x photons is again binomial, depending upon

the value of x:

Pro(y | x) =

(

Nu

y

)

Py (x)(1− P(x))Nu − y, (3)

wherey is the number ofmicrovilli that absorbs exactly x photons.
One could denote such a distribution as a compound binomial

distribution: y|x ∼ B(Nu, P(x)), and x ∼ B(Nph, 1/Nu).
Therefore, the expected number of microvilli that absorbs exactly
x photons is NuP(x). This formula was previously used in
Hochstrate and Hamdorf (1990) to calculate the number of
activated microvilli for a blowfly photoreceptor in different light
conditions. Here we defined the underlying assumptions and
provided the corresponding derivations. And, we next use it
to practically realize the stochastic photon absorption process
and to decide how many photons each microvillus absorbs at
one time-bin. The idea is to uniformly draw NuP(x) microvilli
to absorb x photons, whereuponx varies from 1 to xn (xn is
the maximum number that lets NuP(xn) > 1). In theory, if a
random variable (x) were drawn from a Poisson distribution, x
would not be limited by xn. However, in the simulations, this
digitization limit exits: the minimum number of microvilli to
absorb x photons is one.

An alternative (easier) way to compute the various
probabilities of interest is by modeling the photon absorption
process as a multinomial process. At each time incident, the
distribution of Nph photons over Nu microvilli is multinomial
with size parameter equal toNph, and probability vector of length
Nu with each element equal to 1/Nu.

Extension to Continuous Light Condition
Assuming that photon-hits to a microvillus are independent
across the time-bins, the extension to continuous light stimuli is
straightforward. One can simply repeat the same light absorption
process at each time-bin. However, the problem that still needs
addressing is the sampling rate of the input stimuli; how long
should the selected time-bin be?

As light intensity (input) increases, a photoreceptor’s voltage
response (output) becomes faster, utilizing a broader temporal
frequency bandwidth. For slow-flying Drosophila, at bright light
intensities at 25◦C, the 3 dB cut-off frequency of its R1–R6
photoreceptors (the frequency at which the gain is the half
maximum) is about 25Hz. Accordingly, these cells respond little
to light contrast changes above 100Hz (Juusola and Hardie,
2001). Hence, by sampling light input at 200Hz or above
should adequately capture information in these photoreceptors’
dynamical responses. But for a fast-flying killer fly (Coenosia
attenuata), light input should be sampled minimally at 600Hz
to capture information in its photoreceptors’ much quicker
responses (Gonzalez-Bellido et al., 2011; Song et al., 2012). In this
paper, light inputs were sampled at 1 kHz, making 1ms as the
standard time-bin.

Estimating Light Input
WhenRandPAM is used to simulate real photoreceptor output, as
we did in our previous publications (Song et al., 2012; Song and
Juusola, 2014), careful calibration of the light input to RandPAM
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becomes very important. The light input to the RandPAM is the
number of photons activating rhodopsin molecules per time bin.

The question is - how to estimate the total number of
absorbed photons as precisely as possible? Considering the
attenuating factors down the propagating light path, it is
hard to estimate the number of absorbed photons from the
photons emitted by the light source. Nevertheless, this number
can be extrapolated more conveniently by using intracellular
photoreceptor recordings. After prolonged dark-adaptation, QBs
can be counted to continuous dim illumination at each second
and used for extrapolating the photon-hit rates for brighter light
levels (Laughlin and Lillywhite, 1982; Juusola et al., 1994; Juusola
and Hardie, 2001). Evidence suggests that in dim conditions, the
photon-to-QB relationship is statistically one-to-one, and that
QBs increase linearly with light intensity, yet, this ratio saturates
progressively at brighter intensities (Laughlin and Lillywhite,
1982; Juusola et al., 1994; Juusola and Hardie, 2001). Shot noise
analyses of voltage responses inDrosophilaR1-R6 photoreceptors
also imply that the QB rate can be extrapolated linearly over dim
and intermediate intensities, covering about 3 log units (Wu and
Pak, 1978; Juusola and Hardie, 2001).

Although we use QB counts to determine the light input to
the RandPAM, this method has its own limitations. The counts
may include rare spontaneous bumps (<1/min in a Drosophila
R1-R6 photoreceptor Henderson et al., 2000). Furthermore,
nonlinearities in photon absorption can be caused by the
pupillary feedback control. Here, the intracellular pupil reduces
the efficiency of photon-activating a rhodopsin molecule with
brightening, as more photons are captured by the screening
pigments (Vogt et al., 1982).

All these extrinsic and intrinsic changes in the absorption
spectra and efficiency may bias the extrapolated photon rates. As
this study assesses steady-state adapted photoreceptors, we can
ignore nonlinear optical attenuation effects, such as intracellular
pupil activation. Nevertheless, while the light intensity values
(as extrapolated from the bump counts) may overestimate the
photons-hits, these provide the best available and reasonably
realistic photon rates (photons/s) for different light inputs,
irrespective of the number of QBs they may evoke.

RESULTS

A microvillus can convert a single photon to a QB. But what
happens when two or more photons hit it simultaneously?
Computational studies imply that a bigger QBmight be produced
(Figure 3A), but the gain between the QB size and the number of
photons would be reduced by several folds (Figure 3B) (Pumir
et al., 2008; Song et al., 2012). In Figure 3B, we used the electric
charge caused by a QB to define its size, which is the integral
of a bump waveform. Because simultaneous multi-photon-hits
are taken to induce sublinear summation in QB production,
we define it here as quantum-gain-nonlinearity. In this section,
we suggest how quantum-gain-nonlinearity may influence a
photoreceptor’s gain control in light adaptation.

We use the gain between the LIC output charge (Cout) to
the light intensity input (Lin) to quantify a photoreceptor’s

input/output-relationship. For a discrete light pulse, Lin is
composed of Nph photons, and Cout is the summation of all
excited QB charges. If we use x to denote simultaneous photon-

hits to a single microvillus, and use C
QB
x to denote the x-

photon elicited QB charge in that microvillus, then, Cout =
∑xn

x=1 NxC
QB
x . Here Nx is the number of x-photons elicited QBs

across the whole microvilli population, and xn is the maximum
number that lets NuP(xn) > 1. It then follows that:

Cout

Lin
=

xn
∑

x=1
NxC

QB
x

Nph
. (4)

In general, there can be three cases for the multi-photon-
hit-induced QB production: linear summation, sub-linear
summation, and no summation (Figure 4). In linear summation,
x-photons elicit a QB, in which size (CQB

x ) is equal to x times
single photon induced QB size (CQB

1 ). In the other extreme, there

is no summation in QB production, andCQB
x equals toCQB

1 . More
realistically, sublinear summation takes place in QB production,
i.e., the resultant QB is bigger than a single photon response,

but smaller than the sum of those produced independently. CQB
x

is then always bounded between CQB
1 and xCQB

1 (gray areas in
Figures 4B,C):

CQB
1 ≤ CQB

x < xCQB
1 , x ≥ 1 . (5)

Substitute Equation (5) to Equation (4), Cout/Lin is lower
bounded in the case of no-summation:

Cout

Lin
≥

NQBC
QB
1

Nph
=

NAC
QB
1

Nph
, (6)

where NQB is the total number of QBs, and NA is the total
number of activated microvilli. As multi-photon-hits induce only
one QB, it follows that NQB is equal to NA, which is less or
equal to Nph.

From Equation (6), the photoreceptor’s input-output gain

for a discrete light pulse (Cout
Lin

) is lower bounded by
NAC

QB
1

Nph
,

whose value is determined by two factors, NA/Nph and CQB
1 ,

respectively.NA/Nph is the ratio between the amount of activated
microvilli (NA) and the number of incoming photons (Nph)
at a particular time bin (1t, 1ms here). This is the gain
caused by the microvillar sampling process alone (Figure 1B),
where the only constraint is that multi-photon-hits induce
just one quantum bump, irrespective of its shape. On the

other hand, CQB
1 is determined by the bump shape, which

can be viewed as an amplification of a single photon by the
second-messenger signaling pathway in the phototransduction
cascade.

Cout/Lin is upper bounded in the case of linear summation:

Cout

Lin
=

xn
∑

x=1
NxC

QB
x

Nph
<

C
QB
1

xn
∑

x=1
xNx

Nph
≈

NphC
QB
1

Nph
= C

QB
1 . (7)
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FIGURE 3 | Quantum-gain-nonlinearity induced by sublinear bump summation in multi-photon elicited QBs. Here, quantum-gain-nonlinearity is illustrated

through multi-photon evoked QBs, which were calculated by using the full Drosophila photoreceptor model, see Song et al. (2012). (A) Bigger QBs are evoked by

multi-photon-hits. (B) The quantum gain (QB charge/photons) decreases nonlinearly. QB charge was calculated by integrating QB waveform in (A), and its unit is fC

(femto coulomb).

To focus on the role of photon sampling on gain control, we
define Cout

LinC
QB
1

as the normalized gain. This has an upper bound

value of 1 in linear summation, and a lower bound value of
NA/Nph in no summation. More often, sublinear summation
occurs in QB production, and the normalized gain is bounded
between NA/Nph and 1 (Figure 4B).

Gain Control Induced by a Sampling
Process
Markedly, the lower bound of the system’s normalized gain
(NA/Nph) is not influenced by the QB shape or any subsequent
phototransduction processes, but is purely determined by photon
sampling (the counted hits). From Section Realization of
Random Photon Absorption Model (RandPAM), we obtain a
theoretical formula for NA/Nph (random variable x is not limited
by xn):

NA

N
ph

=

Nu(
∑

x≥1
P(x))

Nph
=

1− P(0)

λM
=

1− e−λM

λM
, (8)

where the function(1 − e−λM )/λM is monotonic decreasing
with respect to λM > 0. Owing to multi-photon-hit
probabilities, photon sampling causes a nonlinear function of
λM, which varies with the light intensity and the number of
photoreceptor microvilli. For a given light intensity, λM →

0 with more microvilli, and the normalized gain (NA/Nph)
approaches 1, realizing linear photon sampling (Figure 4D). On
the other hand, NA/Nph decreases with increasing λM . For a
cell with a fixed number of microvilli, the normalized gain
(NA/Nph) decreases with increasing light intensity, providing
an elementary form of gain control in light adaptation
(Figure 4E).

Multi-photon Hit Rates
To quantify multi-photon induced quantum-gain-nonlinearity
effects, we next calculate the likelihood for simultaneous

multi-photon-hits to the same microvillus, and then
estimate how the results depend upon the amount of
microvilli.

Following the Poisson distribution, the multi-photon-hit
probabilities depend directly upon the photon arrival rate. To
illustrate this, we first simulate the photon arrivals to one
microvillus. The key parameter is λM = Nph/Nu, which is the
average number of photon-hits to eachmicrovillus over one time-
bin. The results are shown in Figure 5. When λM is less than
1, discrete photon-hits are detected over time (Figures 5A,B).
The smaller the λM, the fewer photon-hits there are in a fixed
time interval. When λM is greater than 10, photon-hits fluctuate
around the mean (Figures 5C,D). Under such conditions, the
probabilities of multi-photon-hits are already approximating
100%.

The percentage of multi-photon-hits (PM) can be calculated
by Equation (9):

PM =
P(x > 1)

P(x ≥ 1)
=

1− P(0)− P(1)

1− P(0)
= 1−

λM

e−λM − 1
. (9)

Clearly, PM increases with λM, which is proportional to
incoming photon rate and is in reciprocal relationship to the
number of microvilli. So, multi-photon-hit-induced quantum-
gain-nonlinearity should play a larger role with fewer microvilli,
particularly at bright daylight, when multi-photon-hits are
far more probable. With vast amount of microvilli, most of
them experience only single-photon-hits and the quantum-gain-
nonlinearity influences little the summed dynamics. Table 1

lists the multi-photon-hit percentages for the specified Nph and
Nu pairs. For example, a Drosophila R1-R6 photoreceptor has
30,000 microvilli. In dim and crepuscular conditions (Nph =

10 and Nph = 100, respectively), the percentage of multi-
photon-hits on its microvilli is less than 0.17% (bold values
in Table 1); thus, the quantum-gain-nonlinearity would have
negligible effects on encoding. Even at very bright light levels
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FIGURE 4 | Normalized gain and quantum-gain factor are bounded and change sublinearly with light intensity and number of microvilli. The normalized

gain is the actual gain divided by the linear gain (
Cout

LinC
QB
1

). The quantum-gain factor is defined as the difference between the normalized linear gain and the normalized

actual gain (1−
Cout

LinC
QB
1

). (A) There are three cases for multi-photon-hits induced QB production: linear summation (blue), sub-linear summation (gray), and no

summation (red). In the linear summation, x-photon induced bump charge (CQBx ) is equal to x times a single photon induced bump charge (CQB1 ). The other extreme

case is that no summation happens in QB production; thus, CQBx equals to CQB1 . More often, sublinear summation occurs in QB production, where CQBx is bounded

between CQB1 and xCQB1 . (B) Corresponding normalized gains (for the three cases in A). (C) Corresponding quantum-gain factors. Linear summation provides the

upper bound for the normalized gain and the lower bound for the quantum-gain factor (blue lines in B,C). No summation provides the lower bound for the normalized

gain and the upper bound for the quantum-gain factor (red lines in B,C). When sublinear summation occurs in QB production, normalized gain and quantum-gain

factor fall in the gray areas in (B,C). The black lines in (B,C) show a practical example, using CQBx values calculated from Figure 3. Both the normalized gain and the

quantum-gain factor change sublinearly with λM. For example, the quantum-gain factor is well below 3% when λM is less than 0.1 (solid square in C; corresponds to

a Drosophila R1-R6 photoreceptor at 106 photons/s). However, it approaches to 35% as λM increases to 1 (hollow square, corresponding to a species with 1000

microvilli stimulated at 106 photons/s). This means that the quantum-gain-nonlinearity contributes differently to gain control, depending on the number of photons in

the input and the number of microvilli in the photoreceptor’s structure. It could potentially be a major contributor to the nonlinear output range compression, when a

photoreceptor is under intense light stimulation (black dots in D), or if the cell has fewer photon detection units (green dots in E). λM is well below 0.1 for fly

photoreceptors, as they have tens of thousands of microvilli to sample the available photons. Even in midday sunshine, quantum-gain factor is low (only ∼3% for a

Drosophila R1-R6 photoreceptor at 106 photons/s; the solid square). Thus, quantum-gain-nonlinearity makes negligible contributions to Drosophila photoreceptors’

gain control.

(Nph = 1000, corresponding to a bright midday: 106 photons/s),
PM is still less than 2%.

Quantum-Gain-Nonlinearity Effects on
Gain Control
In this section, we quantify how quantum-gain-nonlinearity
contributes to gain control (gray area in Figure 4). From
Equation (7), the normalized gain upper bound ( Cout

LinC
QB
1

) is 1,

which corresponds to the case when every photon excites a QB,
and these sum up linearly. Hence, the normalized linear gain

is 1. Now, we define a quantum-gain factor (Qg), which is the
difference between the normalized linear gain and the actual
normalized gain ( Cout

LinC
QB
1

), to quantify the contribution of the

quantum-gain-nonlinearity on gain control:

Qg =
C
QB
1 −

Cout
Lin

C
QB
1

=
C
QB
1 −

xn
∑

x=1
NxC

QB
x

Nph

C
QB
1

= 1−

xn
∑

x=1
NuC

QB
x P(x)

NphC
QB
1

= 1− P(0)−

xn
∑

x=2

C
QB
x

C
QB
1

P(x)

λM
,

(10)
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FIGURE 5 | Simulation of Poisson photon absorptions/hit to one microvillus. Under the assumptions listed in Section Light Absorption by Poisson Process,

photon absorptions (hits) to one microvillus follow the Poisson distribution. The photon-hit rate is the average number of absorptions in one microvillus within one

time-bin (λM = Nph/Nu). The four sub-figures show the simulated Poisson photon-hits with different rate parameters. (A) λM = 0.01; (B) λM = 0.1; (C) λM = 10; (D)

λM = 100. Notably, when λM is less than 1, discrete photon-hits are detected over time (A,B). The smaller the λM, the fewer photon-hits there are in a fixed time

interval. But at any particular moment, the probability of multi-photon-hits is less than 1. When λM is greater than 1, photon-hits fluctuate around the mean (C,D).

Under such conditions, the multi-photon-hit probabilities increase with λM, approximating 100% as λM approaches 5. As the quantum-gain-nonlinearity only affects

phototransduction at the multi-photon-hit moments, its contribution should depend directly upon the photon hit rate.

TABLE 1 | Percentage of N photon-hits.

Nph Number of microvilli in the cell structure: Nu

photons/ms
300 (%) 1500 (%) 6 k (%) 15 k (%) 30 k (%) 90 k (%)

10 1.66 0.33 0.08 0.03 0.02 0.01

100 15.69 3.29 0.83 0.33 0.17 0.06

1 k 87.57 29.64 8.10 3.30 1.66 0.55

10 k 100 99.15 61.18 29.66 15.74 5.45

100 k 100 100 99.99 99.15 87.67 45.47

where P(x) is the photon absorption probability calculated by

Equation (2). CQB
x is the x-photon elicited QB charge (the area

of the QB waveform).
Using C

QB
x values obtained from Figure 3, the black lines in

Figure 4 illustrate how Qg increases with λM. It could rise to
35% as λM approaches 1 (indicated by the hollow square). This
means that the quantum-gain-nonlinearity could potentially be
a major contributor to the nonlinear range compression, when
the cell has fewer photon sampling units. For fly photoreceptors,
which have tens of thousands of microvilli to sample the available

photons, λM is well below 0.1. Even in midday sunshine, Qg is
low (Figure 4C, the solid square). So quantum-gain-nonlinearity
makes negligible contributions to Drosophila photoreceptors’
gain control.

Realistic Photon Sequence Input to Drive
Phototransduction Cascades of Individual
Microvilli
RandPAM can be used to simulate the photon arrival process
of a fly photoreceptor to any light intensity time series with
different statistical properties. Here, we test it with two light
sequences: a 20Hz band-limited Gaussian white noise and a
naturalistic light intensity time series. These have band-limited
and 1/f power spectra, respectively. As a standard practice,
the light intensity is given as photons/ms. RandPAM takes the
photons in the stimuli and distributes them pseudo-randomly
into a given number of microvilli (sampling units). Each
microvillus may thus be bombarded by a discrete sequence of
photons over time. The photon-hits of all microvilli must add
up to the input level, as the model’s underlying assumption
is that all the photons become absorbed. Figures 6A,B show
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FIGURE 6 | Simulation of Poisson light absorption model for different light intensity time series. RandPAM can be used to simulate photon arrival process of

a fly photoreceptor to any light intensity time series with different statistical properties. Here, we test it with two light sequences, a 20Hz band-limited Gaussian white

noise (WN) and a naturalistic stimulus (NS), whose power spectra follows 1/f statistics (f : temporal frequency). The light intensity is given as photons/ms. RandPAM

takes the photons in the stimuli and distributes them into a given number of microvilli (sampling units). The photon-hits of all microvilli must add up to the original input,

as the model’s underlying assumption is that all the photons become absorbed. The model produces identical light patterns as the input (A,B). (A) Simulation of WN

pattern at BG_1 (light level of 105 photons/s); (B) Simulation of NS pattern at BG_1 (light level of 105 photons/s). In each sub-figure, the dotted line (blue) is the light

input and the solid line (red) is the simulation result. Because these curves overlap perfectly, the blue curves are right-shifted by 1ms.

that the model produces identical light patterns as the
input.

Because RandPAM can take any light intensity time
series and map it as photon-hit-sequences over the tested
microvillus population, it is essentially a spread of excitation
model that distributes the photon arrivals to individual
microvilli, driving their separate phototransduction cascades
(Song et al., 2012; Song and Juusola, 2014). Thus, RandPAM
realizes a photoreceptor’s essential input-output mapping
and makes it possible to study the related encoding
problems.

DISCUSSION

In this report, we gave a detailed account of RandPAM, which
is specifically designed for studying photon sampling in fly
photoreceptors. We explained how RandPAM distributes
incoming photons over a large population of microvilli
(30,000 in Drosophila photoreceptor Boschek, 1971; Hardie
and Postma, 2008), and provided its assumptions and
derivations.

We used RandPAM to answer specific questions about
the early gain control in photon sampling. If photoreceptors
were purely photon counters, counting every single photon
that hits them, their limited output range would readily
saturate in direct sunlight, which can flux in tens of
millions of photons per photoreceptor’s receptive field
per second (Warrant and Mcintyre, 1992). To combat
this burden, it has been suggested that the sublinear
summation in early transduction reactions may reduce

the (QB size)/photon gain at instances of multi-photon-
hits (Pumir et al., 2008). As this multi-photon-hit induced
gain control originates in QB production, we defined it as
quantum-gain-nonlinearity.

By reducing quantum-gain-nonlinearity to the time-
resolution limit, we showed how gain control already emerges
from photon sampling alone. This means that adaptation
begins even before phototransduction reactions shape the
quantum bump waveform. The implementation is just photon
sampling by a finite population, with the only constraint being
that multi-photon-hits reduce to a single event of sublinear
amplitude.

Importantly, RandPAM provided quantification of how
the quantum-gain-nonlinearity affects phototransduction, as
a function of the photon count in the light input and the
photoreceptor’s microvillus (sampling unit) count. We showed
that its contribution is marginal (≤1%) for fly photoreceptors
with many thousands of microvilli sampling incoming
photons. On the contrary, for small insect photoreceptors
with a limited number of microvilli, the probability of
simultaneous multi-photon-hits to a single microvillus would
be higher, and therefore these coincidences may affect it
encoding more.

These results clarify that diurnal fly photoreceptors
have enough microvilli (30,000–100,000) to maintain high
photon-hit rates without quantum-bump nonlinearity
much affecting their encoding. Aligned with our previous
studies (Song et al., 2012; Song and Juusola, 2014), we
conclude that it is not the number of microvilli, but
refractoriness and speed of their phototransduction cascades
that ultimately limit the temporal signaling precision
and the information transfer rate of fly photoreceptors.
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This realization means that there are likely further
evolutionary trade-offs, such as the metabolic costs and
space restrictions for maintaining large microvilli populations
that optimize their numbers to the flies’ lifestyle and habitat
requirements.

Finally, we speculate that quantum-gain-nonlinearity
may affect light adaptation in cilliary photoreceptors more,
especially when they face a bright daylight environment.
This is because cilliary photoreceptors normally have fewer
photon-capturing-units, for example, the outer segment of a
toad rod contains about 2000 pancake-like disks (Sjostrand,
1953; Pugh and Lamb, 2000). If these disks were to act as photon
sampling and phototransduciton units, the theoretical results
in Sections Random Photon Absorption Model (RandPAM)
and Results may also apply. The modest amount of disks
could make a cilliary photoreceptor’s encoding more prone
to the quantum-gain-nonlinearity at bright light. Thus,
there could be important differences in the way quantum
gain control is implemented in rhabdomeric and ciliary
photoreceptors.

AUTHOR CONTRIBUTIONS

ZS, MJ designed the study. ZS, YZ constructed the model and
performed the analysis. ZS drafted the manuscript with all
authors editing it.

ACKNOWLEDGMENTS

ZS thanks EPSRC-funded 2020 Science fellowship
(EP/I017909/1) for funding. MJ thanks these funding sources
for supporting this work: the State Key Laboratory of Cognitive
Neuroscience and Learning open research, Natural Science
Foundation of China Project 30810103906, Jane and Aatos Erkko
Foundation Fellowship, Leverhulme Trust Grant RPG-2012-567,
and Biotechnology and Biological Sciences Research Council
Grants BB/F012071/1, BB/D001900/1, BB/H013849/1, and
BB/M009564/1. The authors thank Dr. Mathew Joseph for
rechecking the mathematical formulations, Dr. Diana Rien for
reading the manuscripts. The authors would particularly thank
Dr. Samuel Solomon and the reviewers for critical suggestions.

REFERENCES

Bevington, P., and Robinson, D. (2003). Data Reduction and Error Analysis for the

Physical Sciences. New York, NY: McGraw-Hill.

Boschek, C. B. (1971). On the fine structure of the peripheral retina and lamina

ganglionaris of the fly, Musca domestica. Z. Zellforsch. Mikrosk. Anat. 118,

369–409. doi: 10.1007/BF00331193

Dodge, F. A. Jr., Knight, B. W., and Toyoda, J. (1968). Voltage noise in Limulus

visual cells. Science 160, 88–90. doi: 10.1126/science.160.3823.88

Frolov, R., Immonen, E. V., Vähäsöyrinki, M., and Weckström, M. (2012).

Postembryonic developmental changes in photoreceptors of the stick

insect Carausius morosus enhance the shift to an adult nocturnal life-

style. J. Neurosci. 32, 16821–16831. doi: 10.1523/JNEUROSCI.2612-1

2.2012

Fuortes, M. G., and Yeandle, S. (1964). Probability of occurrence of discrete

potential waves in the eye of Limulus. J. Gen. Physiol. 47, 443–463. doi:

10.1085/jgp.47.3.443

Gonzalez-Bellido, P. T., Wardill, T. J., and Juusola, M. (2011). Compound eyes

and retinal information processing in miniature dipteran species match their

specific ecological demands. Proc. Natl. Acad. Sci. U.S.A. 108, 4224–4229. doi:

10.1073/pnas.1014438108

Hardie, R. C., and Postma, M. (2008). “Phototransduction in microvillar

photoreceptors of Drosophila and other invertebrates,” in The Senses: A

Comprehensice Reference, eds R. H. Masland and T. D. Albright (Amsterdam:

Elsevier), 77–130.

Hecht, S., Shlaer, S., and Pirenne, M. H. (1942). Energy, quanta, and vision. J. Gen.

Physiol. 25, 819–840. doi: 10.1085/jgp.25.6.819

Henderson, S. R., Reuss, H., and Hardie, R. C. (2000). Single photon

responses in Drosophila photoreceptors and their regulation by

Ca2+ . J. Physiol. 524, 179–194. doi: 10.1111/j.1469-7793.2000.0

0179.x

Hochstrate, P., and Hamdorf, K. (1990). Microvillar components of light

adaptation in blowflies. J. Gen. Physiol. 95, 891–910. doi: 10.1085/jgp.95.5.891

Howard, J., Blakeslee, B., and Laughlin, S. B. (1987). The intracellular

pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia

cuprina. Proc. R. Soc. Lond. B 231, 415–435. doi: 10.1098/rspb.198

7.0053

Juusola, M., and Hardie, R. C. (2001). Light adaptation in Drosophila

photoreceptors: I. Response dynamics and signaling efficiency

at 25 degrees C. J. Gen. Physiol. 117, 3–25. doi: 10.1085/jgp.1

17.1.3

Juusola, M., Kouvalainen, E., Jarvilehto, M., and Weckstrom, M. (1994).

Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly

photoreceptors. J. Gen. Physiol. 104, 593–621. doi: 10.1085/jgp.104.

3.593

Juusola, M., Song, Z., and Hardie, R. (2015). “Phototransduction biophysics,”

in Encyclopedia of Computational Neuroscience, eds D. Jaeger and R.

Jung (New York, NY: Springer), 2359–2376. doi: 10.1007/978-1-4614-6675

-8_333

Laughlin, S. B., and Lillywhite, P. G. (1982). Intrinsic noise in locust

photoreceptors. J. Physiol. 332, 25–45. doi: 10.1113/jphysiol.1982.sp014398

Pugh, E. N. Jr., and Lamb, T. D. (2000). “Phototransduction in vertebrate

rods and cones: molecular mechanisms of amplification, recovery and

light adaptation,” in Molecular Mechanisms in Visual Transduction, eds D.

G. Stavenga, W. J. Degrip, and E. N. Pugh Jr. (Amsterdam: Elsevier),

183–255.

Pumir, A., Graves, J., Ranganathan, R., and Shraiman, B. I. (2008). Systems

analysis of the single photon response in invertebrate photoreceptors.

Proc. Natl. Acad. Sci. U.S.A. 105, 10354–10359. doi: 10.1073/pnas.07118

84105

Rushton, W. A. (1972). Pigments and signals in colour vision. J. Physiol. 220, 1–31.

Sjostrand, F. S. (1953). The ultrastructure of the outer segments of rods and cones

of the eye as revealed by the electron microscope. J. Cell. Physiol. 42, 15–44. doi:

10.1002/jcp.1030420103

Song, Z., and Juusola, M. (2014). Refractory sampling links efficiency and costs

of sensory encoding to stimulus statistics. J. Neurosci. 34, 7216–7237. doi:

10.1523/JNEUROSCI.4463-13.2014

Song, Z., Postma, M., Billings, S. A., Coca, D., Hardie, R. C., and Juusola,

M. (2012). Stochastic, adaptive sampling of information by microvilli

in fly photoreceptors. Curr. Biol. 22, 1371–1380. doi: 10.1016/j.cub.2012.

05.047

Stavenga, D. G. (2003). Angular and spectral sensitivity of fly photoreceptors.

I. Integrated facet lens and rhabdomere optics. J. Comp. Physiol. A

Neuroethol. Sens. Neural Behav. Physiol. 189, 1–17. doi 10.1007/s00359-002-

0370-2

Van Hateren, J. H. (1997). Processing of natural time series of intensities by the

visual system of the blowfly. Vision Res. 37, 3407–3416. doi: 10.1016/S0042-

6989(97)00105-3

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2016 | Volume 10 | Article 61

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Song et al. Quantal Sampling Induces Gain Control

Vogt, K., Kirschfeld, K., and Stavenga, D. G. (1982). Spectral effects of the pupil in

fly photoreceptors. J. Comp. Physiol. 146, 145–152. doi: 10.1007/BF00610232

Warrant, E. J., and Mcintyre, P. D. (1992). “The trade-off between resolution and

sensitivity in compound eyes,” inNonlinear Vision, eds R. B. Pinter and B. Nabet

(Boca Raton, FL: CRC Press), 391–421.

Wu, C. F., and Pak, W. L. (1975). Quantal basis of photoreceptor spectral

sensitivity of Drosophila melanogaster. J. Gen. Physiol. 66, 149–168. doi:

10.1085/jgp.66.2.149

Wu, C. F., and Pak, W. L. (1978). Light-induced voltage noise in photoreceptor of

Drosophila-melanogaster. J. Gen. Physiol. 71, 249–268. doi: 10.1085/jgp.71.3.249

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Song, Zhou and Juusola. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2016 | Volume 10 | Article 61

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Song et al. Quantal Sampling Induces Gain Control

APPENDIX: SIMULATING A FLY
PHOTORECEPTOR’S MACROSCOPIC
NONLINEAR VOLTAGE OUTPUT TO
DYNAMIC LIGHT INPUT

We recently developed a full biophysical fly photoreceptor
model that can transduce any light intensity time series input
into macroscopic output, the light-induced current (LIC) (Song
et al., 2012). A fly photoreceptor’s LIC response to a temporally
varying photon flux is highly dynamic and nonlinear. The full
model simulates such responses by adding up semi-independent
quantum bumps. For example, Figures 4C,D in Song et al. (2012)
show the simulated photoreceptor voltage output to dim and
bright naturalistic light intensity time series. The model was
validated by the close correspondence between the simulations
and intracellular recordings at different light conditions.

These simulations were performed by the procedure
described in Figure 1 of this paper. Semi-independent stochastic
phototransduction cascades of 30,000 microvilli were simulated,
and all their quantum bumps summed up the macroscopic
responses. RandPAM provided the photon input to the
microvilli.

We have further shown (Song et al., 2012) that the nonlinear
temporal light adaptation dynamics depend upon:

• Light input statistics
• Number of microvilli (sampling units)
• Stochastic refractory period in each microvillus

◦ The success of transducing a photon into a quantum
bump depends upon refractoriness of its phototransduction
reactions. This means that a microvillus cannot respond
to the next photons until its phototransduction reactions
have recovered from the previous photon absorption, which
takes about 50-300ms

• Stochastic latency distribution (the time delay between photon
arrivals to the trigged quantum bump)

• Bump waveform adaptation over time
• Voltage feedback from the plasma membrane

The details how these mechanisms jointly modulate
photoreceptor output dynamics to different light
intensity time series input can be found in our
previous publications (Song et al., 2012; Juusola et al.,
2015).
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