
This is a repository copy of Unsupervised Incremental Online Learning and Prediction of 
Musical Audio Signals.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100592/

Version: Accepted Version

Article:

Marxer, R. and Purwins, H. (2016) Unsupervised Incremental Online Learning and 
Prediction of Musical Audio Signals. IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, 24 (5). pp. 863-874. ISSN 2329-9290 

https://doi.org/10.1109/TASLP.2016.2530409

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Unsupervised Incremental Learning and Prediction

of Music Signals
Ricard Marxer, Hendrik Purwins

Abstract—A system is presented that segments, clusters and
predicts musical audio in an unsupervised manner, adjusting the
number of (timbre) clusters instantaneously to the audio input. A
sequence learning algorithm adapts its structure to a dynamically
changing clustering tree. The flow of the system is as follows: 1)
segmentation by onset detection, 2) timbre representation of each
segment by Mel frequency cepstrum coefficients, 3) discretization
by incremental clustering, yielding a tree of different sound
classes (e.g. instruments) that can grow or shrink on the fly driven
by the instantaneous sound events, resulting in a discrete symbol
sequence, 4) extraction of statistical regularities of the symbol
sequence, using hierarchical N-grams and the newly introduced
conceptual Boltzmann machine, and 5) prediction of the next
sound event in the sequence. The system’s robustness is assessed
with respect to complexity and noisiness of the signal. Clustering
in isolation yields an adjusted Rand index (ARI) of 82.7% /
85.7% for data sets of singing voice and drums. Onset detection
jointly with clustering achieve an ARI of 81.3% / 76.3% and the
prediction of the entire system yields an ARI of 27.2% / 39.2%.

Index Terms—Music information retrieval, unsupervised learn-
ing, adaptive algorithms, prediction algorithms

I. INTRODUCTION

Human music listening adapts to novel acoustic stimuli and

is largely based on unsupervised learning, in contrast to most

traditional music analysis systems. For music transcription [9],

prediction [8, 36], representation [22, 32], automatic accompa-

niment, or human-machine-improvisation [2, 34], a traditional

system usually is based either on symbolic data instead of

audio input, or on classifiers that are pre-trained on a labelled

data base [9]. If a system, based on pre-trained classifiers needs

to cope with new musical concepts (instruments, harmonies,

pitches, motifs) it has not been designed for, it may cease to

work reasonably. Such a system would have to be retrained

with labeled data, every time a new instrument (pitch, harmony

etc.) appears. This presents a severe lack of flexibility of

such a system, in contrast to human cognition processing new

instruments and harmonies with ease, even if one has not

heard them before. A human mind can grasp a novel motif,

when listening to a piece or an improvisation. Unsupervised

R. Marxer is with Speech and Hearing Group, Department of Computer Sci-
ence, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield,
S1 4DP, UK, r.marxer@sheffield.ac.uk.

H.Purwins is with Audio Analysis Lab and Sound and Music Comput-
ing Group, Aalborg Universitet København, A.C. Meyers Vænge 15, 2450
Copenhagen SV, hpu@create.aau.dk.

R. Marxer and H. Purwins were with Music Technology Group, Universitat
Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain.

H. Purwins was also with Neurotechnology Group, Berlin Institute of
Technology, Sekr. MAR 4-3, Marchstr. 23, 10587 Berlin, Germany.

This work was partially funded by the EmCAP (European Commission
FP6-IST, contract 013123) and INSPIRE-ITN (European Commission FP7-
PEOPLE-2011-290000) projects. Thanks to Daniel Bartz from Berlin Institute
of Technology for advice in statistics and for proof reading.

learning (clustering) instead of supervised classification is one

paradigm how an algorithm can model the cognition of novel

concepts [17, 24, 26]. Based on a discrete representation of the

input derived by clustering, an n-gram, i.e. a suffix tree, can

be used as a statistical representation of the structure of the

input sequence [8, 36]. In this paper, we extend such a system

by equipping it with the capability to deal with a varying

number of clusters. The number of clusters can increase if

a new instrument appears. The cluster number decreases if

two instruments become to sound very similar. We implement

these features by using unsupervised online learning. This

requires that the n-gram (suffix tree) must be coupled with

the clustering in order to be able to merge or split the symbol

counts when cluster numbers change. We introduce a system

prototype that learns in an unsupervised, adaptive manner and

that generates predictions from audio sequences. From the first

note it will begin to generate reasonable predictions without

using previous knowledge.

Many previous approaches to predicting musical sequences

are based on symbolic representation [2, 8, 22, 32, 34, 36].

Paiement et al. [35] present a model that is capable of

predicting and generating melodies using a combination of

Bayesian networks, clustering, rhythmic self-similarity and

a special representation of melody. The distances between

rhythmical patterns are clustered and the continuation of a

melody is predicted conditioned on the chord root, chord type,

and Narmour group of recent melodic notes. Hazan et al.

[17] build a system for generation of musical expectation

that operates on music in audio data format. The auditory

front-end segments the musical stream and extracts both

timbre and timing description. In an initial bootstrap phase, an

unsupervised clustering process builds up and maintains a set

of different sound classes. The resulting sequence of symbols

is then processed by a multi-scale technique based on n-grams.

Model selection is performed during a bootstrap phase via

the Akaike information criterion. Marchini and Purwins [24]

present a non-adaptive system that learns rhythmic patterns

from drum audio recordings and synthesizes music variations

from the learned sequence. The procedure uses a fuzzy multi-

level representation. Moreover, a tempo estimation procedure

is used to guarantee that the metrical structure is preserved in

the generated sequence. Online clustering has been proposed

by Zhang et al. [46] for document clustering. Bertin-Mahieux

et al. [5] have used online k-means to cluster beat-chroma

patterns. The Hierarchical Dirichlet Process Hidden Markov

Model (HDP-HMM) [43] has been used for segmentation in

conjunction with clustering. Fox et al. [13] and Ren et al. [40]

have proposed ’sticky’ versions of the HDP-HMM that in-

troduce explicit modelling of state occupancy duration. These

ar
X

iv
:1

50
2.

00
52

4v
2 

 [
cs

.S
D

] 
 2

3 
O

ct
 2

01
5



2

models are applied to segmentation of a Beethoven sonata into

musical sections [40] and to speaker diarization [13]. Stepleton

et al. [42] used the block diagonal infinite hidden Markov

model for musical theme labelling. However, these methods do

not perform incremental online learning, whereas we propose

an online incremental clustering method that uses a separate

segmentation method (onset detection) and switches relatively

rapidly between states. Bargi et al. [3] have adapted HDP-

HMM to an online setting employing an initial supervised

learning phase (bootstrap) whereas our approach is entirely

unsupervised.

A part of the work covered in this paper, the application

of the hierarchical n-grams on the Voice data, has been

presented previously [26]. Here we compare that method

with the conceptual Boltzmann machine and with HDP-HMM

on an extended data set using a more advanced evaluation

measure (the adjusted Rand index) and providing more ex-

amples of adaptive clustering. We will give an overview of

the system, introduce its components, namely segmentation,

timbre representation, clustering, and prediction. Then we will

introduce the adjusted Rand index, test the performance of

the sequence analysis algorithms under noisy conditions, of

each system module separately, and in conjunction. Finally,

we will give some demonstration examples. Audio-visual data

and examples are available on the supporting website [27].

II. SYSTEM OVERVIEW

The system that we present in this paper (cf. Fig. 1) consists

of four main stages: segmentation by onset detection, fea-

ture extraction resulting in timbre representation, incremental

clustering giving a symbol sequence, and sequence analysis

yielding a prediction of the next symbol. In particular, the

clustering tree generated by incremental clustering grows and

shrinks online, driven by the most recent sounds. In turn, the

sequence model adapts to the changing numbers of symbols.

Segmentation and representation can be interpreted as a model

of perception, whereas discretization and prediction can be

considered to be a cognitive model.

SegmentationAudio
Feature

Extraction

Incremental

Clustering

Sequence

Analysis

Next

Symbol

& IOI

Segments Timbre

Representation

Symbol

Sequence

Growth/Shrinking

of Clustering Tree

Structural

Adaptation

Fig. 1. System architecture: An audio sound file is segmented, using onset
detection. Each segment is then represented as a high-dimensional timbre
feature vector which is clustered into symbols. Symbols are added or removed
to the clustering tree on the fly. The symbol sequence is then statistically
analysed, adapting to the varying number of symbols, allowing for prediction
of the next symbol and the next inter-onset interval (IOI).

A. Segmentation by Onset Detection

In this section, we will explain how to segment an audio

stream into events, using onset detection. In order to be more

generally applicable, we have employed the complex domain

based onset detector [10], since it subsumes onset detection

algorithms based on energy, spectral difference, or phase as

special cases. This onset detection function captures onsets

due to abrupt energy changes as well as soft onsets induced

by pitch changes, with little energy variations. For each frame

l, the short-term Fourier transform yields a complex spectrum

Xk(l) = rk(l)e
iφk(l), with magnitude rk and phase φk for the

k-th bin with frame length K (0 ≤ k ≤ K − 1). We build

the onset detection function as the Euclidean distance between

the actual complex spectrum Xk(l) at bin k and the estimated

complex spectrum [10]:

X̂k(l) = r̂k(l)e
iφ̂k(l), (1)

where the estimated amplitude r̂k(l) is set equal to the mag-

nitude of the previous frame ‖Xk(l − 1)‖, and the estimated

phase φ̂k(l) is calculated as the linear extrapolation from the

unwrapped phases of the two preceding frames:

φ̂k(l) = princarg [ϕ̃k(l − 1) + (ϕ̃k(l − 1)− ϕ̃k(l − 2))] ,

where the ϕ̃ denotes the unwrapped phase and the princarg

operator maps the unwrapped value back to the (−π, π] range.

We calculate the bin-wise Euclidean distance between the

actual and the estimated complex spectrum, quantifying the

stationarity for the k-th bin as: ∆k(l) = ‖Xk(l)− X̂k(l)‖. By

summing across all K bins and across M + 1 consecutive

frames centered around frame l (smoothing), we yield the

onset detection function:

η(l) =
1

M

⌊M
2
⌋

∑

j=⌈−M
2

⌉

K−1
∑

k=0

∆k(l + j). (2)

Similarly to previous approaches [4], an adaptive threshold

θ(l) is used. This threshold is calculated as the scaled median

across a look-ahead window of length P + 1

θ(p) = C · mediann∈(p,p+1,...,l+P )(η(n)), (3)

with 0 ≤ C ≤ 1 being a predefined parameter controlling the

sensitivity of the onset detector. In order to eliminate multiple

occurrences of onsets shortly one after another, smoothing is

applied via another window of length W+1 centered at sample

l:

µ(l) =

⌈W
2
⌉

∑

m=⌈−W
2
⌉

max(η(l +m)− θ(l +m), 0) (4)

A silence threshold θs is applied:

µs(l) = max(µ(l)− θs, 0). (5)

Finally, the local maxima of µs(l) define the predicted onset

times.

B. Feature Extraction for Timbre Representation

For each onset, a short window of length L subsequent to the

onset time is analyzed. For each frame within this window, the

first 13 Mel-Frequency Cepstrum Coefficients (MFCC) [31]

are calculated. To model the coefficient’s temporal behaviour

right after the onset, for each coefficient another Discrete

Cosine Transform (DCT) is calculated on the sequence of



3

coefficients across the frames. Taking the first 4 DCT co-

efficients for each MFCC yields a 52-dimensional vector,

representing timbral features both of the sound event’s spectral

characteristics and their initial temporal development.

C. Incremental Clustering for Symbol Sequence Generation

The clustering stage receives multivariate feature vectors

from the preprocessing stage and converts them into symbols.

It is important to state that in our system the events are

clustered in an online manner and in order of arrival, since

this symbolic representation is used immediately to create

predictions of future events. As a reference and benchmark,

we compare online clustering by Cobweb with a state-of-the-

art batch clustering method exploiting sequential information,

the HDP-HMM.

1) Cobweb: For this purpose, Marxer et al. [28] used the

Cobweb [12]. Cobweb is an incremental clustering model

which continuously builds a knowledge tree (hierarchical

partitioning of the object space) and assigns to each instance

a partition created at each level until the object reaches the

leaves of the tree. Each node of the tree represents a concept. A

concept is modelled by a univariate Gaussian for each feature

dimension. The edges of the structure represent taxonomic

relations. Further works [29, 45] have proposed techniques

to create, in an unsupervised manner, the concept tree based

on the sequence of data presented, by the use of a heuristic

function to be maximized. The heuristic function used in

this paper is the numerical version of the standard category

utility function used by Fisher and introduced by Gluck and

Corter [16]. The version of Cobweb that we will use was

presented as Cobweb/3 [29] and later extended as Cobweb/95

[45]. This algorithm clusters D-dimensional feature vectors

x = (x1, . . . , xD) extracted in the previous section. Consider

a particular cluster containing I feature vectors. Let σd be the

standard deviation in component d of the input feature vectors

assigned to that cluster. Then
∑D

d=1
1
σd

is the specificity of

that cluster across all feature dimensions. We consider the

utility U to quantify the gain in specificity by splitting this

cluster into K child clusters. For a potential child cluster

1 ≤ k ≤ K with Ik instances and each input feature dimension

d we define σdk to be the inner cluster standard deviation in

that dimension. Then
∑D

d=1
1

σdk
is the specificity of cluster k,

and
∑K

k=1
Ik
I

∑D

d=1
1

σdk
is the specificity of the child clusters

altogether. For the cluster utility holds

U ∝
1

K

(

K
∑

k=1

Ik
I

D
∑

d=1

1

max(σdk, a)
−

D
∑

d=1

1

σd

)

, (6)

The acuity parameter a is an upper limit of maximal

specificity (minimal standard deviation) of the clusters, thereby

controlling the maximal resolution of the clustering discrimi-

nation.

The incorporation of an object is a process of clustering

the object by descending the tree along an appropriate path,

updating counts along the way, and possibly performing one

of several operations at each level. These operators are:

• creating a new node,

• removing all children from a node (pruning),

• combining two clusters into a single node, and

• splitting a node into several nodes.

While these operations are applied to a single object set

partition (i.e., set of siblings in the tree), compositions of

these primitive operations transform a single clustering tree.

As a search strategy we use hill-climbing through a space of

clustering trees.

Thereby, the input is converted into a sequence not only of

symbols, but also of meta symbols (partitions) according to

their parent nodes and grandparent nodes in the cobweb tree.

The symbols and meta symbols provide the alphabet on which

expectations will be generated by the hierarchical N-gram.

We modify the set of possible Cobweb operations (see

above) in order to achieve persistent partitioning. This reduced

set of operations can perform any of Cobweb’s original

operations. We reformulate the second Cobweb operation

(see above) in order to control the clustering only by new

incoming events. Other partitions and past events should not

be considered. This reduces the operations to:

• creating a new partition inside a container partition,

• removing a partition, reparenting it’s children if it has

any.

2) Hierarchical Dirichlet Process Hidden Markov Model

(HDP-HMM): The feature vector sequence may also be mod-

elled as the emission of a HDP-HMM, a Bayesian nonpara-

metric model in which the hidden states can be considered

as clusters. Given the observed feature vector sequence, the

most likely hidden state sequence can be interpreted as a

sequence of symbols. In the HDP-HMM, the hidden states are

assumed to be drawn from a countably infinite state space.

The HDP-HMM is used to jointly estimate the number of

clusters, the cluster assignment of the feature vectors, and the

transition probabilities between clusters. Inference in the HDP-

HMM is performed using the weak limit approximation [13]

implemented in pyhsmm [19].1 However the inference does

not work in an online manner, it requires the entire feature

vector sequence as input. This method is offline (batch mode)

and is only used as a reference and benchmark, since it does

not fulfil the constraint of clustering the feature vectors as

they arrive to perform immediate prediction from the very

beginning.

D. Sequence Analysis for Next Symbol/Onset Prediction

We choose two methods (hierarchical N-grams and con-

ceptual Boltzmann machine) [37] that require relatively little

storage by deducing frequency counts for longer sequences

from frequency counts of their shorter subsequences. These

algorithms iteratively predict the next symbol (or the inter-

onset interval= IOI respectively) ct+1 based on previous

symbols (IOIs) ct−n+1, ct−n+2, . . . , ct, previously generated

by incremental clustering. Thereby we derive which sound

to expect when. The prediction of symbols and of IOIs

is performed independently. By predicting the IOI, we can

determine the onset time of symbol ct+1.

1http://github.com/mattjj/pyhsmm



4

1) Hierarchical N-Grams (HN): N -grams have been used

in the analysis of genome sequences and in language modeling

[48]. Exhaustive N -grams count the instances of all possible

symbol (IOI) sequences of length N. Their memory require-

ment is exponential in the sequence length N and the problem

arises how to account for patterns that have not occurred before

(zero frequency problem). We use N -grams as an estimate for

the forward conditional distribution for online prediction of

the next symbol (IOI).

Hierarchical N -grams (HN) [37] need less memory than

exhaustive N -grams. HN are a combination of sparse N -gram

models in a hierarchical structure that allows compositional

learning. Compositional learning consists in learning long

patterns from already learned sub-patterns. In sparse N -grams

counts of the most frequent patterns and a separate total count

for the non-frequent patterns are kept. This technique separates

the estimates of patterns whose statistics are reliable from the

estimates of infrequent patterns whose statistics are biased. On

the other hand, the multi-width exhaustive approach consists in

keeping the count of all possible patterns of at most length N .

These models are able to represent any distribution of patterns

up to width N .

Let C1 = {c1, . . . , c|C1|} be the set of cluster indices,

renumbered so that they reflect the order of their first appear-

ance in the symbol sequence c = (c1, . . . , ct), achieved from

the clustering process in the previous section. C1 forms the

alphabet of the n-gram. Then, Cn is the set of all possible n-

grams of length n composed from alphabet C1. To exploit

sparsity, we only consider the patterns that have actually

occurred as a subsequence of c so far until time t. The set

of patterns of length n having occurred so far will be denoted

by Cn = {c1, . . . c|Cn|}, in which again the subpatterns are

ordered according to their first appearance. o(c) is defined

as the position of c in C|c|. We consider HNs of maximal

length N . Let Cn,i(n ≤ N) be the frequency count of the

i-th pattern of length n and let Tn,i be the total count of

patterns of length n since pattern i occurred for the first time.

In Algorithm 1, we use the counts Tn,i and Cn,i to iteratively

estimate the joint probabilities Pn,i for all patterns seen so far.

We define Tn,0 := T1,1 for 1 ≤ n ≤ N . In simple N -grams,

the empirical frequency
Cn,i

Tn,1
could be used as an estimate for

the probability of a pattern of length n. In the HN method

(Eq. 12), the probability Pn−1
n,i for the i-th pattern of length

n under the joint distribution of width n − 1 is estimated.

For pattern c
i = (ci1, . . . , c

i
n), statistical estimates (Eq. 8.2 in

Pfleger)

Pn−1
n,i =

P (ci1, . . . , c
i
n−1) · P (ci2, . . . , c

i
n)

∑

y∈C1
P (ci2, . . . , c

i
n−1, y)

(7)

are calculated, using the sub-patterns of the ith pattern of

lengths n. We estimate the probability Qn−1
n,i (Eq. 11) of sub-

patterns of length n − 1 of the ith pattern of length n of

not being a subpattern of the first i patterns of length n. In

Eq. 12, they are weighted by their confidence. The confidence

values depend on the number of occurrences of the patterns.

Therefore, when a pattern of length n has appeared rarely

in the data stream, its probability of occurrence is estimated

from a small number of counts and is not reliable. In this

Cobweb

H N-Gram

a

b c d

--------- 1-Gram  ----------
b: C1,1=8, T1,1=12
d: C1,4=2, T1,4=10
c: C1,3=2, T1,3=7

--------- 2-Gram  ----------
b b: C2,2=4, T2,2=11
b d: C2,4=2, T2,4=10
d b: C2,6=2, T2,6=9
b c: C2,3=2, T2,3=7
c b: C2,5=1, T2,5=6

--------- 3-Gram  ----------
b b d: C3,2=2, T3,2=10
b d b: C3,6=2, T3,6=9
d b b: C3,4=2, T3,4=8
b b c: C3,1=2, T3,1=7
b c b: C3,3=1, T3,3=6
c b b: C3,5=1, T3,5=5

--------- 1-Gram  ----------
b: C1,1=9, T1,1=13
e: C1,4=4, T1,4=11

--------- 2-Gram  ----------
b b: C2,2=4, T2,2=12
b e: C2,4=4, T2,4=11
e b: C2,6=4, T2,6=10

--------- 3-Gram  ----------
b b e: C3,2=4, T3,2=11
b e b: C3,6=4, T3,6=10
e b b: C3,4=3, T3,4=9

Sequence b b d b b c b b d b b c b b e b b e b b e

MERGE c d TO e

a

c d

b e

a

b e

Fig. 2. The Effect of a concept merge in the hierarchical n-gram. Nodes c

and d are merged into the new symbol e. The n-gram inherits the counts for
patterns including c and d to patterns including e.

a

b
c

a

b
c

a

b
c

ba
ac

ba
ac

bac

a

b
c

ba
ac

bac

Fig. 3. Illustration of the continuous composition of symbols (atoms) in the
Boltzmann Machine into longer patterns (chunks).

case the probability of appearance is better estimated from

the n − 1 length sub-patterns through Pn−1
n,i . In other words,

the information of patterns of large lengths is integrated with

the information of models of small lengths. Pfleger shows that

the probability of a given pattern can be calculated in a linear

sweep by updating all the probabilities in order of the pattern’s

first occurrence and length.

In order to adapt Pfleger’s HN [37] to our architecture, we

have to link the operations of the clustering model to the

operations on the n-gram (Fig. 2). When two or more clusters

are merged in the clustering model, we have to remove the

superfluous clusters from the set of cluster indices (Eq. 8)

and to sum up the counts for the merged clusters (Eq. 9).

For example, if the n-gram tracks patterns bbc and bbd and

suddenly the clustering model merges symbols c and d into a

new symbol e, the n-gram must sum up the counts of bbc and

bbd and substitute them with the count of bbe.

2) Conceptual Boltzmann Machine (CB): The Boltzmann

machine [1] is a stochastic, symmetric-recurrent neural net-

work that can be used to represent a joint distribution of



5

Algorithm 1 The Hierarchical N-Gram for Merged Clusters

Initialization Cn = {} for 1 ≤ n ≤ N
for incoming event ct do

for 1 ≤ n ≤ N do

if (ct−n+1, . . . , ct) /∈ Cn then

Add new pattern: Cn = Cn ∪ (ct−n+1, . . . , ct), Tn,|Cn| = 0, Cn,|Cn| = 0
end if

if c1, . . . , ck ∈ Cn are merged by Cobweb then

o′ = min(o(c1), . . . , o(ck)) (8)

Cn,o′ =

k
∑

i=1

Cn,o(ck) (9)

Cn = Cn\{c
1, . . . , co

′−1, co
′+1, . . . , ck} (10)

Update indices

end if

Update counts: Cn,o(ct−n+1,...,ct) = Cn,o(ct−n+1,...,ct) + 1
Update total counts: Tn,i = Tn,i + 1 for 1 ≤ i ≤ |Cn|

end for

Calculate joint probabilities:

P 0
1,i =

1
|C1|

(1 ≤ i ≤ |C1|)
for 1 ≤ n ≤ N do

for 1 ≤ i ≤ |Cn| do

Qm
n,i = (1−

i
∑

k=1

Pm
n,k) (m = n, n− 1) (11)

Calculate Pn−1
n,i according to Eq.7

Pn
n,i =

1

T1,1



Cn,i +

i−1
∑

j=0

(Tn,j − Tn,j+1) ·Q
n
n,j ·

Pn−1
n,i

Qn−1
n,j



 (12)

end for

end for

end for

random variables, to complete patterns, and in particular (as

in our case) to predict the continuation of a time series.

Formally, a Boltzmann machine consists of a vector of

binary units (s1, . . . , sI) ∈ {0, 1}I , and symmetric weights

wij ∈ R between pairs of units (si, sj), an update rule for the

units and a learning rule for the weights.

Applied to categorical data [38], a V -valued symbol cu is

encoded as binary units su1
, . . . , suV

with suv
= 1 if and

only if cu = v. To connect two V -valued variables cu and

ci, V
2 weights wij ,uv

are needed to connect the binary units

representing the two variables. Initially, the architecture of our

particular Boltzmann machine implementation consists of sets

of binary variables for consecutive symbols, where the binary

nodes of each variable are initially only connected to the

binary nodes of the previous and the next symbol. Depending

on the other units and weights, the stochastic softmax update

rule for the symbol is:

P (ci = j) =
1

1 + e−
∑

u6=i
∑V

v=1
suvwij,uv

T

, (13)

with temperature T decreasing from T = 50 to T = 0.005 in

100 steps. As an example of Gibbs sampling, this update rule

is applied iteratively. In general, through simulated annealing

of the temperature T , the states converge to a particular state

vector [1].

For training the Boltzmann machine, the weights wij have to

be learned. As in the case of the restricted Boltzmann machine

[41], in our case, not all pairs (si, sj) are connected by non-

zero weights wij . Units representing the same symbol are not

connected among each other. For each binary previous symbol

sequence, the update rule (13) is iteratively applied until the

final states are reached (denoted by s+i ). In addition, the update

rule is applied with no units fixed until another vector of

final states (s−i ) is reached. Then a stochastic gradient-based

learning step for the weights can be performed with learning

rate µ for a single training instance yielding s+i s
+
j :

∆wij = µ(s+i s
+
j − s−i s

−
j ). (14)

The learning step aims at minimizing the difference between

s+i s
+
j and s−i s

−
j . µ = 0.1 is used.



6

When weight wij rises above a threshold θw, a new hidden

unit is created, representing the concatenation of symbols

connected by strong weights (cf. Fig. 3) [38]. In addition,

weight wij is removed. Iteratively, hidden units for patterns

of length n + 1 are created from nodes representing patterns

of length n and a new set of binary nodes representing patterns

of length n is appended. We set θw = 0.2, 0.15, 0.1, 0.05
respectively, depending on the length of the pattern the unit

represents (length 1,2,3,4). This variant of the Boltzmann

machine is called the compositionally-constructive categorical

Boltzmann machine [38]. For predicting the next symbol ct+1,

in a trained Boltzmann machine, the respective units are fixed

to the previous symbol sequence ct−n+1, . . . , ct. After running

the unit update rule (13) until convergence, the predicted

next symbol ct+1 in the sequence can be retrieved from the

corresponding binary units of the Boltzmann machine.

In our system we have implemented a new method called

conceptual Boltzmann machine (CB). In Pfleger, the Boltz-

mann machine acts on a static set of categories. We have ex-

tended this to an architecture which operates on a dynamically

changing taxonomy of categories. Therefore, the model adjusts

to the tree structure generated by the Cobweb. This means the

Boltzmann machine changes the architecture on the fly guided

by the creation, removal, splitting, and merging operations

suggested by the Cobweb. Accordingly, in the Boltzmann

machine, the units and the update rule must be adjusted to

the new structure.

During the run, sequences of atoms cause the creation of

higher-level chunks that represent patterns. The newly created

chunks that represent patterns are then further chunked into

nodes that represent patterns of longer length. The longest

pattern represented by a node is fixed to a value of N .

III. PERFORMANCE ANALYSIS OF THE SYSTEM

A. Measures for Clustering Evaluation

Unlike in supervised learning, where accuracy can be mea-

sured between the annotated labels and the labels predicted by

a classifier, the number of clusters predicted by the analysis

can be different from the number of annotated label categories.

In addition, the mapping between annotated and predicted la-

bels is unclear. This creates the need for a particular clustering

evaluation measure. The following measures for evaluating

the agreement between annotations and predicted labels have

been suggested: purity [47], F-measure [21], and Pearson’s chi

squared coefficient [44], and Rand index [44]. We choose the

latter measure for evaluation, since it is a natural extension of

classifying elements to pairs of elements.

A partition (clustering) C of a set X is defined as a set

C = {C1, . . . , CJ} of subsets Cj ⊂ X , so that ∪jCj = X and

Cj , Cj′ disjoint for j 6= j′. Let P be the set of all partitions

of X and let |C| be the number of elements in a partition

C ∈ P. Let A ∈ P be a partition generated by annotation and

let C ∈ P be a predicted partition derived from an algorithm.

Let P = {(x, x′)|x, x′ ∈ X , x 6= x′} be the set of pairs of

distinct events. Let L ⊂ P be the set of events pairs where

both x and x′ share the same labels/annotation provided by A
and let K ⊂ P be the set of event pairs where both x and x′

lie in the same cluster provided by C . Then |K ∩ L| are the

number of point pairs that lie in the same cluster and - at the

same time - share the same annotated labels. For |C| > 1, the

Rand index [44] is defined as:

R(A, C) =
2(|L ∩ K|+ |P\L ∩ P\K|)

|C|(|C| − 1)
. (15)

Since R depends on the number of clusters |C|, we adjust

the Rand index, comparing it with the expected value of R
(baseline of a random clustering) ER. The expected value of

R over all partition combinations P ×P is calculated as [14]:

ER =
1

|C|2

∑

A,C∈P

R(A, C). (16)

ER gets maximal for A = C:

Rmax =
1

|C|2

∑

C∈P

R(C, C). (17)

Then the adjusted Rand index (ARI) holds:

ARI(A, C) =
R(A, C)− ER

Rmax − ER

(18)

The ARI has values between 0 (random partitioning) and 1
(A = C).

The ARI assumes that annotations and clusterings are drawn

randomly with a fixed number of clusters and a fixed number

of elements per cluster [44]. Although this assumption will not

always be true in our evaluation, we will use ARI, since it is

a more established measure than alternative ones, such as the

Fowlkes-Mallows index, the Mirkin metric, the Jaccard index

[30], or entropy-based measures [44, 47], e.g. normalized

mutual information and variation of information.

In evaluating our system, we use the ARI in two ways: in

the evaluation of 1) the clustering of the feature vectors of

each event (Tables IV and V) and of 2) the prediction of the

entire symbol sequence, as explained in the sequel. According

to Fig. 1, by segmentation, feature extraction, and clustering,

the input sound wave is transformed into a sequence c =
(c1, c2, . . . , cT ) of T events, each one represented as one of

J symbols. All occurrences of symbol j can be included in a

cluster Cj that contains all the indices t where event ct equals

symbol j. Then C = (C1, C2, . . . , CJ) is a partition of X =
(1, 2, . . . , T ). To evaluate the prediction c, we annotate one

of the ground truth labels (1, 2, . . . , I) to each segment of the

input, yielding an annotated sequence a = (a1, a2, . . . , aT ).
From this, a partition A = (A1, . . . ,AI) can be generated in

the same way as the partition C for c. The number I of the

annotated labels is not necessarily the same as the number of

symbols J determined by the clustering stage of our system.

Then the ARI can be used to compare C and A, as done in

Tables I-II and Fig. 4-6.

B. Data Sets

Two sets of test data are employed:

• Repetitive symbol sequences: We generate sequences that

consist of patterns of length nl = 2, . . . , 5 made up

of I distinct symbols. These patterns are repeated 20



7

0 5 10 15 20 25 30 35 40
Event

0.0

0.2

0.4

0.6

0.8

1.0

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

CB, nl =2

CB, nl =3

CB, nl =4

CB, nl =5

HN, nl =2

HN, nl =3

HN, nl =4

HN, nl =5

Fig. 4. Learning rate of the two sequence learning algorithms (CB and
HN), depending on the number of pattern repetitions. The ARI (Eq. 18) is
given for an increasing number of repetitions of a pattern with various lengths
nl = 2, 3, 4, 5, 6. HN reaches a perfect ARI quickly, in contrast to CB.

times. For each pattern length nl and each partition

A = {A1,A2, . . . ,AI} of (1, 2, . . . , nl), one sequence is

generated in a way so that elements of each partition sub-

set Ai are symbol i’s positions in the sequence. E.g. for

nl = 5 and partition A = {A1,A2} = {{1, 3, 5}, {2, 4}},

symbol ’1’ occurs at positions A1 = {1, 3, 5} and symbol

’2’ occurs at positions A2 = {2, 4}, yielding the symbol

sequence (’1’,’2’,’1’,’2’,’1’).

• Audio recordings:

Voice: Informal low quality and short voice recordings

of very simplified beat boxing, each consisting of 2-

3 different sound categories with different degrees of

tonality with a simple changing rhythm, a sequence

of a repetitive three-sound pattern, and a ritardando,

altogether 5 recordings each of 10-13 s duration. In

order to demonstrate the unsupervised character of our

system we choose sounds that do not belong to a

predefined category (e.g. an acoustical instrument).

ENST Drums: Formal high quality and automatically

annotated recorded drum sequences. 5 segments de-

scribed in terms of style, complexity and tempo as

disco (simple slow, complex medium), rock (simple

fast), country (simple slow, complex medium) [15].

The audio recordings are annotated, so they can be

evaluated. Audio data is available on the website [27].

C. Results

The system architecture consists of the processing chain:

1) onset detection and feature extraction 2) clustering, 3)

expectation. We will evaluate stages 1), 2), 3) in isolation,

1) + 2) together (referred to as transcription) and the entire

chain 1) + 2) + 3) together (referred to as prediction). We use

the repetitive symbol sequences, in order to assess expectation,

i.e. learning rate and noise robustness of the sequence analysis.

The audio recordings are used to test the processing stages of

the entire system separately.

0.0 0.2 0.4 0.6 0.8 1.0
Skip Probability

0.0

0.2

0.4

0.6

0.8

1.0

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

CB, nl =2

CB, nl =3

CB, nl =4

CB, nl =5

HN, nl =2

HN, nl =3

HN, nl =4

HN, nl =5

Fig. 5. Robustness of the two sequence learning algorithms (CB, HN, cf.
Fig. 4) with respect to skipping noise. The ARI is given for a sequence of 20
repetitions of patterns of different lengths nl and increasing probability psk
of randomly skipping an event. For psk < 0.4, HN performs better than CB.

1) Learning Rate and Noise Robustness with Repetitive

Symbol Sequences: We assess the learning rate and noise

robustness of the sequence analysis stage (CB and HN). The

sequence learning algorithm receives an initial chunk of a

repetitive symbol sequence (Section III-B) as input. From this,

the algorithm determines the most probable (expected) next

4nl symbols. The algorithm outputs the expected next symbols

ct+1, . . . , cnl·4, given the annotated symbols a1, a2, . . . , at.
For each t, from the predictions ct+1, ct+2, . . . , cnl·4 a par-

tition C is generated and compared with the partition of the

corresponding A based on annotations, as explained in Sec-

tion III-A. For t ≤ nl ·5 all annotations so far are used for pre-

diction, then only the last 12 annotations at−11, at−10, . . . at
are used for prediction. For the stochastic BM, ARI is averaged

over 100 runs of all partitions of a given length nl. The trivial

sequence that consists of a constant repetition of the same

symbol is not considered. First we assess how the learning rate

scales with pattern length and number of pattern repetitions.

Fig. 4 shows the averaged ARI across of all partitions of

lengths nl = 2, . . . 5. For this test, the HN is set to a maximum

N -gram length of N = 5. The HN reaches perfect prediction

(ARI=1) after 4nl events (2 pattern repetitions). CB seems to

converge much more slowly than HN, for nl = 2 reaching an

ARI of higher than 0.8 after 8 events, then increasing much

more slowly. For higher nl, CB seems to converge towards

perfect prediction even more slowly.

Different types of noise are used to transform the sequence

in order to assess the robustness of the sequence learning

techniques:

Skipping noise: In the original sequence, a symbol is skipped

with a given probability 0 ≤ psk ≤ 0.95.

Switching noise: In the original sequence, with a given prob-

ability of 0 ≤ psw ≤ 0.95, a symbol is selected randomly

with uniform distribution across the nl alternative sym-

bols.

The average ARI is calculated over 100 runs for nl = 2, 3,

over 50 runs for nl = 4 and 20 runs for nl = 5 for both



8

0.0 0.2 0.4 0.6 0.8 1.0
Switch Probability

0.0

0.2

0.4

0.6

0.8

1.0

A
d
ju

st
e
d
 R

a
n
d
 I
n
d
e
x

CB, nl =2

CB, nl =3

CB, nl =4

CB, nl =5

HN, nl =2

HN, nl =3

HN, nl =4

HN, nl =5

Fig. 6. Robustness of CB and HN (cf. Fig. 4) with respect to switching noise.
The ARI is given for an increasing probability psw of randomly switching a
symbol. HN performs better than CB for psw < 0, reaching random guess
level (ARI=0) for psw = 0.5.

CB and HN. Fig. 5 shows how the prediction performance

(ARI) is affected by skipping symbols with a defined psk
in the repetitive symbol sequences. This simulates e.g. the

failure of the onset extraction algorithm to detect an event. The

prediction is performed, given a sequence of 20 repetitions of

the basic pattern. For HN and CB, the performance degrades

until psk = 0.5, where random guess level is reached (ARI=0).

Until psk = 0.4, HN appears to be more robust towards

skipping noise than CB, with CB having a worse ARI for

higher nl.

In Fig. 6, the effect of clustering errors on the sequence

learning process is simulated. With increasing switching prob-

ability psw, a symbol is replaced by any of the nl symbols

under uniform distribution. The graph shows the prediction

performance using the ARI for CB and HN for different

pattern lengths. The results are similar as for skipping noise

(Fig. 5): HN is more robust wrt noise than BM, reaching

random guess level (ARI=0) for psw = 0.5. It can be

summarized that for relatively small noise the HN appears

to be more robust to skipping and switching noise, especially

for longer pattern lengths.

2) Testing of Processing Stages with Audio Recordings:

The tests with the Voice recordings (Section III-B) serve as

a proof of concept of clustering with dynamically varying

numbers of clusters. The ENST recordings are used for a more

comprehensive quantitative evaluation of the system. We test

each process stage separately. For the audio, the sample rate is

fs = 44100 Hz. For segmentation and feature extraction, the

hop size is 128 samples, and the window size is 1024 samples.

a) Onset detection: For the evaluation of the onset de-

tection (Section II-A) we employ a widely used procedure

[9, 23]. Onset times manually annotated by subjects serve

as references. The onsets estimated by the onset detection

algorithm are then compared to the manually annotated onsets.

Annotated and estimated onsets are considered a match when

their difference in time is smaller than a given threshold. In

our evaluation, we use an onset match threshold of ∼ 50 ms.

Since the data is assumed to be monophonic, the evaluation

only permits a one-to-one mapping between estimated and

annotated onsets.

Using the following onset detection parameters: smoothing

length M = 33 in Eq. 2, sensitivity C = 0.9 and look-

ahead window length P = 10 in Eq. 3, threshold window

length W = 11 in Eq. 4, and silence threshold θs = 0.002 in

Eq. 5, onset detection yields an F-measure of ∼ 99% for the

Voice data set. Therefore, we focus on the clustering and the

prediction stage. We also notice that for smoothing lengths

M > 33 the system does not improve significantly. Large

smoothing lengths reduce the temporal precision of onsets,

which is important for good feature extraction, since most of

the information about an event is located in the attack.

b) Clustering: We now compare the performance of

our incremental online Cobweb clustering and benchmark

offline (batch) HDP-HMM clustering with a constant yet

inferred cluster number as a benchmark. In order to assess

the clustering process in isolation, we assume error-free onset

detection on the previous stage. In order to achieve this,

we use the annotated onsets as input. In order to assess

the stability of the system, we tested it performing a grid

search on the two most sensible parameters involved in the

task and the algorithm. For Cobweb, we explore the analysis

window length L (Section II-B) and the acuity a (Eq. 6).

On the parameter grid, the window length/acuty pair with

maximal ARI is determined, extending the parameter grid if

the maximum lies on the grid border, with empirically set

constant grid step sizes.

For Voice, Cobweb performance peaks at ARI=82.7% for

L = 150ms, a = 18.5 on a parameter grid over L =
50, 75, . . . , 175; a = 15, 15.5, . . . , 19. For ENST, Cobweb per-

forms best at 85.7% for L = 50ms, a = 13.5 on a parameter

grid over L = 25, 50, . . . , 100; a = 13, 13.5, . . . , 15. (cf. Ta-

bles IV and V in the supplementary material[27]) This means

that the timbre model and clustering process can successfully

classify the audio events. We also notice that Voice needs

a much longer analysis window than ENST. This test, as

explained above, was performed using the annotated onsets.

The results could change when the onsets are estimated. This

effect is evaluated in the transcription test (Section III-C2c).

For the HDP-HMM, we first reduce the feature vectors of

the input to D dimensions by means of a PCA on the full

sequence. The observation distributions used are Gaussian with

parameters sampled i.i.d. from a normal inverse Wishart prior

[19] with parameters µ0 = 0, κ0 = 0.4,Λ0 = 0.001, ν0 =
D + 2.2 The maximum number of states of the weak limit

approximation inference is set to 10 and the number of Gibbs

sampling iterations to 100. For Voice, HDP-HMM perfor-

mance peaks at ARI=99.1% for γ = 8.0, α = 7.0, D = 2 on

a parameter grid over γ, α = 4.0, 5.0, . . . , 11.0 and D = 2, 3.

For ENST, HDP-HMM performs best at ARI=84.0% for

HDP concentration parameters γ = 6.0, α = 12.0 [43] and

D = 2 on a parameter grid over γ, α = 4.0, 5.0, . . . , 13.0 and

D = 2, 3. Benchmark HDP-HMM performs better for Voice

than Cobweb, whereas for ENST, Cobweb performs 1.7%

2Cf. Murphy [33], Section 9.2., p. 20 for the meaning of the parameters.



9

TABLE I
EXPECTATION OF Voice (LEFT) AND ENST (RIGHT): ARI (IN %) FOR

DIFFERENT MAXIMUM LENGTHS N OF CB/HN (ROWS).

N CB HN

2 7.4 22.4
3 6.8 27.3
4 7.3 41.1
5 5.1 50.9

6 4.4 50.9
7 5.1 50.9

N CB HN

2 6.0 18.9
3 9.1 28.9
4 7.8 43.2

5 6.3 42.7
6 6.6 42.7
7 7.7 42.6

better than HDP-HMM. When comparing these results one has

to keep in mind that HDP-HMM clustering has learned offline

jointly a stable cluster number and the transition probabilities,

exploiting sequential information whereas Cobweb has been

trained online with an adaptive cluster number.

c) Transcription: The transcription test evaluates the

subsystem composed of onset detection, feature extraction, and

clustering. In contrast to the expectation test, the entire symbol

(inter-onset interval) sequence c1, c2, . . . , ct extracted from the

clustering stage is always used from the beginning to predict

the next symbol (inter-onset interval) ct+1. The annotations a

are not used for prediction, only for evaluation. The partitions

generated from the detected events were compared with the

partitions generated from the annotated labels using ARI.

Online learning Cobweb with dynamically changing clustering

numbers and offline learning HDP-HMM with a constant

cluster number are compared. For Cobweb, Voice performs

with ARI = 81.3% for L = 150, a = 17. On the ENST data

set Cobweb yields ARI = 76.3% for L = 50, a = 13.5, using

the same parameter grids as for the clustering (p. III-C2b). In

comparison to the results for clustering, the ARI degrades

a bit in particular for ENST due to wrongly estimated on-

sets. (cf. Tables VI and VII in the supplementary material

[27]) HDP-HMM transcription performance for Voice peaks at

ARI=98.8% for γ = 8.0, α = 12.0 on a parameter grid over

γ, α = 4.0, 5.0, . . . , 13.0. For ENST, HDP-HMM transcription

performance peaks at ARI=76.2% for γ = 5.0, α = 8.0 on

the same parameter grid as for Voice. For ENST, HDP-HMM

and Coweb are almost equal. Although for Voice, the ARI is

much higher for the HDP-HMM benchmark than for Cobweb,

we have to keep in mind that Cobweb learns online with

changing cluster numbers over time whereas HDP-HMM is

trained offline with a constant number of clusters.

d) Expectation: The expectation test evaluates the per-

formance of the sequence learning module on the data sets.

We predict the cluster label ct+1 of event t+ 1 based on the

annotations from the start: a1, a2, . . . , at. Results in Table I

show that for the prediction of the sequences of the Voice and

the ENST data set, HN (ARI = 43.2% for N = 4) works

a lot better than CB, which yields an ARI = 7.8%, just

slightly better than random (0%). CB’s low performance can

be attributed to various factors: In general, many traditional

recurrent networks are known to have a slow learning rate.[18]

In particular, we have observed slow learning rate (Fig. 4)

and low noise robustness (Fig. 5 & Fig. 6). Whereas for HN,

the updates in frequency counts are getting smaller relative

to the count so far (from 1 to 2 is a higher step relative to

1 than from 100 to 101 relative to 100), in CB the weights

TABLE II
FULL PREDICTION FOR THE Voice DATA SET USING HN: ARI (IN %) FOR

DIFFERENT TEMPORAL ACUITIES at FROM EQ. 6 (ROWS) AND TIMBRAL

ACUITIES a FROM EQ. 6 (COLUMNS).

at\a 17 17.5 18 18.5 19 19.5 20

0.05 16.7 15.5 16.3 16.0 25.2 23.8 23.8
0.0625 15.9 15.3 16.2 16.0 25.2 24.0 24.0
0.075 14.4 14.3 15.2 16.7 27.2 25.8 25.8

0.0875 15.7 16.4 17.2 17.3 25.8 24.5 24.5

TABLE III
FULL PREDICTION FOR THE ENST DATA SET USING HN: ARI (IN %) FOR

DIFFERENT TEMPORAL ACUITIES at FROM EQ. 6 (ROWS) AND TIMBRAL

ACUITIES a FROM EQ. 6 (COLUMNS).

at\a 18 18.5 19 19.5 20 20.5 21

0.075 33.1 33.8 33.0 32.6 36.2 34.7 33.3
0.0875 35.1 36.2 35.3 34.2 37.8 36.3 34.9

0.1 36.3 37.6 36.6 35.4 39.2 37.6 36.2
0.1125 35.9 37.2 36.2 35.0 38.8 37.2 35.8
0.125 34.6 35.9 34.9 33.7 37.5 35.9 34.5

are updated with a constant learning rate µ (Eq. 14). Weight

updates are performed by stochastic gradient descent where

each instance is only used once when it has just occurred.

Although this is cognitively plausible if we assume that only

a limited number of instances can be stored by the cognitive

system, it comes with the price of diminished learning speed,

compared to a system where the update is performed using

a batch of instances. In addition, the architecture of the CB

may be suboptimal w.r.t. the hidden nodes. Also, in the

network, new hidden nodes are only generated one at a time,

further limiting learning speed. Furthermore, the parameters

θk for creating new hidden nodes are chosen heuristically

and may be suboptimal for short sequences like the one

presented. We can also see that for n-gram maximum lengths

n > 5 for Voice (n > 3 for ENST) the result does not

improve. For linguistic data, slower convergence and worse

performance of CB relative to HN is also observed in Pfleger

[37], pp. 80&133. In the sequel, we will only use HN.

e) Prediction: The prediction task consists in running the

full system including HN as the sequence analyzer (Tables II

and III). After the transcription of the events c1, . . . , ct, the

system predicts the next symbol and the timing of it (the next

IOI) ct+1. For evaluating the match between predicted and

annotated onsets, we set the tolerance threshold to 150 ms.

For the best configuration, the full prediction yields an ARI

of 27.2% for Voice and an ARI of 39.2% for ENST. The

performance is limited by the weakest performance of its

components, in this case the sequence analysis.

D. Examples

In this section, we present a few examples (audio on the

website [27]) of transcription and prediction using HN in order

to demonstrate the performance, evolution and shortcomings

of the system. From Hazan et al. [17], we adopt the procedure

to optimally map the annotated symbols to the clusters found

by the clustering algorithm. We calculate the matching matrix

between the annotations (’score’) and clusters of each event.

In this matching matrix, we then iteratively yield the maximal



10

entry, thereby establishing a connection between a row (an-

notations) and a column (clusters). After eliminating the row

and column of the maximal entry, we determine the maximal

entry again until the matrix vanishes.

0 2 4 6 8 10 12
Time (s)

ta

tschi

bum

A
n
n
o
ta

ti
o
n

Full Prediction of bumtatschi

Fig. 7. The system (with HN) quickly captures a simple ta-tschi-bum pattern.
Time (horizontal axis) is mapped versus event labels (one line each for ’ta’,

’tschi’, and ’bum’). Annotated labels are indicated in black below the lines.
Above the horizontal lines we find events that are correctly estimated (’•’),
matched to the wrong cluster (’�’), and unmatched (’N’) due to a wrongly
estimated onset.

In Fig. 7 and 8, we display sequences of annotations and

clusters on the same line if they are linked through this

mapping. In Fig. 7, a simple ta-tschi-bum pattern is quickly

captured. We can see how the first three events annotated

as ta, tschi, and bum are matched with the wrong clusters

bum (initial blue triangle above top line), ta, and tschi (red

squares). The first three cluster mismatches are expected, since

the system has no previous knowledge of the symbol space

nor of the sequence and therefore cannot predict symbols nor

patterns that have not yet occurred. At around 5.5s, an event

annotated as tschi is matched with the ta cluster. The timing of

the last bum is misestimated and for the last tschi timing and

cluster matching are wrong. The time deviation errors are due

to the fact that the recorded voice does not follow a temporally

regular pattern.

In Fig. 8, we observe how the system adapts to pattern

changes within the sequence. For the first two events, the clus-

ter matching is wrong. Then, after having processed enough

sounds, the system performs correct predictions. In the middle,

around 7.5s, when the repetition pattern of ta is introduced,

for three ta events the onset is wrongly estimated, two of these

events as well being mismatched with the wrong cluster, and

one additional event being only mismatched with the wrong

cluster. The errors in the middle of the sequence are due to

the pattern change. The N -gram is able to update the statistics

0 5 10 15
Time (s)

ta

bong

A
n
n
o
ta

ti
o
n

Full Prediction of bongtabongtata

Fig. 8. The system (with HN) adapts to a pattern change from ta-bong to
ta-ta-bong (cf. Fig. 7).

1st PCA component

2
n
d
 P

C
A

 c
o
m

p
o
n
e
n
t

10 Events

2

1

20 Events

2

1

38 Events

Root

1 2

10 Events

1 2

20 Events

Root

38 Events

Fig. 9. Cluster merging: After 38 events, two clusters (’•’, ’�’) merge into
one cluster (’�’). The projection of the MFCC vectors (timbre representa-
tion) onto their first two principal components (above) and the incremental
clustering tree (below) are shown.

1st PCA component

2
n
d
 P

C
A

 c
o
m

p
o
n
e
n
t

8 Events

Root

20 Events

1

2

80 Events

2.2

2.1

1

Root

8 Events

1 2

20 Events

1

2.1 2.2

80 Events

Fig. 10. Creation of new clusters: After 20 and 80 sound events, new clusters
(’•’, ’N’) emerge on the fly. Cf. Fig. 9.

and perform correct predictions after three occurrences of the

new pattern.

In Fig. 9 (sound and video on the website [27]), a sequence

of alternating bass drum and hi-hat samples is played. During

the sequence, the hi-hat is gradually mixed in a linear fashion

with an increasing amount of bass drum and vice versa so

that in the end both hi-hat and bass drum are mixed together

in a balanced way, yielding a repetitive sequence of similar

sounds. The system recognizes the two sound clusters in the

beginning, and finally merges the two clusters into one single

cluster.

In Fig. 10 (sound and video on the website [27]), a sequence

of sound events is analyzed that starts with one sound, later

joined by a second and third sound. The system is able to split

the initial cluster gradually into 2 and 3 clusters.

IV. CONCLUSION AND PERSPECTIVES

We have presented a full system that predicts the next

sound event from the previous events, operating on audio



11

data. Taking into account no previous knowledge, neither

on the used sounds or instruments nor on the timing and

rhythmical structure of the audio segment, the system starts

from tabula rasa, performing predictions from the very first

sound event. The system adapts to pattern changes in the

sequence as well as the appearance of new sounds or in-

struments at any time. Currently the system is limited by

the lack of metrical analysis, making it especially sensitive

to missed onsets. Considering the metrical context could

significantly improve the quality of predictions. For this goal, a

metrical alignment procedure[24, 25] could be combined with

incremental learning. As alternatives to CB and HN, variable

length Markov models [6, 24, 25] or other deep learning

architectures can be used, thereby overcoming the context

length limitation of HN and CB and the slow learning of CB.

The long short-term memory (LSTM) [18] is a recurrent neural

network that had been developed to capture dependencies

between disconnected distant chunks within the same time

series. Crucial to this and for speeding up learning, in LSTM,

special memory cells are used. The access to the latter can

be opened and closed by special gating units. Successfully

applied to protein homology detection, automatic composition

[11], handwriting and spoken language recognition, LSTM

could be used to replace CB or HN and improve learning

speed in our application. HDP-HMM [43] could be adapted

to online learning [3] with incremental addition/removal of

clusters comprising also segmentation, thereby replacing onset

detection. The presented system can also be modified to learn

melodies and chord progressions. For learning melodies, in

the feature extraction stage (Section II-B), MFCCs need to

be replaced by a pitch detection method as used in Marxer

et al. [28] for learning songs by the Mbenzele pygmies

or as in Cherla et al. [7] for learning guitar riffs. When

analysing (piano) chord progressions, MFCCs can be replaced

by constant Q profiles [20, 39]. Future work includes the

development of a better representation of pitch and harmony,

using a larger training set when processing more complex

music.

Inspired by these ideas, we imagine a musical improvisa-

tional dialogue between a human and a machine in which the

human may spontaneously articulate novel ideas such as new

sounds, motifs, rhythms, or harmonies. A dumb and ignorant

machine would dampen and finally stop the musical flow. But

if the machine could take up the novel idea, reply to it, varying

the suggestions of its human partner, they could develop an

enhanced musical conversation.

REFERENCES

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Se-

jnowski. A learning algorithm for Boltzmann machines.

Cognitive science, 9(1):147–169, 1985.

[2] Gérard Assayag and Shlomo Dubnov. Using factor

oracles for machine improvisation. Soft Computing, 8

(9):604–610, 2004.

[3] A. Bargi, R.Y.D. Xu, and M. Piccardi. An online HDP-

HMM for joint action segmentation and classification in

motion capture data. In Computer Vision and Pattern

Recognition Workshops, IEEE Computer Society Conf.

on, pages 1–7, June 2012.

[4] Juan Pablo Bello and Mark B. Sandler. Phase-based note

onset detection for music signals. Proc. IEEE Int. Conf.

Acoustics, Speech and Signal Processing, 5(2):441–444,

2003.

[5] Thierry Bertin-Mahieux, Ron J Weiss, and Daniel PW

Ellis. Clustering beat-chroma patterns in a large music

database. In Proc. Int. Society Music Information Re-

trieval, pages 111–116, 2010.

[6] Peter Buhlmann and Abraham J. Wyner. Variable length

Markov chains. Annals of Statistics, 27:480–513, 1999.

[7] Srikanth Cherla, Hendrik Purwins, and Marco Marchini.

Automatic phrase continuation from guitar and bass

guitar melodies. Computer Music Journal, 37(3):68–81,

2013.

[8] Darrell Conklin and Ian H Witten. Multiple viewpoint

systems for music prediction. Journal of New Music

Research, 24(1):51–73, 1995.

[9] J. Stephen Downie, Kris West, Andreas F. Ehmann,

and Emmanuel Vincent. The 2005 music information

retrieval evaluation exchange (MIREX 2005): Prelimi-

nary overview. In Proc. Int. Society Music Information

Retrieval, pages 320–323, 2005.

[10] C. Duxbury, J. Bello, M. Davies, and M. Sandler. Com-

plex domain onset detection for musical signals. In Proc.

Digital Audio Effects Workshop, London, UK, 2003.

[11] Douglas Eck and Jürgen Schmidhuber. Finding temporal

structure in music: Blues improvisation with LSTM re-

current networks. In IEEE Workshop on Neural Networks

for Signal Processing, pages 747–756. IEEE, 2002.

[12] Douglas H. Fisher. Knowledge acquisition via incremen-

tal conceptual clustering. Machine Learning, 2(2):139–

172, 1987.

[13] Emily B Fox, Erik B Sudderth, Michael I Jordan, and

Alan S Willsky. A sticky HDP-HMM with application

to speaker diarization. The Annals of Applied Statistics,

pages 1020–1056, 2011.

[14] Ana LN Fred and Anil K Jain. Combining multiple clus-

terings using evidence accumulation. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 27(6):

835–850, 2005.

[15] O. Gillet and G. Richard. Automatic transcription of

drum loops. Proc. IEEE Int. Conf. Acoustics, Speech,

and Signal Processing, 4, 2004.

[16] M. Gluck and J. Corter. Information, uncertainty, and the

utility of categories. Proc. Annual Conf. of the Cognitive

Science Society, pages 283–287, 1985.

[17] A. Hazan, R. Marxer, P. Brossier, H. Purwins, P. Herrera,

and X. Serra. What/when causal expectation modelling

applied to audio signals. Connection Science, 21:119 –

143, 2009.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-

Term Memory. Neural Computation, 9(8):1735–1780,

1997.

[19] Matthew J. Johnson and Alan S. Willsky. Bayesian

nonparametric hidden semi-Markov models. Journal

of Machine Learning Research, 14:673–701, February



12

2013.

[20] Katerina Kosta, Marco Marchini, and Hendrik Purwins.

Unsupervised chord-sequence generation from an audio

example. In ISMIR, pages 481–486, 2012.

[21] B. Larsen and C. Aone. Fast and effective text mining

using linear-time document clustering. In Proc. ACM

SIGKDD Int. Conf. on knowledge discovery and data

mining, pages 16–22, 1999.

[22] Olivier Lartillot, Shlomo Dubnov, Gérard Assayag, and

Gill Bejerano. Automatic modeling of musical style. In

Proc. Int. Computer Music Conference, 2001.

[23] Pierre Leveau and Laurent Daudet. Methodology and

tools for the evaluation of automatic onset detection algo-

rithms in music. In Proc. Int. Society Music Information

Retrieval, pages 72–75, 2004.

[24] Marco Marchini and Hendrik Purwins. Unsupervised

generation of percussion sound sequences from a sound

example. In Sound and Music Computing Conference,

2010.

[25] Marco Marchini and Hendrik Purwins. Unsupervised

analysis and generation of audio percussion sequences.

In Exploring Music Contents, pages 205–218. Springer,

2011.

[26] Ricard Marxer and Hendrik Purwins. Unsupervised

incremental learning and prediction of audio signals. In

Proc. Int. Symposium on Music Acoustics, 2010.

[27] Ricard Marxer and Hendrik Purwins. Unsupervised

incremental learning and prediction of audio signals:

Supplementary material, December 2014. URL http:

//www.ricardmarxer.com/research/unsupervised2014.

[28] Ricard Marxer, Piotr Holonowicz, Hendrik Purwins, and

Amaury Hazan. Dynamical hierarchical self-organization

of harmonic, motivic, and pitch categories. In Music,

Brain and Cognition Workshop, held at Neural Informa-

tion Processing Conference. 2007.

[29] K. McKusick and K. Thompson. Cobweb 3: A portable

implementation. Technical Report No. FIA-90-6-18-2,

1990.

[30] Marina Meila. Comparing clusterings an information

based distance. Journal of Multivariate Analysis, 98(5):

873 – 895, 2007.

[31] P. Mermelstein. Distance measures for speech recogni-

tion, psychological and instrumental. In Pattern Recog-

nition and Artificial Intelligence, pages 374–388. Aca-

demic, New York, 1976.

[32] M.C. Mozer. Neural network music composition by

prediction: Exploring the benefits of psychophysical con-

straints and multiscale processing. Connection Science,

6:247–280, 1994.

[33] Kevin P. Murphy. Conjugate bayesian analysis of the

gaussian distribution. Technical report, University of

British Columbia, 2007.

[34] Francois Pachet. The continuator: Musical interaction

with style. Journal of New Music Research, 32(3):333–

341, 2003.

[35] J.F. Paiement, Y. Grandvalet, and S. Bengio. Predictive

models for music. Connection Science, 21(2):253–272,

2009.

[36] Marcus T. Pearce and Geraint A. Wiggins. Improved

methods for statistical modelling of monophonic music.

Journal of New Music Research, 33(4):367–385, 2004.

[37] Karl Pfleger. On-line Learning of Predictive Compo-

sitional Hierarchies. PhD thesis, Stanford University,

2002.

[38] Karl Pfleger. On-line learning of predictive compositional

hierarchies by Hebbian chunking. Technical report,

In Proceedings of the AAAI2000 workshop on New

Research Problems for Machine Learning, 2002.

[39] H. Purwins, B. Blankertz, and K. Obermayer. A new

method for tracking modulations in tonal music in audio

data format. In Int. Joint Conf. on Neural Network

(IJCNN’00), volume 6, pages 270–275. NI-BIT, 2000.

[40] Lu Ren, David B Dunson, and Lawrence Carin. The

dynamic hierarchical dirichlet process. In Proc. Int. Conf.

on Machine learning, pages 824–831. ACM, 2008.

[41] Paul Smolensky. Information processing in dynamical

systems: Foundations of harmony theory. In J. McClel-

land D. Rumelhart, editor, Parallel Distributed Process-

ing, volume 1, pages 194–281. MIT Press, Cambridge,

MA, 1986.

[42] Thomas S Stepleton, Zoubin Ghahramani, Geoffrey J

Gordon, and Tai S Lee. The block diagonal infinite hid-

den Markov model. In Int. Conf. on Artificial Intelligence

and Statistics, pages 552–559, 2009.

[43] Yee Whye Teh and Michael I Jordan. Hierarchical

Bayesian nonparametric models with applications. Jour-

nal of the American Statistical Association, 1, 2010.

[44] Silke Wagner and Dorothea Wagner. Comparing clus-

terings: an overview. Universität Karlsruhe, Fakultät für

Informatik Karlsruhe, 2007.

[45] Jungsoon Yoo and Sung Yoo. Concept formation in

numeric domains. In Proc. ACM Annual Conf. on

Computer Science, pages 36–41, 1995.

[46] Jian Zhang, Zoubin Ghahramani, and Yiming Yang. A

probabilistic model for online document clustering with

application to novelty detection. In Advances in Neural

Information Processing Systems 17, pages 1617–1624.

MIT Press, Cambridge, MA, 2005.

[47] Y. Zhao and G Karypis. Hierarchical clustering algo-

rithms for document datasets. Data Mining and Knowl-

edge Discovery, 10(2):141–168, 2005.

[48] Imed Zitouni, Olivier Siohan, Hong-Kwang Jeff Kuo,

and Chin-Hui Lee. Backoff hierarchical class n-gram

language modelling for automatic speech recognition

systems. In Proc. Interspeech, 2002.

http://www.ricardmarxer.com/research/unsupervised2014
http://www.ricardmarxer.com/research/unsupervised2014


13

V. SUPPLEMENT RESULTS: GRID SEARCH ON

PARAMETERS

TABLE IV
COBWEB CLUSTERING OF Voice DATA: ARI (IN %) FOR DIFFERENT

TIMBRAL ACUITIES a FROM EQ. 6 (ROWS) AND ANALYSIS WINDOW

LENGTHS L (SECTION II-B, COLUMNS) .

L\a 15 15.5 16 16.5 17 17.5 18 18.5 19

50 31.0 33.0 33.0 33.0 33.0 34.3 35.3 35.3 35.3
75 62.1 57.8 42.5 42.2 46.2 46.2 34.6 34.6 36.2
100 76.5 77.6 75.8 78.6 81.0 78.9 55.7 55.7 37.9
125 79.8 79.8 71.5 73.3 73.6 73.7 78.0 78.0 80.6
150 67.5 66.6 67.7 68.6 73.3 76.2 81.2 82.7 78.6
175 60.0 65.6 67.2 67.4 70.1 73.5 74.2 75.5 72.4

TABLE V
COBWEB CLUSTERING OF ENST DATA: ARI (IN %) FOR DIFFERENT

TIMBRAL ACUITIES a FROM EQ. 6 (ROWS) AND ANALYSIS WINDOW

LENGTHS (COLUMNS).

L\a 13 13.5 14 14.5 15

25 65.6 64.7 63.9 63.9 62.8
50 83.0 85.7 80.5 80.2 76.7
75 73.9 72.5 69.6 78.3 65.8
100 74.2 69.1 67.9 66.3 68.8

TABLE VI
ONSET AND COBWEB TRANSCRIPTION: ARI (IN %) OF ACUITY a FROM

EQ. 6 FOR TIMBRE CLUSTERING (ROWS) VERSUS ANALYSIS WINDOW

LENGTH L (COLUMNS) MEASURED ON THE Voice DATA SET.

L\a 15 15.5 16 16.5 17 17.5 18 18.5 19

50 29.8 29.2 28.9 30.2 37.4 37.4 37.4 37.4 37.4
75 56.3 62.5 57.1 43.8 30.7 29.3 29.3 28.5 35.2
100 70.5 71.7 77.9 76.8 77.7 67.0 49.4 36.9 35.6
125 65.1 68.3 72.7 72.7 73.0 73.4 73.4 75.6 63.4
150 69.0 69.7 71.8 79.4 81.3 80.7 78.8 77.7 79.0
175 66.4 67.7 68.4 69.8 70.8 73.4 73.4 74.6 75.6

TABLE VII
ONSET AND COBWEB TRANSCRIPTION: ARI (IN %) OF ACUITY a FROM

EQ. 6 FOR TIMBRE CLUSTERING (ROWS) VERSUS ANALYSIS WINDOW

LENGTH L (COLUMNS) MEASURED ON THE ENST DATA SET.

L\a 13 13.5 14 14.5 15

25 65.9 67.1 67.1 67.1 67.0
50 67.5 76.3 71.4 71.4 71.4
75 63.2 61.4 60.6 70.8 70.2
100 62.4 57.2 57.9 58.1 61.6


	I Introduction
	II System Overview
	II-A Segmentation by Onset Detection
	II-B Feature Extraction for Timbre Representation
	II-C Incremental Clustering for Symbol Sequence Generation
	II-C1 Cobweb
	II-C2 Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM)

	II-D Sequence Analysis for Next Symbol/Onset Prediction
	II-D1 Hierarchical N-Grams (HN)
	II-D2 Conceptual Boltzmann Machine (CB)


	III Performance Analysis of the System
	III-A Measures for Clustering Evaluation
	III-B Data Sets
	III-C Results
	III-C1 Learning Rate and Noise Robustness with Repetitive Symbol Sequences
	III-C2 Testing of Processing Stages with Audio Recordings

	III-D Examples

	IV Conclusion and Perspectives
	V Supplement Results: Grid Search on Parameters

