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SUMMARY

A continuum shell element based on the isogeometric analysis concept is extended to model propagating
delaminations that can occur in composite materials and structures. The interpolation in the thickness
direction is done using a quadratic B-spline, and delamination is modelled by a double knot insertion
to reduce the inter-layer continuity. Within the discontinuity the traction is derived from the relative
displacement between the layers by a cohesive relation. A range of examples, including delamination
propagation in straight and curved planes, and buckling-delamination illustrate the versatility and the
potential of the approach. Copyrightc© 2014 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Delamination is one of the most important failure causes in composite materials and structures.
Starting with the work of Allix and Ladeveze [1] and Schellekens and de Borst [2] finite element
methods have been used for the analysis of this failure mechanism. Initially, analyses were restricted
to free edge delamination, and a generalised plane-strain model was used to model the propagation
of delamination near the free edges. In particular, interface elements [3] were used to capture the
separation process between the plies. Recently, interfaceelements have also been developed where
NURBS have been used as the basis functions instead of Lagrange polynomials [4, 5].

While such generalised plane-strain analyses together with interface elements can give much
insight in the delamination process and complement experimental investigations, they are less
suitable for large-scale simulations. Indeed, for the analysis of structural elements in composite
structures, layered shell elements have to be used. Of particular interest are the solid-like shell
elements, since the presence of the stretch in the thicknessdirection as an independent parameter
in the finite element model allows for capturing a fully three-dimensional stress state. Because the
solid-like shell element developed by Parisch [6, 7] only employs translational degrees of freedom,
it has gained much popularity in the analysis of layered shell structures.

Composite shell structures may have a significant number of layers, and inserting interface
elements between each layer where delamination would be possible, quickly becomes impractical.
For this reason, the extended finite element method [8, 9], which exploits the partition of
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2 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

unity property of finite element shape functions, has been used to insert delaminations between
layers [10], the main advantage being that this approach allows for themodelling of delaminations
when a certain initiation criterion has been exceeded without prior knowledge about the location
of the delamination being necessary. Multiple locations where delamination initiate can thus be
modelled, as well as growth and joining of delaminated areas.

Recently, it has been recognised that spline functions, which are commonly used in computer-
aided design (CAD), can be used as well in analysis, thus by-passing the need for meshing after the
design phase [11, 12]. Since most CAD packages are based on Non-Uniform RationalB-Splines
(NURBS) these functions have also largely been adopted in isogeometric analysis (IGA), although
more recently T-splines have gained popularity [13], since they encapsulate NURBS and repair
some of their deficiencies.

The possibility to exactly capture the geometry can be important in the analysis of (thin) shell
structures, since geometric imperfections, and thereforealso imperfections in the modelling of
the shell surface, can be pivotal in stability analyses of shells. Furthermore, the higher-order
continuity of spline functions allows for a straightforward implementation of Kirchhoff-Love
shell models [14, 15], which requireC1 continuity. AlthoughC1 continuity is not necessary for
the Reissner-Mindlin shells, an IGA formulation has also been developed for this class of shell
theories [16], while the 7-parameter shell model [17] was recently cast in an isogeometric format
by Echteret al. [18].

The solid-like shell developed in [6, 7] was cast in an isogeometric framework in [19]. While
in this work a hybrid approach was adopted, in which only the shell surface was modelled using
NURBS, but a conventional Lagrange polynomial was still usedin the thickness direction, a full
isogeometric continuum shell element was recently developed in [20], using a B-spline function
for the interpolation in the thickness direction. An important advantage of using B-spline basis
functions is their ability to model weak and strong discontinuities in the displacement field by
knot insertion [21], and it was demonstrated that weak discontinuities (between layers), and strong
discontinuities (delamination) can be modelled elegantly. For the case of weak discontinuities the
superiority in terms of a vastly improved stress predictionin the linear-elastic phase was shown, as
well as the ability to modelexistingdelaminations.

This work extends this concept towardspropagatingdelaminations, where a traction-separation
relation based on the cohesive-surface concept is used. To set the scene, we first briefly recapitulate
the continuum shell formulation, followed by a succinct overview of how this is implemented in an
isogeometric framework, including Bézier extraction to make it compatible with a standard finite
element data structure. The extension to include an interface term is elaborated, followed by a series
of investigations where the concept is assessed with respectto its ability to model propagating
delamination, buckling-delamination, and delamination in curved geometries.

2. CONTINUUM SHELL FORMULATION

A complete isogeometric continuum shell element, which is equipped with the B-spline basis
functions in the thickness direction, has been derived in [20]. In this section we summarise the
main governing equations, including the kinematics, the constitutive relation, and the weak form of
the equilibrium equations.

Figure1 shows the continuum shell element in the undeformed and the deformed configuration.
The reference surface is denoted byΓ0. The variablesξ andη are the local curvilinear coordinates
in the two independent in-plane directions, andζ is the local curvilinear coordinate in the thickness
direction. The position of a material point in the undeformed configuration reads:

X(ξ, η, ζ) = X0(ξ, η) + ζD(ξ, η) , 0 ≤ ζ ≤ 1 (1)

with X0(ξ, η) the projection on the reference surface – herein the bottom surface of the shell has
been used for this purpose – andD(ξ, η) the thickness director perpendicular to the reference surface
at this point.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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Figure 1. Geometry and kinematics of the shell in the undeformed and in the deformed configurations.

A local reference triad can be established in any material point, and the covariant base vectors are
obtained as the partial derivatives of the position vectorswith respect to the curvilinear coordinates
ΘΘΘ = [ξ, η, ζ]. Defining a set of basis vectors on the reference surface in the undeformed configuration
as:

Eα =
∂X0

∂Θα
, α = 1, 2 (2)

the shell director reads:

E3 = D =
E1 × E2

||E1 × E2||
t (3)

with t the thickness of the shell. Using equation (1), the covariant triad is obtained as:

Gα =
∂X
∂Θα

= Eα + ζD,α , α = 1, 2

G3 = D

(4)

where the subscript comma denotes partial differentiation.
The displacement fieldu can be of any order, and, in the deformed configuration, the covariant

triad reads:

gi =
∂x
∂Θi

= Gi + u,i , i = 1, 2, 3 (5)

Using equations (4) and (5) the metric tensorsG andg become:

Gij = Gi · Gj , gij = gi · gj , i, j = 1, 2, 3 (6)

The contravariant basis vectors can be derived as:

Gi = (G)−1Gi (7)

with (G)−1 the inverse of the metric tensor with componentsGij .
The Green-Lagrange strain tensorγ is defined conventionally in terms of deformation gradient

F:

γ =
1

2
(FT · F − I) (8)

with I the unit tensor. The deformation gradient can be written in terms of the base vectors as:

F = gi ⊗ Gi (9)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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4 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

which leads to following representation of the Green-Lagrange strain tensor:

γ = γijGi ⊗ Gj with γij =
1

2
(gij −Gij) (10)

where the summation convention has been used for repeated indices. Substituting equations (4) and
(5) for Gij andgij yields:

γij =
1

2
(Gi · u,j + u,i · Gj + u,i · u,j) (11)

As stated in the Introduction, stresses are computed using athree-dimensional constitutive
relation in a continuum shell formulation. Assuming small strains, a linear relation between the
rates of the Second Piola-Kirchhoff stress tensorS and the Green-Lagrange strain tensor can be
adopted:

DS = C : Dγ (12)

whereC is the material tangential stiffness matrix.
Using a Total Lagrangian formulation the internal virtual work is expressed in the reference

configurationΩ0 as:

δWint =

∫

Ω0

δγ : S dΩ0 (13)

The resulting system of non-linear equations is solved in anincremental-iterative manner. When
using a Newton method for the iterative solutions, the formation of the tangential stiffness matrix is
necessary, which is obtained by linearising the internal virtual work, equation (13):

D(δWint) =

∫

Ω0

(δγ : DS + D(δγ) : S)dΩ0 (14)

with the virtual strainδγ andD(δγ) defined as:

δγij =
1

2
(gi · δu,j + δu,i · gj) (15)

and
D(δγij) =

1

2
(D(u,i) · δu,j + δu,i · D(u,j)) (16)

3. ISOGEOMETRIC FINITE ELEMENT DISCRETISATION

In this section we briefly recapitulate basic concepts of isogeometric analysis, including the Bézier
extraction technique, as well as some issues regarding its finite element like implementation.

3.1. Fundamentals of NURBS and B-splines

A B-spline is a piecewise polynomial curve composed of a linear combination of B-spline basis
functions:

C(ξ) =

n
∑

i=1

Ni,p(ξ)Pi (17)

wherep is the order andn is the number of the basis functions. TheNi,p(ξ) represents a B-spline
basis function and the coefficientsPi are points in space, referred to as control points. B-splines are
defined over a knot vector,ΞΞΞ, which is a set of non-decreasing real numbers representingcoordinates
in the parameter domain:

ΞΞΞ = [ξ1, ξ2, ..., ξn+p+1]

Parametric coordinatesξi divide the B-spline into sections. The positive interval[ξ1, ξi+1] is called
an element. If all knots are equally spaced, the knot vector is called uniform, and is called non-
uniform otherwise. Between two distinct knots (knot span),a B-spline basis function hasC∞

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 5

continuity while it reduces toCp−1 across a knot. If a knot value appearsk times, the knot is called
a multiple knot. At this knot the continuity isCp−k. A B-spline is said to be open if its first and
last knots appearp+ 1 times. For the exact definition of univariate B-splines we refer to [22, 23].
Two-dimensional (bivariate) B-splines are obtained as a tensor product. As a generalisation of B-
splines, NURBS are now commonly used in Computer Aided Design (CAD) packages. They are
obtained by augmenting a control point with a weightWi > 0, so that the NURBS basis functions
are obtained as:

Sα,p =
Nα,p(ξ)Wα

W(ξ)
(18)

whereW(ξ) =
∑n

i=1
Ni,p(ξ)Wi is the weighting function, and no summation implied over the

repeated indexα. In two dimensions, NURBS surfaces are constructed by the weighted tensor
product of B-spline functions.

In order to blend isogeometric analysis into existing finiteelement computer programs, Bézier
elements and Bézier extraction operators have been proposed to provide a finite element structure
for B-splines, NURBS and T-splines [24, 25]. A degreep Bézier curve is defined by a linear
combination ofp+ 1 Bernstein basis functionsB(ξ) [26]. Similar to B-splines, by having an
appropriate set of control points, a Bézier curve is written as:

C(ξ) = PTB (19)

A Bézier extraction operator maps a piecewise Bernstein polynomial basis onto a B-spline basis:

N(ξ) = CB(ξ) (20)

This transformation makes it possible to use Bézier elements as the finite element representation
of B-splines or NURBS. The extraction operator is obtained by means of knot insertion. The reader
is referred to Refs [24, 25] for more details on the calculation of the extraction operator.

3.2. Isogeometric finite element implementation

As argued in [20] the total displacement field of the shell can be discretisedas:

u(ξ, η, ζ) =
ncp
∑

I=1

NI(ξ, η, ζ)aI (21)

whereaI are the displacement degrees of freedom. We assume thatn andm are the number of shape
functions (or the control points) in the reference surface and in the thickness direction, respectively
(ncp = n×m). Hence, the shape functionsNI read:

NI(ξ, η, ζ) = Si(ξ, η)Hj(ζ),

I = i+ (j − 1)n,

i ∈ {1, ..., n} , j ∈ {1, ...,m}.

(22)

whereSi(ξ, η) is the basis function from the Bézier element in the reference plane andHj(ζ)
is the B-spline function in the thickness direction. This equation implies that the trivariate basis
functionsNI are decomposed into a surface part and a thickness part whichcan have different
orders of interpolation,ps andph, respectively. The strains are subsequently computed fromthese
displacements using shell kinematics, see Section 2.

As we only model a surface of the shell rather than the complete geometry, it is assumed that every
control point on the reference surface has3×m degrees of freedom, wherem is the number of
control points in the thickness direction. Therefore, in a Bézier mesh each control pointPi contains
a vector of degrees of freedomΦi, as follows:

Φi = [a1
x, a

1
y, a

1
z, ..., a

m
x , a

m
y , a

m
z ]

T , i = 1, 2, ..., n (23)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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6 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

whereax,ay,az denote the displacement components. Furthermore, by combining equations (21)
and (22) the displacement components can be written as follows:

uk(ξ, η, ζ) =

m
∑

j=1

n
∑

i=1

ajik Si(ξ, η)Hj(ζ) (24)

where the subscriptk refers to the 1, 2, 3 (orx, y, z) directions.
The virtual strain vector, cf. equation (15), can be related to the control points degrees of freedom

as:
δγ = B̄δΦ (25)

It is noted that the virtual strain vector and the corresponding B̄matrix in equation (25) are expressed
in the non-orthonormal curvilinear base vectors. They mustbe transformed to the element local
frame. The transformed matrix is represented byBL, see [20] for details.

3.3. In-surface and out-of-surface integration

The basis functions are defined over a parametric knot span, i.e (ξ, η, ζ) ∈ [0, 1]3. In order to
carry out the numerical integration the basis functions andtheir derivatives should be calculated
locally at quadrature points defined over a parent element, i.e (ξ̃, η̃, ζ̃) ∈ [−1, 1]3. Moreover, the
corresponding Jacobian determinant of the mapping must be calculated. The mapping for all the
parametric coordinates is the same. For example, for a thickness element of[ζk, ζk+1] the mapping
is:

ζ = ζk + (ζ̃ + 1)
ζk+1 − ζk

2
(26)

with ζ̃ the parent element coordinate. The kinematic parameters interms of B-spline and NURBS
parametric coordinate must be written in the right format. To this end, equation (4) is rewritten as:

Gα =
∂X
∂Θα̃

= Eα̃ +

(

ζk + (ζ̃ + 1)
ζk+1 − ζk

2

)

D,α̃ , α̃ = 1, 2

G3 =
∂X

∂ζ̃
=

ζk+1 − ζk
2

D

(27)

As we employ independent discretisations for the referencesurface of the shell and for the
thickness direction, the numerical integration schemes inthe in-plane and out-of-plane directions
are also decoupled. Accordingly, the Bézier extraction operator will be used for the integration over
the surface. First, the geometry of the reference surface ismapped to its corresponding NURBS
parametric space(ξ, η) ∈ [0, 1]2. Then, the second mapping is carried out to the Bézier spacewhere
the parent element(ξ̃, η̃) ∈ [−1, 1]2 and the extraction operator are obtained.

Through-the-thickness integration is done by using a connectivity (or IEN) array. Using this array
we determine which functions have a support in a given element. Assume that we use a quadratic B-
spline defined over a knot vector ofT = [0, 0, 0, 1

2
, 1, 1, 1]. This definition leads to two elements of

[0, 1
2
] and[ 1

2
, 1] over the thickness and four global basis functions. Each element supportsph + 1 = 3

basis functions of the global basis. The IEN array is:

[IEN]ne×ph+1 =

(

1 2 3
2 3 4

)

2×3

(28)

The assembly of the element stiffness matrices is done according to the shared basis functions
(number 2 and 3 in this case).

3.4. Modelling weak and strong discontinuities in the displacement field

Since B-spline and NURBS basis functions areCp−k continuous at a knot with multiplicityk the
continuity of the basis functions can be controlled at a knotby arbitrarily selecting the multiplicity.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
Prepared usingnmeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 7
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Figure 2. Introducing a strong discontinuity in the thickness direction of a shell.

Figure2 shows the steps needed to introduce a discontinuity in the thickness direction. In this figure
it is assumed that a quadratic B-spline defined over a knot vector T = [0, 0, 0, 1

2
, 1, 1, 1] has been

used in the thickness direction of the shell. This results infour basis functions,Hi, which areC1

continuous atζ = 1
2
. A complete separation of the layers is obtained by inserting two knots to arrive

at: T = [0, 0, 0, 1
2
, 1
2
, 1
2
, 1, 1, 1]. Figure2 shows the corresponding basis functions through the knot

insertion process.
It is important to note that if this method to introduce strong discontinuities is adopted in the

construction of a single volumetric B-spline or NURBS patch, the inserted discontinuity will have
a global influence, i.e. it will propagate throughout the patch. While this is not a problem for
when weak discontinuities are inserted to model layers, it can be restrictive when used to model
delamination by means of strong discontinuities. This restriction can be removed by adopting a
localised definition of the basis functions, see also [21]. Alternatively, linear constraints can be used
to represent partially delaminated patches [20].

4. COHESIVE INTERFACE FORMULATION

In this study delamination is modeled by applying a cohesiverelation between the layers. Figure3
shows the undeformed and deformed configurations of a cohesive surface. It is noted that the
undeformed cohesive surfaceΓd is calculated using equation (1) based on the the reference surface
Γ0 in Figure1, which was used to construct the continuum shell element.

The virtual work of the cohesive tractionst must be taken into account in the expression of the
internal virtual work, which now becomes:

δWint =

∫

Ω0

δγγγ : SdΩ0 +

∫

Γd

δv · tddΓd (29)

with v the displacement jump between the two layers. The latter quantity is defined as (Figure3):

v(ξ, η) = u+(ξ, η)− u−(ξ, η) (30)

with u+ andu− the displacement vectors of the material pointsP+ andP− with respect to the global
coordinate system, respectively. Defining the traction at the discontinuity astd = [tn, ts2 , ts3 ]

T

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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Figure 3. Deformation of the interface.

with a normal component denoted by the subscriptn and two shear components, denoted by the
subscriptss2 ands3, respectively, its rate,Dtd, is related to the rate of the displacement jumpDvd

at the discontinuity by:
Dtd = Td Dvd (31)

with Td as the tangent stiffness of the interface. Inserting the constitutive relation (31) into the
expression of virtual work in equation (29) requires a transformation from the local frame of the
discontinuity surface (n, s2, s3) to the global frame of reference (i1, i2, i3). Denoting the rotation
matrix asQ we have:

Dt = QTDtd = QTTdDvd = QTTdQDv (32)

and the tangent stiffness in the global reference frame is given by:

T = QTTdQ (33)

The displacement jumpv can be expressed in terms of the displacements of the controlpoints as:

v(ξ, η) = H(ξ, η)a (34)

with:

H =





−S1 0 0 · · · −Sn 0 0 S1 0 0 · · · Sn 0 0
0 −S1 0 · · · 0 −Sn 0 0 S1 0 · · · 0 Sn 0
0 0 −S1 · · · 0 0 −Sn 0 0 S1 · · · 0 0 Sn





(35)
where{Si}n1 are the basis function defined over the reference surface in equation (22) and:

aT =
[

a1−x a1−y a1−z · · · an−x an−y an−z a1+x a1+y a1+z · · · an+x an+y an+z
]

(36)
as a vector containing the displacement degrees of freedom on the top and bottom surface of the
interface. The internal force vector now reads:

fint =
∫

Ω0

BT
LSdΩ0 +

∫

Γd

HTtddΓd (37)

where the areadΓd is calculated from:

dΓd =
√
G33

√

det(G) dξ dη (38)

withG33 = G3 · G3, andG3 obtained from equation (7). The stiffness matrix is derived in a standard
manner as:

K = Kmat + Kgeom + Kint (39)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 9

with the material and geometric parts defined as, see also [20]:

Kmat =

∫

Ω0

BT
LCBL dΩ0 (40)

and

Kgeom =

∫

Ω0

∂BT
L

∂Φ
SdΩ0 (41)

while the additional term that stems from the cohesive tractions at the interface reads:

Kint =

∫

Γd

HTTHdΓ =

∫

Γd

HTQTTdQHdΓd (42)

4.1. Calculation of the rotation matrix

To calculate the rotation matrix, we first must compute the triad (n, s2, s3) on the discontinuity
surface. This triad is assumed to be the average of the covariant base vectors on the top surfaceΓ+

d
and the bottom surfaceΓ−

d :
n = 1

2
(g+

3 + g−
3 )

s2 = 1
2
(g+

1 + g−
1 )

s3 = 1
2
(g+

2 + g−
2 )

(43)

It is noted that the the covariant base vectors (g1,g2,g3) are in the deformed configuration and are
calculated based on the undeformed triad (G1,G2,G3) using equation (5), which gives:

g±
i =

∂x
∂Θi

= Gi + u±
,i , i = 1, 2, 3 (44)

Based on equation (4) the requiredEi terms for the calculation ofGi can be determined. For the
calculation ofu±

,i in (44) we also need the derivatives of the basis function defined onthe reference
surfaces. As an example we have:

u±
,i =





S1,i 0 0 · · · Sn,i 0 0
0 S1,i 0 · · · 0 Sn,i 0
0 0 S1,i · · · 0 0 Sn,i

























a1±x
a1±y
a1±z

...
an±x
an±y
an±z





















(45)

With the triad (n, s2, s3) on the discontinuity surface we can determine the rotationmatrix:

Q =





cos(i1,n) cos(i1, s2) cos(i1, s3)
cos(i2,n) cos(i2, s2) cos(i2, s3)
cos(i3,n) cos(i3, s2) cos(i3, s3)



 (46)

with cos(a,b) = a·b
|a| |b| .

4.2. A mixed mode constitutive model for the interface

The propagation criteria under mixed-mode loading is basedon the dissipated energy and the
fracture toughness [29, 30]. Delamination propagates when the dissipated energy equals or exceeds
the fracture toughness. The expression for the critical energy release rate reads:

Gc = GIc + (GIIc − GIc)B
η whereB =

Gs

GT

(47)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2014)
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10 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

where for a certain mode ratio,Gs is the dissipated energy in shear, andGT is the total dissipated
energy. The parameterη is obtained from experimental data, e.g. from mixed-mode bending tests.
The initiation criterion can be written as:

(t0)2 = (t0n)
2 + ((t0s)

2 − (t0n)
2)Bη (48)

wheren refers to normal opening, ands to sliding. The initiation and propagation criteria will
be used to obtain the onset displacement jump and final displacement jump used in a damage
evolution law. Under mixed-mode loadings, the damage evolution law is related to the norm of
the displacement jump of the interface. This equivalent displacement jump is defined as:

λ =
√

〈vn〉2 + v2s (49)

with 〈.〉 the MacAuley brackets, defined as〈x〉 = 1
2
(x+ |x|). vn is the displacement jump in mode

I andvs is defined as:

vs =
√

v22 + v23 (50)

wherev2 andv3 refer to the displacement jumps in mode-II and mode-III, respectively.

E
qu

iv
al

en
t t

ra
ct

io
n

damage propagation

damage initiation

Eqivalent displacement jump

t

t0

vfλv0

(1− ω)K

Figure 4. Linear softening law for the delamination model.

Damage is initiated when the equivalent displacementλ exceeds a threshold or initial value. This
initiation value can be formulated in terms of displacements similar to the initiation criterion (48)
as:

(v0)2 = (v0n)
2 +

(

(v0s )
2 − (v0n)

2
)

Bη (51)

Assuming that the area under the traction-displacement jump curve in Figure4 is equal to
the fracture toughness, the final displacement jump which corresponds to full opening of the
delamination crack is obtained as:

vf =
2Gc

Kv0
(52)

with K the initial stiffness of interface.
The constitutive law relates the cohesive tractionti to the displacement jump vi in the local

coordinate system and reads:

ti = (1− ω)Tijvj − ωTijvnj〈−vn〉 , i, j = n, s2, s3 (53)

with ω as the damage variable. The stiffness tensorTij is defined asTij = δijKp whereδij is the
Kronecker delta andKp is a penalty stiffness. In (53) the penetration of the two opposite layers after
complete decohesion is avoided by the last term by using the MacAuley brackets. In the constitutive
relation (53) the damage parameterω reflects the decrease of the stiffness of the interface afterthe
onset of damage. For a certain equivalent displacement jumpthe damage derives from:

ω = min{v
f (λ− v0)

λ(vf − v0)
, 1} (54)

For a detailed discussion of the constitutive model and the derivation of the tangent stiffness matrix,
the reader is referred to [30].
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5. NUMERICAL SIMULATIONS

The isogeometric continuum shell formulation is now verified and assessed through different
examples. In TableI. We distinguish between two cases for the isogeometric continuum shell
element (CSIGA): (i) withoutC0 planes between the layers (lumped), and (ii) withC−1 planes
to simulate static delamination (discontinuous). Different orders of interpolation can be used in
the plane as well as in the out-of-plane direction for each case. For instance, in the remainder
”lumped(3,2)” will denote a CSIGA element withoutC0 (weak discontinuity) planes between the
layers, with a third-order NURBS/T-spline interpolation in the plane, and a second-order B-spline
in the thickness direction.

Table I. Nomenclature of solid-like and continuum shell elements.

Model In-plane discretisation Out-of-plane discretisation

SLS [6] 1st or 2nd order Lagrange 1st order Lagrange
CSIGA(p, q)

lumped pth order NURBS / T-Spline qth order B-Spline
discontinuous pth order NURBS / T-Spline qth order B-Spline with oneC−1

continuity to represent a delamination.
The other interfaces areC0 continuous.

5.1. Locking

In this section we investigate shear locking and membrane locking which can occur when decreasing
the thickness of shell elements. A clamped plate and a cylindrical shell, both under bending loads
are used to assess the locking phenomenon.

5.1.1. Shear lockingFigure5 shows the geometry of a plate subject to bending [7]. The plate has
a Young’s modulusE = 1.08 Pa and a Poisson’s ratioν = 0.3. The dimensions of the plate are:
L = 10 m, b = 1 m and the thicknesst varies through the test. The plate is fully clamped at one end
and a transverse loadqz = 100t3 Nm2 is applied at the other end.

L b

t

qz

Figure 5. Geometry of the clamped plate under bending.

As a reference value we consider the displacement at the freeend according to the beam theory,
δ = PL3/3EI which results inδ = 0.004 m for this test. The numerical simulation is done with
two meshes of 64 CSIGA lumped(2,2) and 64 CSIGA lumped(3,2) elements. Figure6 shows the
obtained normalised displacements for different ratios ofL/t. It is clear that employing second order
and third-order NURBS basis functions for the in-plane discretisation result in a behaviour that is
insensitive to shear locking also when the thickness of the plate is reduced.

5.1.2. Membrane lockingMembrane locking can occur in curved structures [17, 18]. Therefore, a
cylindrical shell as shown in Figure7 is modelled. The shell has a radius ofR = 10 m and a width of
b = 1 m. Young’s modulus and Poisson’s ratio are1000 Pa andν = 0 respectively. The cylindrical
shell is clamped at one edge and subjected to a constant distributed load ofqx = 0.1t3 Nm2. An
analytical solution based on the Bernoulli beam theory gives a value of approximately0.942 for the
radial displacement.
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Figure 7. Geometry of the cylindrical shell

The numerical results for various meshes and thicknesses are presented in Figure8. In the figure,
the mesh size shows the number of elements in the radial direction, while only one element has
been used in the width direction. According to the results, alow number of elements of order
two, 16 CSIGA lumped(2,2) elements, exhibit membrane locking. Keeping the NURBS order fixed
and increasing the number of elements to 64 removes locking.Employing 16 third-order NURBS
elements the results are insensitive to locking as well.
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5.2. Mode I delamination

In this example mode I delamination (DCB test) is simulated.For this purpose an isotropic panel
consisting of two layers is selected. The material properties of the layers are: a Young’s modulus
E = 1.0× 1012 Pa and a Poisson’s ratioν = 0.3. The geometry of the specimen is shown in
Figure 9. The specimen used for this simulation has a lengthL = 10m, a width b = 1m and a
thickness2h = 0.05m. An initial delamination with a length ofa0 = 2.5m is placed between the
two layers. The interface behaviour is captured by the exponential cohesive law proposed in [27].
The cohesive parameters are the fracture toughnessGc = 1 KJ/m2 and the maximum normal traction
tn ,max = 500 Pa.

y

x

2h = 0.05m

z

a0 = 2.5m

L = 10m

b
=
1m

qz

qz

Figure 9. Geometry of the panel with initial delamination

For this DCB test the relation between the applied load and the opening displacement can be
obtained using linear elastic fracture mechanics (LEFM). Following the ASTM standard [28], the
applied load in a DCB test for self-similar crack propagation is obtained as:

Fapplied =

√

GICb2h3E

12a2
(55)

with b andh the width and the height of the specimen, respectively, Figure 9, and wherea is the
crack length. The corresponding opening displacement is obtained as:

u = Fapplied

8a3

bh3E
(56)

A numerical simulation has been carried out for a mesh containing 256× 4 discontinuous
CSIGA(2,2) elements and using the dissipation-based arc-length method proposed in [31], see also
[32]. With this element delamination is modelled between the two layers where the delamination
will propagate. Figure10 shows the numerical results, as well as the comparison with the LEFM
solution. In the pre-peak regime there is an increasing difference between the linear-elastic solution
and the non-linear solution because of energy dissipation in the latter solution. After the peak load
has been reached the numerical results are in very good agreement with those from the calculations
using linear elastic fracture mechanics, in particular forprogressive delamination.

The deformation of the interface is also shown in Figure11, where the magnitude of the tractions
is also indicated. To obtain a better insight into the interface behaviour, the traction magnitudes along
the longitudinal axisx are monitored in Figure12. In both Figures11 and12 a maximum normal
traction of500 Pa has been obtained. It is clear that the traction oscillations persist, as in standard
cohesive interface element models. A picture of gradual delamination propagation is presented in
Figure13.

5.3. Buckling-delamination

The next example concerns the two-layered panel of Figure14. It has a lengthL = 10m, a width
b = 1m, and a thickness2h = 0.1m. An initial delamination with a lengtha0 = 2.5m is assumed.
The material properties of the layers are: a Young’s modulusE = 2.0× 108 Pa and a Poisson’s
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Figure 10. Load-displacement curve of the mode-I delamination test.

Figure 11. Deformation of the interface in mode-I delamination.
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Figure 12. Interface tractions along thex-axis of the mode-I delamination test specimen.

ratioν = 0.3. The panel is loaded by two compressive forcesP and small perturbations are applied
to trigger the buckling mode. Again, an exponential cohesive law is considered at the interface
with the following properties: fracture toughnessGc = 1 KJ/m2 and a maximum normal traction
tn ,max = 300 Pa.

The test case shows a combination of two different non-linear mechanisms. First, the compressive
load results in local buckling of the initially delaminatedplies, which leads to an increase of the
normal traction at the interface. Consequently, delamination growth will start when the normal
traction reaches the ultimate traction of the interface. The numerical simulation has been done using
a mesh of512× 4 discontinuous CSIGA(2,2) elements. The results are shown in Figure15. The
graphs show the axial displacementux and the normal (out-of-plane) displacementuz versus the
applied compressive load. In both cases the comparison has been made with the analytical buckling
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Figure 13. Interface tractions during delamination propagation. The plots are for an out-of-plane
displacement of0.01, 0.02, 0.03, 0.04 and0.05, respectively, from top to bottom.
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Figure 14. Geometry of a panel under axial load with an initial delamination.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

L
o
a
d
[N

]

Displacement, ux[m]

Numerical
Analytical

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

L
o
a
d
[N

]

Displacement, uz[m]

Numerical
Analytical

Figure 15. Load-displacement curves for the buckling-delamination test. (left): Loadvsaxial displacament.
(right): Loadvsout-of-plane displacement.

loads. The buckling loads are obtained using Euler beam theory as:

Fcr =
π2Eh3

48a20
(57)

The critical buckling loads for the two extreme cases ofa0 = 2.5 m (initial delamination length)
and ofa0 = L (fully delaminated panel) are821.63 N and51.35 N, respectively. It can be seen
that the upper buckling load is lower than the analytical value. This difference is a matter of
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Figure 16. Deformation of the interface in the delamination-buckling test.

choosing an appropriate perturbation load and also the maximum normal traction at the interface.
For a lower perturbation load and higher maximum normal traction the numerical buckling load
can be improved. This issue is clear from the agreement between the numerical buckling load and
the analytical solution for the lower buckling load, where the perturbation load and the maximum
normal traction do not influence the results.
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Figure 17. Interface tractions along thex-axis of the buckling-delamination test specimen.

Figure16 presents the deformation of the interface for this test. Figure 17 shows the traction
profile along the longitudinal axisx. In both cases a maximum normal traction of300 Pa has been
obtained as is in agreement with the material property of theinterface. Again, traction oscillations
are observed. The gradual delamination propagation has been visualised in Figure18, which shows
the initiation of delamination and some further steps of thepropagation process.

5.4. Mixed mode delamination of a curved panel

In this example delamination propagation is simulated in a curved panel. The geometry of the panel
is shown in Figure19. The panel has a radius ofR = 10 m, a width ofb = 1 m and a thickness
of t = 0.1 m. The panel in considered to have two isotropic layers with aYoung’s modulus and
a Poisson’s ratio of2× 108 Pa andν = 0.3, respectively. An initial delamination is taken over an
angleπ

8
. The curved panel is clamped at one edge and subjected to a constant distributed load ofqx.

This provides a suitable test case to investigate mixed-mode delamination propagation with large
rotations at the interface. The mixed mode interface model discussed in Section4.2 is used in this
example. The material properties of the interface are:GIc = 10 J/m2, GIIc = 10 J/m2 , K = 106 Pa,
t03 = 100 Pa,t0s = 500 Pa andη = 1.0.

The numerical simulations have been done using two different meshes of256× 1 and512× 4
discontinuous CSIGA(2,2) element. The obtained load displacement graphs are shown if Figure20,
which show a good agreement and confirm mesh insensitivity.
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Figure 18. Interface tractions during delamination propagation of buckling-delamination test. The colors
show the traction magnitude. The plots are for an axial displacement of0.05, 0.1, 0.2, 0.3 and 0.4,

respectively, from top to bottom.
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Figure 19. Geometry of the curved panel with two layers and aninitial delamination.
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Figure 20. Load-displacement curve for delamination propagation in the curved panel.

Figure 21 shows the deformation of the panel. First, both layers startmoving in the loading
direction. In this process damage at the interface starts togrow. After a certain deformation and a
certain damage growth, the lower layer moves in the reverse direction while the top layer keeps
moving in the loading direction. At the final stage, the lowerlayer has returned to its initial
configuration, the interface is fully damaged and the upper layer remains in the new configuration.
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Figure 21. Deformation of the curved panel. Gray indicates the initial configuration, red represents the areas
with ω ≈ 1 and blue shows the areas withω = 0.

In Figure21, the gray colour indicates the initial configuration, the red colour represents the areas
with ω ≈ 1 and the blue colour show the areas withω = 0.

6. CONCLUDING REMARKS

Isogeometric analysis can be conceived as a novel finite element technology which, among other
advantages, offers the possibility to capture the geometryof shells very accurately. Since the
structural behaviour of shells can be highly sensitive to imperfections, and therefore to the precise
geometric modelling of the shell, the use of splines in isogeometric analysis offers significant
advantages. In a series of papers the authors have developedan isogeometric continuum shell
element which models the shell surface exactly, and is capable of modelling weak and strong
discontinuities in the shell [19, 20]. A weak discontinuity occurs in a laminated shell between two
bonded plies, while delamination converts this weak discontinuity into a strong discontinuity.

In Ref. [20] a B-spline has been introduced for the interpolation in the thickness direction. Knot
insertion then allows for a straightforward introduction of discontinuities: weak discontinuities by
a single knot insertion, and strong discontinuities by a double knot insertion (both in case of a
quadratic B-spline in the thickness direction). It was shown that the accuracy of the in-plane stresses
for a layered (weakly discontinuous) shell is then vastly improved. Moreover, a proof of concept was
given that the method can be used for modelling static delaminations, i.e. the analysis of surfaces
that were pre-delaminated.

Herein, the extension is made to propagating delamination.The propagation of delamination
is controlled by introducing a cohesive formulation acrossthe delaminating surface, so that the
traction is a function of the displacement jump between the layers. The governing parameters
are the tensile strength and the fracture energy. First, a double-cantilever beam (DCB) has been
analysed. The results, in terms of load-displacement behaviour and in terms of traction profiles
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during delamination propagation are in keeping with those found in the literature. The same holds
for the case where the beam is subjected to a compressive loadin the axial direction of the beam,
so that a combined failure mode of buckling and a propagatingdelamination is obtained. The final
example of mixed-mode delamination propagation in a curved panel confirms the versatility of the
approach for arbitrary loadings and structures.
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1. Allix O, Ladevèze P. Interlaminar interface modelling for the prediction of delamination. Composite Structures 1992;
22: 235–242.

2. Schellekens JCJ, de Borst R. A nonlinear finite-element approach for the analysis of mode 1 free edge delamination
in composites. International Journal of Solids and Structures 1993;30: 1239–1253.

3. Schellekens JCJ, de Borst R. On the numerical integrationof interface elements. International Journal for Numerical
Methods in Engineering 1993;36: 43–66.

4. Irzal F, Remmers JJC, Verhoosel CV, de Borst R. An isogeometric analysis Bézier interface element for mechanical
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