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SUMMARY

A continuum shell element based on the isogeometric asafmicept is extended to model propagating
delaminations that can occur in composite materials anettstres. The interpolation in the thickness
direction is done using a quadratic B-spline, and delarionais modelled by a double knot insertion

to reduce the inter-layer continuity. Within the disconity the traction is derived from the relative

displacement between the layers by a cohesive relation.ngeraf examples, including delamination

propagation in straight and curved planes, and bucklingrii@ation illustrate the versatility and the

potential of the approach. Copyrigi@ 2014 John Wiley & Sons, Ltd.

Received ...
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1. INTRODUCTION

Delamination is one of the most important failure causes immasite materials and structures.
Starting with the work of Allix and Ladevezé] and Schellekens and de Borgj finite element
methods have been used for the analysis of this failure mehamitially, analyses were restricted
to free edge delamination, and a generalised plane-stradtelwas used to model the propagation
of delamination near the free edges. In particular, interfalementsd] were used to capture the
separation process between the plies. Recently, inteelaceents have also been developed where
NURBS have been used as the basis functions instead of lggyparlynomials4, 5].

While such generalised plane-strain analyses togethér inierface elements can give much
insight in the delamination process and complement expariah investigations, they are less
suitable for large-scale simulations. Indeed, for the ysislof structural elements in composite
structures, layered shell elements have to be used. Otplatiinterest are the solid-like shell
elements, since the presence of the stretch in the thicktiesgion as an independent parameter
in the finite element model allows for capturing a fully thidiezensional stress state. Because the
solid-like shell element developed by Pariséh7] only employs translational degrees of freedom,
it has gained much popularity in the analysis of layeredi stelctures.

Composite shell structures may have a significant numbeaydrs, and inserting interface
elements between each layer where delamination would tmhpesquickly becomes impractical.
For this reason, the extended finite element meth®d9], which exploits the partition of
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2 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

unity property of finite element shape functions, has beesd us insert delaminations between
layers [LO], the main advantage being that this approach allows fontbéelling of delaminations
when a certain initiation criterion has been exceeded witlpoior knowledge about the location
of the delamination being necessary. Multiple location®rehdelamination initiate can thus be
modelled, as well as growth and joining of delaminated areas

Recently, it has been recognised that spline functionsghivre commonly used in computer-
aided design (CAD), can be used as well in analysis, thusdsgipg the need for meshing after the
design phaselfl, 12]. Since most CAD packages are based on Non-Uniform RatiBtaplines
(NURBS) these functions have also largely been adopteageismetric analysis (IGA), although
more recently T-splines have gained popularity][ since they encapsulate NURBS and repair
some of their deficiencies.

The possibility to exactly capture the geometry can be ingmarin the analysis of (thin) shell
structures, since geometric imperfections, and thered¢se imperfections in the modelling of
the shell surface, can be pivotal in stability analyses ddlish Furthermore, the higher-order
continuity of spline functions allows for a straightfordaimplementation of Kirchhoff-Love
shell models 4, 15], which requireC' continuity. AlthoughC' continuity is not necessary for
the Reissner-Mindlin shells, an IGA formulation has alserbéeveloped for this class of shell
theories 6], while the 7-parameter shell modédl] was recently cast in an isogeometric format
by Echteret al.[18§].

The solid-like shell developed in6] 7] was cast in an isogeometric framework it8]. While
in this work a hybrid approach was adopted, in which only thellssurface was modelled using
NURBS, but a conventional Lagrange polynomial was still usethe thickness direction, a full
isogeometric continuum shell element was recently dewsldp [20], using a B-spline function
for the interpolation in the thickness direction. An imgort advantage of using B-spline basis
functions is their ability to model weak and strong discouifies in the displacement field by
knot insertion 1], and it was demonstrated that weak discontinuities (betvegers), and strong
discontinuities (delamination) can be modelled elegafity the case of weak discontinuities the
superiority in terms of a vastly improved stress predictiothe linear-elastic phase was shown, as
well as the ability to modedxistingdelaminations.

This work extends this concept towand®pagatingdelaminations, where a traction-separation
relation based on the cohesive-surface concept is useet Tloesscene, we first briefly recapitulate
the continuum shell formulation, followed by a succinctiwew of how this is implemented in an
isogeometric framework, including Bézier extraction taka it compatible with a standard finite
element data structure. The extension to include an ineetéam is elaborated, followed by a series
of investigations where the concept is assessed with respéts ability to model propagating
delamination, buckling-delamination, and delaminatioourved geometries.

2. CONTINUUM SHELL FORMULATION

A complete isogeometric continuum shell element, whichdsigped with the B-spline basis
functions in the thickness direction, has been derived2ij. [In this section we summarise the
main governing equations, including the kinematics, thestitutive relation, and the weak form of
the equilibrium equations.

Figurel shows the continuum shell element in the undeformed anddferded configuration.
The reference surface is denotedIhy The variableg andn are the local curvilinear coordinates
in the two independent in-plane directions, @nd the local curvilinear coordinate in the thickness
direction. The position of a material point in the undefodheenfiguration reads:

X(&n,¢) = Xo(&n) +¢D(E,n) , 0 << 1)

with X, (&,n) the projection on the reference surface — herein the bottoface of the shell has
been used for this purpose — ad, n) the thickness director perpendicular to the referencasarf
at this point.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
Prepared usingmeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 3

deformed

Figure 1. Geometry and kinematics of the shell in the undeéor and in the deformed configurations.

A local reference triad can be established in any materiatpand the covariant base vectors are
obtained as the partial derivatives of the position veatotls respect to the curvilinear coordinates
6 = [¢,n, (]. Defining a set of basis vectors on the reference surfaceiartieformed configuration

as:
0Xo

E.= @ , a=1,2 (2)
the shell director reads: E LB
X
Ei=D= L7724 3
’ EEE )

with ¢ the thickness of the shell. Using equatid, ¢he covariant triad is obtained as:

Go = axa:EﬁgD,a . a=1,2
90 @)
Gy =D

where the subscript comma denotes partial differentiation
The displacement field can be of any order, and, in the deformed configuration, thargnt

triad reads:
X

~ 90
Using equations4) and £) the metric tensor& andg become:

gi :Gi+u,i ) 2217253 (5)
GZ]:GZGJ ) gZ]:gzg] ) iaj:1a273 (6)
The contravariant basis vectors can be derived as:
G'=(G)'G; 7
with (G)~! the inverse of the metric tensor with componeis.

The Green-Lagrange strain tenspis defined conventionally in terms of deformation gradient
F:

1
y=5F-F-1) (8)
with | the unit tensor. The deformation gradient can be writteeims of the base vectors as:
F=g,®G’ ©)

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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4 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

which leads to following representation of the Green-Lageastrain tensor:

P 1
v =7;G" ®G’ with v;; = E(gij - Gij) (10)
where the summation convention has been used for repealied$n Substituting equation$) @nd
(5) for G;; andg;; yields:

1
7ij = 5(Gi- U+ U -Gy U~ uy) (11)

As stated in the Introduction, stresses are computed usitlyee-dimensional constitutive
relation in a continuum shell formulation. Assuming smathims, a linear relation between the
rates of the Second Piola-Kirchhoff stress tenS@nd the Green-Lagrange strain tensor can be
adopted:

DS=C: Dy (12)

whereC is the material tangential stiffness matrix.
Using a Total Lagrangian formulation the internal virtuabnlv is expressed in the reference
configuratiorf), as:

6Wint = / (5’7 : SdQO (13)
Qo

The resulting system of non-linear equations is solved ifmnaremental-iterative manner. When
using a Newton method for the iterative solutions, the foromeof the tangential stiffness matrix is
necessary, which is obtained by linearising the interrmalial work, equationX3):

D(6Wipt) = /Q (6 : DS + D(67) : S)dQg (14)

with the virtual straiyy andD(4-) defined as:

1
0vij = 5(91‘ U +4u;-g;) (15)
and )
D(0vi5) = 5(D(us) - 0u,; +6u; - D(U,;)) (16)

3. ISOGEOMETRIC FINITE ELEMENT DISCRETISATION

In this section we briefly recapitulate basic concepts ajémmetric analysis, including the Bézier
extraction technique, as well as some issues regardingiits &lement like implementation.

3.1. Fundamentals of NURBS and B-splines

A B-spline is a piecewise polynomial curve composed of adinsombination of B-spline basis
functions:

C(E)=> Nip©P (17)

wherep is the order ana: is the number of the basis functions. TNg, (&) represents a B-spline
basis function and the coefficien® are points in space, referred to as control points. B-splare
defined over a knot vectdg, which is a set of non-decreasing real numbers represectimglinates
in the parameter domain:

E= [517 527 ey §n+p+1]

Parametric coordinates divide the B-spline into sections. The positive interjéal &;.+] is called
an element. If all knots are equally spaced, the knot vestaalled uniform, and is called non-
uniform otherwise. Between two distinct knots (knot spam)B-spline basis function has™>

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 5

continuity while it reduces t67—! across a knot. If a knot value appearmes, the knot is called
a multiple knot. At this knot the continuity i€?—*. A B-spline is said to be open if its first and
last knots appear + 1 times. For the exact definition of univariate B-splines wierd¢o [22, 23].
Two-dimensional (bivariate) B-splines are obtained ashadeproduct. As a generalisation of B-
splines, NURBS are now commonly used in Computer Aided DefRAD) packages. They are
obtained by augmenting a control point with a weidjtit > 0, so that the NURBS basis functions
are obtained as:

Nop(E)Wa
Sop=—2>"—2 18
whereW(¢) = Y1, N; (&)W is the weighting function, and no summation implied over the

repeated mdem In two dlmensions, NURBS surfaces are constructed by thighted tensor
product of B-spline functions.

In order to blend isogeometric analysis into existing firdtlement computer programs, Bézier
elements and Bézier extraction operators have been gdpgosgrovide a finite element structure
for B-splines, NURBS and T-spline®24, 25]. A degreep Bézier curve is defined by a linear
combination ofp + 1 Bernstein basis functionB(¢) [26]. Similar to B-splines, by having an
appropriate set of control points, a Bézier curve is wnitis:

c)=P'B (19)

A Bézier extraction operator maps a piecewise Bernstelynpanial basis onto a B-spline basis:

N(§) = CB(¢) (20)

This transformation makes it possible to use Bézier eles@nthe finite element representation
of B-splines or NURBS. The extraction operator is obtaingdieans of knot insertion. The reader
is referred to RefsZ4, 25] for more details on the calculation of the extraction opara

3.2. Isogeometric finite element implementation
As argued in 20] the total displacement field of the shell can be discretesed

Nep

u(é,n,¢) = ZsznC (21)

wherea;y are the displacement degrees of freedom. We assume #matm are the number of shape
functions (or the control points) in the reference surfate ia the thickness direction, respectively
(nep = n x m). Hence, the shape functiong read:

NI(S;U?C) = SZ(&?”)'HJ(C%
T=i+(j—1n, 22)

ie{l,..,n}, je{l,..,m}.

where S;(&,n) is the basis function from the Bézier element in the refeeeplane and”;(()

is the B-spline function in the thickness direction. Thisiatipn implies that the trivariate basis
functions N; are decomposed into a surface part and a thickness part whittave different
orders of interpolationy, andpy, respectively. The strains are subsequently computed fhese
displacements using shell kinematics, see Section 2.

As we only model a surface of the shell rather than the coragledmetry, it is assumed that every
control point on the reference surface t3as m degrees of freedom, where is the number of
control points in the thickness direction. Therefore, inézi8r mesh each control poift contains
a vector of degrees of freedod;, as follows:

1.1 1 mT :
®; = [ay,a,,a;, .. ,ax,aJ,aZ] ,1=1,2,...,n (23)
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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6 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

wherea,,a,,a. denote the displacement components. Furthermore, by cdmgbéquations1)
and @2) the displacement components can be written as follows:

K€, Q) = ZZ 11Si(&,m)H;(C) (24)

j=11i=1

where the subscrigt refers to the 1, 2, 3 (at, y, z) directions.
The virtual strain vector, cf. equatioh), can be related to the control points degrees of freedom
as:
oy = Bo® (25)

Itis noted that the virtual strain vector and the corresogis matrix in equationZ5) are expressed
in the non-orthonormal curvilinear base vectors. They nigstransformed to the element local
frame. The transformed matrix is representedby see (] for details.

3.3. In-surface and out-of-surface integration

The basis functions are defined over a parametric knot span¢,in, ¢) € [0,1]3. In order to
carry out the numerical integration the basis functions ted derivatives should be calculated
locally at quadrature points defined over a parent element¢ s, ¢) € [—1, 1]3. Moreover, the
corresponding Jacobian determinant of the mapping mustaloelated. The mapping for all the
parametric coordinates is the same. For example, for arthi&kelement dt, (1] the mapping
is:

(=Gt ({1 = (26)
with ¢ the parent element coordinate. The kinematic parameteesrims of B-spline and NURBS
parametric coordinate must be written in the right formattfis end, equatiord] is rewritten as:

X > Cht1 — Gk -
GaWEa+<<k+(C+1> 92 > ) O‘*]-a2
(27)
_ X G~ Gy
Gy = 5 >

As we employ independent discretisations for the refereswréace of the shell and for the
thickness direction, the numerical integration schemeiénin-plane and out-of-plane directions
are also decoupled. Accordingly, the Bézier extractiosrafor will be used for the integration over
the surface. First, the geometry of the reference surfaceaisped to its corresponding NURBS
parametric spacg, n) € [0, 1]%. Then, the second mapping is carried out to the Bézier spheee
the parent elemertt, 77) € [—1, 1]? and the extraction operator are obtained.

Through-the-thickness integration is done by using a cctivity (or IEN) array. Using this array
we determine which functions have a support in a given elémessume that we use a quadratic B-
spline defined over a knot vector 6f= [0, 0, 0, ;, 1,1, 1]. This definition leads to two elements of
[0, 2] and[3, 1] over the thickness and fourglobal basis functions. Eachefe supportg, + 1 = 3
basis functions of the global basis. The IEN array is:

1 2 3
[|EN]WW1<2 5 4> ( (28)
2x3

The assembly of the element stiffness matrices is done @diogpto the shared basis functions
(number 2 and 3 in this case).

3.4. Modelling weak and strong discontinuities in the disgiment field

Since B-spline and NURBS basis functions @re’* continuous at a knot with multiplicity the
continuity of the basis functions can be controlled at a lyoarbitrarily selecting the multiplicity.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
Prepared usingmeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 7

Cl —_ Cfl
T:[0,0,0,%,l,l,l] T:[anaoaéaéaéalalal]
1 1
H;
0 0
0 0.5 1 0 0.5 1
¢ ¢

Figure 2. Introducing a strong discontinuity in the thicksairection of a shell.

Figure2 shows the steps needed to introduce a discontinuity in thlertess direction. In this figure
it is assumed that a quadratic B-spline defined over a knobwégct= [0, 0,0, %, 1,1,1] has been
used in the thickness direction of the shell. This resultfin basis functionsH;, which areC!
continuous at = 1. A complete separation of the layers is obtained by insgttio knots to arrive
at: 7 =[0,0,0, 3, ?%, 1,1,1,1]. Figure2 shows the corresponding basis functions through the knot
insertion process.

It is important to note that if this method to introduce styaffiscontinuities is adopted in the
construction of a single volumetric B-spline or NURBS patitie inserted discontinuity will have
a global influence, i.e. it will propagate throughout thecpatWhile this is not a problem for
when weak discontinuities are inserted to model layersauit loe restrictive when used to model
delamination by means of strong discontinuities. Thisrigtgdn can be removed by adopting a
localised definition of the basis functions, see alsh.[Alternatively, linear constraints can be used

to represent partially delaminated patch2d.[

4. COHESIVE INTERFACE FORMULATION

In this study delamination is modeled by applying a cohesiation between the layers. Figuse
shows the undeformed and deformed configurations of a cghesirface. It is noted that the
undeformed cohesive surfatg is calculated using equatiofh)(based on the the reference surface
Ty in Figurel, which was used to construct the continuum shell element.

The virtual work of the cohesive tractiomsnust be taken into account in the expression of the
internal virtual work, which now becomes:

OWint =/ oy : SdQg +/ ov - tqdlyg (29)
QO Fd
with v the displacement jump between the two layers. The lattemtgyas defined as (Figursg):
V(€ m) =ut(&mn) —u(&n) (30)

with ut andu— the displacement vectors of the material poitsand P~ with respect to the global
coordinate system, respectively. Defining the tractionhat discontinuity asg = [ty, ts,, ts,] T

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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8 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

undeformed deformed

Figure 3. Deformation of the interface.

with a normal component denoted by the subsctigind two shear components, denoted by the
subscriptsy andss, respectively, its rateDty, is related to the rate of the displacement jubny
at the discontinuity by:

Dty = Tq Dvy (32)

with T4 as the tangent stiffness of the interface. Inserting thestitoive relation 81) into the
expression of virtual work in equatio29) requires a transformation from the local frame of the
discontinuity surfacerd, s,, s3) to the global frame of referencé (is, i3). Denoting the rotation
matrix asQ we have:

Dt = QTDty = QT TyDvyg = QT TyQDv (32)
and the tangent stiffness in the global reference framevengby:
T = Q' TyQ (33)
The displacement jumypcan be expressed in terms of the displacements of the cquirds as:
v(§,n) =H( n)a (34)
with:
=51 0 o - =5, 0 o S$% o o -~ S, 0 0
H= 0o -5 0 .- 0 -S, 0 o S 0 -~ 0 S, 0
0 0o -5 - 0 o -S. 0 0 S -~ 0 0 S,
(35)
where{S;}7 are the basis function defined over the reference surfacguiation ¢2) and:
al = [ al~ azl/_ al= o a~ ap” al” alt azlj‘*‘ alt ... ot agt alt

(36)
as a vector containing the displacement degrees of freedotheotop and bottom surface of the
interface. The internal force vector now reads:

fine = / BISdQ, + / HTt,dlg (37)
Qo Iy
where the aredl , is calculated from:

ATy = VG33,/det(G) d¢ dn (38)

with G33 = G® - G®, andG? obtained from equatiort}. The stiffness matrix is derived in a standard
manner as: .
K — Kmat + ngom + Klnt (39)

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
Prepared usingimeauth.cls DOI: 10.1002/nme



ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 9

with the material and geometric parts defined as, see a§o [

K™t — / B CB. dQo (40)
Qo
and -
oB
Keeom = [ —LSdQ 41
o, 0% 0 (41)

while the additional term that stems from the cohesive ivastat the interface reads:
Kint — / HTTHAD = / HTQT T4QH dr'y (42)
Ty g

4.1. Calculation of the rotation matrix

To calculate the rotation matrix, we first must compute thedtin, s2, s3) on the discontinuity
surface. This triad is assumed to be the average of the emndrase vectors on the top surfdte
and the bottom surfade; :

n=1(gi +g;)
s2 = (g +&r) (43)

s3 = 3(83 +85)
It is noted that the the covariant base vectess -, g3) are in the deformed configuration and are
calculated based on the undeformed triéd (G-, G3) using equations), which gives:

OX
gii: .:Gi+uf , 1=1,2.3 (44)

Based on equatiord) the requirede; terms for the calculation d&; can be determined. For the
calculation ofuf in (44) we also need the derivatives of the basis function definetti®neference
surfaces. As an example we have:

Ui- = 07 Sl,i 0 v 0 Snz 0 (45)
n+t
ay

a’;i

a

With the triad f, s2, s3) on the discontinuity surface we can determine the rotatiatrix:

cos(iy,n) cos(i1,s2) cos(iy,ss)
Q = | cos(iz,n) cos(iz,s2) cos(ia,ss3) (46)
cos(izg,n) cos(is,s2) cos(is,ss3)

with cos(a, b) = |aa“‘ﬁ)‘.

4.2. A mixed mode constitutive model for the interface

The propagation criteria under mixed-mode loading is basedhe dissipated energy and the
fracture toughnes2p, 30]. Delamination propagates when the dissipated energyl€quaxceeds
the fracture toughness. The expression for the criticalggnelease rate reads:

g
Ge = Gre + (Gr1e — G1c)B" whereB = g— (47)
T
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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10 S. HOSSEINI, J.J.C. REMMERS, C.V. VERHOOSEL, R. DE BORST

where for a certain mode ratig, is the dissipated energy in shear, apdis the total dissipated
energy. The parameteris obtained from experimental data, e.g. from mixed-modealimgntests.
The initiation criterion can be written as:

()2 = (t9)* + ((1)* = (t2)*) B" (48)

wheren refers to normal opening, andto sliding. The initiation and propagation criteria will
be used to obtain the onset displacement jump and final desplent jump used in a damage
evolution law. Under mixed-mode loadings, the damage éwoldaw is related to the norm of

the displacement jump of the interface. This equivalerngldsement jump is defined as:

A=/ {(vp)? + 02 (49)

with (.) the MacAuley brackets, defined &8 = 1 (z + |x|). v, is the displacement jump in mode

| andw, is defined as:
vy = 1/v3 + v3 (50)

wherev, andwvs refer to the displacement jumps in mode-Il and mode-llipessively.

damage initiation

—
f==]

—+

damage propagatiol

Equivalent traction

V0 A vf
Eqivalent displacement jump

Figure 4. Linear softening law for the delamination model.

Damage is initiated when the equivalent displacemesiceeds a threshold or initial value. This
initiation value can be formulated in terms of displacemesitilar to the initiation criterion4g)
as:

(v°)? = (vn)® + ((v))* — (vp)?) B" (51)
Assuming that the area under the traction-displacemenp jeorve in Figure4 is equal to
the fracture toughness, the final displacement jump whiahesponds to full opening of the
delamination crack is obtained as: 20
f _ c
v

Ko

(52)

with K the initial stiffness of interface.
The constitutive law relates the cohesive tractiprio the displacement jump;vn the local
coordinate system and reads:

ti = (1 — W)Tij’l)j — wTij’Unj<—’Un> 5 i,j =n,S2,S83 (53)

with w as the damage variable. The stiffness terfsptis defined ag;; = 6;; K, whered;; is the
Kronecker delta and’,, is a penalty stiffness. Irb@) the penetration of the two opposite layers after
complete decohesion is avoided by the last term by using gAuley brackets. In the constitutive
relation 63) the damage parameterreflects the decrease of the stiffness of the interface tifeer
onset of damage. For a certain equivalent displacement jnengamage derives from:
vf (A —0)

w= min{)\

TR 1} (54)

For a detailed discussion of the constitutive model and énwvaltion of the tangent stiffness matrix,
the reader is referred t&()].

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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ISOGEOMETRIC MODELING OF DELAMINATION PROPAGATION 11

5. NUMERICAL SIMULATIONS

The isogeometric continuum shell formulation is now vedfignd assessed through different
examples. In Tableé. We distinguish between two cases for the isogeometricirmauntn shell
element (CSIGA): (i) without? planes between the layers (lumped), and (i) with! planes

to simulate static delamination (discontinuous). Diffdrerders of interpolation can be used in
the plane as well as in the out-of-plane direction for eactec&or instance, in the remainder
"lumped(3,2)” will denote a CSIGA element withodt (weak discontinuity) planes between the
layers, with a third-order NURBS/T-spline interpolationthe plane, and a second-order B-spline
in the thickness direction.

Table I. Nomenclature of solid-like and continuum shell edeits.

Model In-plane discretisation Out-of-plane discretisati
SLS [6] 1%t or 29 order Lagrange 1%t order Lagrange
CSIGA(p, q)

lumped p'" order NURBS / T-Spline  ¢*" order B-Spline

discontinuous  p*" order NURBS / T-Spline  ¢'" order B-Spline with oneC—!
continuity to represent a delamination.
The other interfaces at® continuous.

5.1. Locking

In this section we investigate shear locking and membragierig which can occur when decreasing
the thickness of shell elements. A clamped plate and a aytialdshell, both under bending loads
are used to assess the locking phenomenon.

5.1.1. Shear locking-igure5 shows the geometry of a plate subject to bendifigThe plate has

a Young's modulus? = 1.08 Pa and a Poisson’s ratio= 0.3. The dimensions of the plate are:
L =10m,b =1 m and the thicknessvaries through the test. The plate is fully clamped at one end
and a transverse load = 100t> Nm? is applied at the other end.

\
L —
Figure 5. Geometry of the clamped plate under bending.

As a reference value we consider the displacement at thefréaccording to the beam theory,
§ = PL?/3EI which results ind = 0.004 m for this test. The numerical simulation is done with
two meshes of 64 CSIGA lumped(2,2) and 64 CSIGA lumped(3gpents. Figurés shows the
obtained normalised displacements for different ratids/pflt is clear that employing second order
and third-order NURBS basis functions for the in-plane diisation result in a behaviour that is
insensitive to shear locking also when the thickness of tate jis reduced.

5.1.2. Membrane lockinglembrane locking can occur in curved structuresg [L8]. Therefore, a
cylindrical shell as shown in Figuféis modelled. The shell has a radius®f 10 m and a width of
b =1 m. Young's modulus and Poisson’s ratio a0 Pa ands = 0 respectively. The cylindrical
shell is clamped at one edge and subjected to a constaribdistt load ofg, = 0.1¢t> Nm?2. An
analytical solution based on the Bernoulli beam theorygavgalue of approximately.942 for the
radial displacement.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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Figure 6. Normalised displacement of the plate under bendltained for different ratios of L/t.

Figure 7. Geometry of the cylindrical shell

The numerical results for various meshes and thicknesegwesented in Figur@ In the figure,
the mesh size shows the number of elements in the radialtidineevhile only one element has
been used in the width direction. According to the resulttova number of elements of order
two, 16 CSIGA lumped(2,2) elements, exhibit membrane logkkKeeping the NURBS order fixed
and increasing the number of elements to 64 removes lockimgploying 16 third-order NURBS
elements the results are insensitive to locking as well.

11

1F

m)
09
0.8
0.7

Radial displacement, wu,,

0.6
0.5
0.4

-

16 lumped(2,2
0.3164 lumped(2,2

16 ung)o 3,2) —*%—
orpoulh =l

I I
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Figure 8. Cylindrical shell, displacemeu for different ratios ofR/t.
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5.2. Mode | delamination

In this example mode | delamination (DCB test) is simulateat. this purpose an isotropic panel
consisting of two layers is selected. The material propertif the layers are: a Young’s modulus
E =1.0 x 10'2 Pa and a Poisson’s ratie = 0.3. The geometry of the specimen is shown in
Figure 9. The specimen used for this simulation has a lengjtk 10m, a widthb = 1m and a
thickness2h = 0.05m. An initial delamination with a length af, = 2.5m is placed between the
two layers. The interface behaviour is captured by the egptial cohesive law proposed ia7].
The cohesive parameters are the fracture toughigss 1 KJ/m? and the maximum normal traction
tn ,mar — 500 Pa.

d

< — 4
N ( 12h = 0.05m
|

0

apn = 2.5m qz

L =10m
z

!
X
Figure 9. Geometry of the panel with initial delamination

For this DCB test the relation between the applied load aedoghening displacement can be
obtained using linear elastic fracture mechanics (LEFM)ldwing the ASTM standardZg], the
applied load in a DCB test for self-similar crack propagai®obtained as:

[Grcb2h3E
Fapplied = H;T (55)

with b andh the width and the height of the specimen, respectively, l€i§uand wherez is the
crack length. The corresponding opening displacementtairodd as:

8a®

u = Fappliedbh—3E

(56)

A numerical simulation has been carried out for a mesh comgi256 x 4 discontinuous
CSIGA(2,2) elements and using the dissipation-basedesugth method proposed i]], see also
[32]. With this element delamination is modelled between the ayers where the delamination
will propagate. FigurelO shows the numerical results, as well as the comparison Wwith. EFM
solution. In the pre-peak regime there is an increasingudifice between the linear-elastic solution
and the non-linear solution because of energy dissipatiding latter solution. After the peak load
has been reached the numerical results are in very goodragne&vith those from the calculations
using linear elastic fracture mechanics, in particulapiagressive delamination.

The deformation of the interface is also shown in Figlitewhere the magnitude of the tractions
is also indicated. To obtain a better insight into the irtegfbehaviour, the traction magnitudes along
the longitudinal axisc are monitored in Figuré2. In both Figuresl1 and12 a maximum normal
traction of500 Pa has been obtained. It is clear that the traction osaifiatpersist, as in standard
cohesive interface element models. A picture of graduardeiation propagation is presented in
Figurel3.

5.3. Buckling-delamination

The next example concerns the two-layered panel of Figdrét has a length, = 10m, a width
b= 1m, and a thicknesgh = 0.1m. An initial delamination with a length, = 2.5m is assumed.
The material properties of the layers are: a Young's modiélus 2.0 x 10 Pa and a Poisson’s
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Figure 10. Load-displacement curve of the mode-| delarndest.
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Figure 11. Deformation of the interface in mode-I delamiorat
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Figure 12. Interface tractions along theaxis of the mode-I delamination test specimen.

ratior = 0.3. The panel is loaded by two compressive for&eand small perturbations are applied
to trigger the buckling mode. Again, an exponential cohee$aw is considered at the interface
with the following properties: fracture toughneSs = 1 KJ/m? and a maximum normal traction
t max = 300 Pa.

The test case shows a combination of two different non-timeschanisms. First, the compressive
load results in local buckling of the initially delaminatplies, which leads to an increase of the
normal traction at the interface. Consequently, delarionagrowth will start when the normal
traction reaches the ultimate traction of the interfacea mbimerical simulation has been done using
a mesh of512 x 4 discontinuous CSIGA(2,2) elements. The results are showkigurel5. The
graphs show the axial displacementand the normal (out-of-plane) displacementversus the
applied compressive load. In both cases the comparisondegsrbade with the analytical buckling
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Figure 13. Interface tractions during delamination preem. The plots are for an ocwff-plane
displacement 06.01, 0.02, 0.03, 0.04 and0.05, respectively, from top to bottom.
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/ -~
P
!
an = 2.5m

L =10m

Figure 14. Geometry of a panel under axial load with an ihiteamination.
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Figure 15. Load-displacement curves for the bucklingthétation test. (left): Load's axial displacament.
(right): Loadvsout-of-plane displacement.

loads. The buckling loads are obtained using Euler beanmtaen

w2 Eh3

Fcr = S 9
48a3

(57)
The critical buckling loads for the two extreme cases®f 2.5 m (initial delamination length)
and ofag = L (fully delaminated panel) arg21.63 N and51.35 N, respectively. It can be seen
that the upper buckling load is lower than the analyticaugalThis difference is a matter of
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Figure 16. Deformation of the interface in the delaminatioickling test.

choosing an appropriate perturbation load and also thermaxinormal traction at the interface.
For a lower perturbation load and higher maximum normaltiwvacthe numerical buckling load
can be improved. This issue is clear from the agreement leetwve2 numerical buckling load and
the analytical solution for the lower buckling load, whele perturbation load and the maximum
normal traction do not influence the results.

300

250 *

200 *

150 *

100 *

50 *
; \

_50 - ,

Traction, t3 [N/m?|

-100 1 1 1 1 1 1 1 1 1

x [m]

Figure 17. Interface tractions along theaxis of the buckling-delamination test specimen.

Figure 16 presents the deformation of the interface for this testufed 7 shows the traction
profile along the longitudinal axig. In both cases a maximum normal tractior300 Pa has been
obtained as is in agreement with the material property ofriteface. Again, traction oscillations
are observed. The gradual delamination propagation hasviggalised in Figuré 8, which shows
the initiation of delamination and some further steps offitegagation process.

5.4. Mixed mode delamination of a curved panel

In this example delamination propagation is simulated inraed panel. The geometry of the panel
is shown in Figurel9. The panel has a radius & = 10 m, a width ofb =1 m and a thickness
of t = 0.1 m. The panel in considered to have two isotropic layers wi¥oang’s modulus and
a Poisson’s ratio o2 x 10® Pa andv = 0.3, respectively. An initial delamination is taken over an
angle. The curved panel is clamped at one edge and subjected tetoodistributed load af, .
This provides a suitable test case to investigate mixedentedamination propagation with large
rotations at the interface. The mixed mode interface moeudsed in Sectiof.2is used in this
example. The material properties of the interface @rg:= 10 J/n?, G = 10 J/n? , K = 10° Pa,
t9 =100 Pa,t? = 500 Pa and; = 1.0.

The numerical simulations have been done using two diffemeshes o256 x 1 and512 x 4
discontinuous CSIGA(2,2) element. The obtained load disghent graphs are shown if Fig@@
which show a good agreement and confirm mesh insensitivity.
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Figure 18. Interface tractions during delamination prepig of bucklingdelamination test. The colors
show the traction magnitude. The plots are for an axial disgyhent 0f0.05,0.1,0.2,0.3 and 0.4,
respectively, from top to bottom.
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Figure 19. Geometry of the curved panel with two layers anthitial delamination.
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Figure 20. Load-displacement curve for delamination pgagian in the curved panel.

Figure 21 shows the deformation of the panel. First, both layers stenting in the loading
direction. In this process damage at the interface stargsaw. After a certain deformation and a
certain damage growth, the lower layer moves in the reversetibn while the top layer keeps
moving in the loading direction. At the final stage, the lovayer has returned to its initial
configuration, the interface is fully damaged and the upaged remains in the new configuration.
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Figure 21. Deformation of the curved panel. Gray indicabesitial configuration, red represents the areas
with w =~ 1 and blue shows the areas with= 0.

In Figure21, the gray colour indicates the initial configuration, thd oelour represents the areas
with w =~ 1 and the blue colour show the areas with- 0.

6. CONCLUDING REMARKS

Isogeometric analysis can be conceived as a novel finiteegietachnology which, among other
advantages, offers the possibility to capture the geomefrghells very accurately. Since the
structural behaviour of shells can be highly sensitive tpenfections, and therefore to the precise
geometric modelling of the shell, the use of splines in ismgetric analysis offers significant
advantages. In a series of papers the authors have devedopEtgeometric continuum shell
element which models the shell surface exactly, and is dapafbmodelling weak and strong
discontinuities in the shelllp, 20]. A weak discontinuity occurs in a laminated shell betweea t
bonded plies, while delamination converts this weak diioaity into a strong discontinuity.

In Ref. [20] a B-spline has been introduced for the interpolation in thekiéss direction. Knot
insertion then allows for a straightforward introductidndiscontinuities: weak discontinuities by
a single knot insertion, and strong discontinuities by abde®knot insertion (both in case of a
guadratic B-spline in the thickness direction). It was sholmat the accuracy of the in-plane stresses
for a layered (weakly discontinuous) shell is then vastlgiaved. Moreover, a proof of concept was
given that the method can be used for modelling static delations, i.e. the analysis of surfaces
that were pre-delaminated.

Herein, the extension is made to propagating delaminafibe. propagation of delamination
is controlled by introducing a cohesive formulation acrdss delaminating surface, so that the
traction is a function of the displacement jump between theils. The governing parameters
are the tensile strength and the fracture energy. First,ubldecantilever beam (DCB) has been
analysed. The results, in terms of load-displacement betlaand in terms of traction profiles
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during delamination propagation are in keeping with thaaedl in the literature. The same holds
for the case where the beam is subjected to a compressivénidlae axial direction of the beam,
so that a combined failure mode of buckling and a propagatéigmination is obtained. The final
example of mixeemode delamination propagation in a curved panel confirménsatility of the
approach for arbitrary loadings and structures.
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