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Butterfly wing patterns are made up of arrays of coloured

scales. There are two genera in which within-species variation

in wing patterning is common and has been investigated at the

molecular level, Heliconius and Papilio. Both of these species

have mimetic relationships with other butterfly species that

increase their protection from predators. Heliconius have a

‘tool-kit’ of five genetic loci that control colour pattern, three of

which have been identified at the gene level, and which have

been repeatedly used to modify colour pattern by different

species in the genus. By contrast, the three Papilio species that

have been investigated each have different genetic

mechanisms controlling their polymorphic wing patterns.
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Introduction
Butterfly wing patterns are examples of evolutionary

innovation that have fascinated scientists since the very

inception of evolutionary theory [1]. The adaptive signif-

icance of these patterns has been established in many

cases, and the main function is usually for defence against

predators, for example as startle patterns [2], camouflage,

or warning colours in chemically defended species [3].

Warning colours are also often shared between species,

either through Müllerian mimicry, where multiple chem-

ically defended species have the same pattern, increasing

predator learning of these patterns [4], or through Bates-

ian mimicry, where non-defended species copy the pat-

terns of chemically defended species [5]. Wing colours

and patterns can also function in mate choice and mate

attraction [6], sometimes alongside an anti-predator func-

tion [3]. This dual function can lead to interesting evolu-

tionary dynamics, for example the ability to function as
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‘magic traits’ in speciation — causing both ecological

divergence between populations with different patterns

and reproductive barriers due to assortative mating [7].

Wing patterns in the butterflies and moths (Lepidoptera)

are made up of arrays of coloured scales (Figure 1). These

colours can be conferred either by pigments or by sub-

micron-scale structures that produce interference colours

(structural colour) or by a combination of these mecha-

nisms [8]. Although the genetic pathways responsible for

pigment production are fairly well characterised in most

cases, virtually nothing is known about genes controlling

structural colour. The most common pigment is melanin

and the pathways producing this pigment from the amino

acid precursor tyrosine are well known in insects [9,10].

Other butterfly wing pigments include ommochromes,

pterins and flavonoids. The first two are synthesised from

precursors tryptophan and guanosine triphosphate respec-

tively, but the latter must be obtained from food plants [8].

Although the genetic control of pigment production is

reasonably well understood, these genes appear to be

fairly conserved in evolutionary terms and contribute

relatively little to the variation in wing pigmentation

pattern observed in butterflies [11,12] or moths [13], at

least over short evolutionary timescales. This contrasts

with what is known in vertebrates [14–17] and to some

extent also other insects [18,19], and suggests that on the

lepidopteran wing there is a greater disconnect between

the genes responsible for producing pigments and those

responsible for the evolution of colour patterning.

There are two major butterfly groups in which genetic

variation underlying pattern variation has been investi-

gated, Heliconius and Papilio (Figure 2). Both of these

show widespread within-species variation in wing pig-

mentation patterning related to mimicry. This variability

has made them excellent systems for identifying genes

controlling pattern variation.

The Heliconius ‘Tool Kit’
As well as within-species variation in pigmentation pat-

terning, the Heliconius butterflies have also been studied

because of the often near-perfect mimicry between spe-

cies. This mimicry has also made them an excellent

system for studying the extent to which the same genes

are used when evolving convergent traits [20]. Extensive

genetic work on species within this genus (largely H.
erato, H. melpomene, H. cydno and H. numata) has revealed a

‘tool kit’ of around five unlinked genetic loci (Figure 2)
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Figure 1
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Butterfly wing patterns are made up of arrays of coloured scales. (a) Wings of Heliconius erato cyrbia. The red and black colours are produced by

melanin and ommochrome pigments respectively. The blue colour is due to scale nano-structure. (b) Magnification of the wing showing the

scales. (c) Electron micrograph of wing scales. Bar indicates 50 mm. White boxes (in a and b) indicate approximate areas magnified (in b and c

respectively).
that control almost all of the colour pattern variation in

this group and that have been repeatedly used by differ-

ent species to produce both convergent and divergent

wing colour patterns [21–23,24�]. Over the last few years

several of these have been pinned down to individual

genes.

Optix

Fine-scale mapping and gene expression analyses have

identified the transcription factor optix as being responsi-

ble for turning on and off most red, orange and brown

colour pattern elements in H. erato, H. melpomene and H.
cydno (Figure 2) [25]. In Drosophila the main function of

optix is in controlling eye development [26]. However, the

gene apparently took on a role in wing scale specification

within the lepidoptera, initially controlling the develop-

ment of specialised scales coupling together the fore-

wings and hind-wings, and just within Heliconius has it

taken on a role in colour patterning [27].

Population genomics approaches have identified a 65 kb

interval �100 kb downstream of optix that likely contains

cis-regulatory elements controlling red colour patterns in

both H. erato and H. melpomene [28,29]. Detailed analysis

of this region in H. melpomene has revealed two discrete

regulatory modules, one 10 kb in length containing var-

iants that control red patches at the wing bases (‘dennis’

patches) and one 25 kb in length controlling red ‘rays’ on

the hind-wing (Figure 3b) [30��]. It seems likely that each

of these modules contain one or more transcription factor

binding sites that specify the expression pattern of

optix. However, discovering exactly what the functional

variants within these regions are will likely remain unre-

solved until transgenic techniques are developed in these

species. It is also presumed that there is a third, currently
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unidentified, regulatory module for optix, which controls

the presence of a red forewing band [22].

Cortex

A second major locus is responsible for switching on and

off most white and yellow colour pattern elements in H.
erato, H. melpomene and H. cydno (Figure 2) [21,23].

Interestingly this locus also overlaps with two inversions

present in certain morphs of H. numata, which control

quite different colour patterns of black, orange and yellow

spots [31]. H. numata differs from most other Heliconius
species in that multiple colour patterns are usually pres-

ent within a single population and that all colour pattern

variation is controlled by multiple alleles at single genetic

locus with a strict dominance hierarchy between these

alleles [32]. The gene cortex appears to be, at least

partially, responsible for these colour pattern variants,

with population genomics approaches mapping colour

pattern variation within H. erato, H. melpomene and H.
numata to within or near this gene and H. melpomene and

H. numata showing colour-pattern-associated expression

differences of cortex [33��].

Cortex belongs to a family of cell cycle regulators [34],

which includes two genes that are highly conserved in all

eukaryotes, CDC20/fzy and cdh1/fzr, and have a funda-

mental role in cell cycle progression [35]. Cortex itself

appears to be insect specific and to have a much higher

evolutionary rate [33��]. It seems likely that it could

control scale cell colour through control of scale develop-

mental rate, as melanic scales are known to develop at a

slower rate than scales of other colours across a diversity of

lepidoptera [36]. Indeed, the cortex gene also appears to

regulate melanic pigmentation in the peppered moth,

with the insertion of a transposable element in this gene

producing the melanic form that proliferated during the
Current Opinion in Insect Science 2016, 17:24–31
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Figure 2
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Genes controlling colour pattern in Heliconius and Papilio. Examples of the variation produced by each of the loci are shown for each species, the

patterns differ more if the loci have a larger effect. Box colour also indicates effect size: black, large effect; dark grey, medium effect; light grey,

minor effect. In some cases additional linked genes may be involved. *These loci have minor effects on phenotype in H. numata which are hard to

represent pictorially, the size and fill shade of the boxes indicates the effect size. Based on information from

[21,23,24�,25,33��,38,39,42,43,50�,54�,57,61,62].
industrial revolution [37�]. Therefore, it seems likely that

cortex has a role in scale cell development and pigmen-

tation across all lepidoptera.

Again, the precise functional variants of cortex causing

differences in pigmentation patterning are unknown, but

appear to be cis-regulatory rather than coding. Cortex has
Current Opinion in Insect Science 2016, 17:24–31 
several 50 untranslated exons (50 UTRs) spanning a region

of over 100 kb, suggesting a complex of dispersed regu-

latory elements [33��]. In addition to splicing variation of

these 50 UTRs, there are also alternative coding isoforms,

some of which show associations with colour pattern.

Further work is needed to understand if this splicing

variation affects scale pigmentation.
www.sciencedirect.com
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Figure 3
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Evolution of the ‘dennis’ and ‘rays’ regulatory modules of the optix gene in Heliconius melpomene and related taxa. (a) Evolutionary trees of

dennis (red) and rays (orange) overlain on the species tree. (b) Schematic representation of the regulatory modules.

Source: Modified from [30��].
WntA

A third gene, WntA, controls several aspects of the size and

shape of the colour pattern elements switched on and off

by the previous two loci in both H. erato and H. melpomene
(Figure 2) [38]. Unlike the previous two genes, some

functional information does exist for this gene, with

pharmacological treatments that enhance wnt signalling

increasing the amount of melanin pigmentation on the

wing and mirroring the natural effects of this locus [38].

On the other hand this locus has not been fine-mapped in

the same detail as the previous two, so the location of

functional sites is less clear. The evidence again seems to

point to cis-regulatory variation, although mapping data

places these closer to the coding region than is the case for

the previous two genes [38,39], and coding variants have

not been completely ruled out.

Like cortex, WntA’s role in wing patterning seems fairly

ubiquitous, at least within the nymphalid butterflies [40].

Further, WntA also controls colour pattern differences

between Batesian mimetic and non-mimetic populations

of the admiral butterfly Limenitis arthemis in the eastern

USA. In this species colour pattern variation shows a

perfect association, again with the insertion of a transpos-

able element, upstream of the coding exons of WntA [41�].

Other Heliconius loci

At least two other loci are known to control aspects of

pigmentation patterning variation in Heliconius. Another
www.sciencedirect.com 
locus controlling the shape of the forewing band has been

found on H. melpomene chromosome 13 in both H. erato
and H. melpomene (Figure 2) [39,42]. Further work is

needed to identify the gene responsible, although the

current mapping data implicates the radial spoke head 3
gene [39].

The K locus controls a switch between yellow and white

in H. melpomene and H. cydno (Figure 2) and has been

mapped to a region of chromosome 1 that contains wingless
[43], although the exact gene responsible is not known.

Despite causing a simple switch in yellow pigment de-

position it seems unlikely that the gene is involved in

production of the yellow pigment since this is synthesised

in the haemolymph, not in situ [44], and both yellow and

white patterns can be present on the wing of a single

individual with a particular K allele.

The importance of gene-exchange for
Heliconius pattern variation
In addition to this tool-kit of loci that can be used flexibly

to generate a wide range of patterns, gene exchange

between species also appears to have played an important

role in pattern evolution in this group [45]. There are now

several well-supported cases of species that have gained

novel wing patterns as a result of rare hybridisation events

with other species, allowing introgression of colour pat-

tern genes [45–47]. This mode of evolution is likely to be

particularly effective, as it means that an entire locus,
Current Opinion in Insect Science 2016, 17:24–31
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containing multiple co-evolved mutations that have built

up over evolutionary time, can be acquired instantaneous-

ly. It is also likely to particularly advantageous in Helico-
nius, where positive frequency dependent selection

drives mimicry between species [4], so a species moving

into a new area can rapidly join a mimicry ring by

acquiring genes from other species already in that area.

However, gene-flow between species appears to be able

to do more than just transfer existing patterns between

species. In some cases it also appears to be able to

generate novel patterns. Recent work has shown that

the two distinct modules producing the ‘dennis’ and ‘rays’

pattern in Amazonian H. melpomene and H. elevatus have

distinct evolutionary origins, with dennis arising first in

the ancestor in H. elevatus and then being shared with H.
melpomene, and rays arising later in H. melpomene and then

being transferred in to H. elevatus [30��]. Therefore the

current phenotype of both of these species is a chimaera

of different patterns that evolved separately in each

species with hybridisation acting to bring them together

(Figure 3a).

Papilio supergenes

Within the swallowtail butterfly genus Papilio, female-

limited Batesian mimicry has evolved multiple times,

with males being non-mimetic and females mimicking

other, chemically defended, species [48]. In several of

these species the females are also polymorphic, often with

a male-like non-mimetic morph and morphs that mimic

either one or several toxic species [5]. The genes control-

ling the switch between different female morphs have

often been described as ‘supergenes’ because of their

ability to influence multiple aspects of the phenotype

from a single genetic locus [49]. Two such genes, under-

lying female-limited polymorphism, have been identified

(Figure 2). By contrast to the Heliconius system, the genes

involved are not the same between different species,

although both are transcription factors.

Papilio polytes

In this species there are multiple female morphs, includ-

ing a non-mimetic male-like morph and three mimetic

morphs resembling distantly related, toxic, Pachliopta
swallowtails. Two teams independently mapped the fe-

male-limited polymorphism to the doublesex (dsx) gene

[50�,51��]. This autosomal gene controls sexual dimor-

phism in all insects that have been investigated [52].

Fascinatingly, in at least one of the mimetic morphs,

dsx is inverted relative to the ancestral orientation found

in the non-mimetic morph [51��]. This has repressed

recombination between the mimetic and non-mimetic

alleles, allowing multiple sequence differences to accu-

mulate.

As in other insects, there are multiple female-specific

splicing isoforms of dsx in P. polytes, but the studies
Current Opinion in Insect Science 2016, 17:24–31 
disagree on whether these are differentially expressed

between morphs [50�,51��]. However, knockdown of dsx
confirmed the functional role of this gene in specifying

pattern and implied that coding or structural differences

found in the gene could be important [51��]. Knockdown

of the mimetic dsx allele produced a switch to a non-

mimetic pattern, whereas knockdown of the non-mimetic

allele in heterozygous individuals, which have the mi-

metic phenotype (it is dominant), produced no pheno-

typic effect, suggesting that changes in the expression

level of dsx alone are insufficient to produce a change in

colour pattern. Nevertheless, there must also be some

regulatory component that prevents the mimetic dsx
allele from affecting male phenotype.

Papilio dardanus

This species also has multiple mimetic female morphs,

but in this case they mimic very distantly related nym-

phalid butterfly species and non-mimetic female morphs

are less common [53]. Mapping and population genomics

analyses have identified the gene responsible for switch-

ing between morphs as the autosomal gene engrailed [54�].
No inversions were present in the region, but one of the

morphs had a duplication of engrailed, which could simi-

larly act to reduce recombination and promote divergence

between the alleles. In this case too, coding sequence

changes are present and may have a functional role,

although this remains to be tested. Engrailed expression

patterns have previously been shown to correlate with

adult wing patterns in the butterfly Bicyclus anynana [55],

suggesting that the transcription factor may have a wide-

spread role in regulating butterfly wing colour patterning.

Other Papilio species

Papilio memnon is similar to P. dardanus in having a large

number of female morphs that are largely controlled by a

single genetic locus [56], but the molecular genetics in

this species has not been investigated. Papilio [Pterourus]
glaucus has a mimetic and a non-mimetic female morph,

largely controlled by a locus on the W chromosome, with a

low frequency of a Z-linked modifier alleles coming from

hybridisation with P. canadensis [57]. The fact that control

is sex-linked in this species demonstrates that the genes

involved are again distinct from those controlling poly-

morphism in P. polytes or P. dardanus.

Conclusions
‘Supergenes’ controlling butterfly colour were initially

thought to be made up of multiple tightly linked genes

[49]. However, in both investigated Papilio species only a

single gene seems to be involved [51��,54�]. The situation

in Heliconius is less clear. H. numata, the only species with

classical supergene architecture, does have large inver-

sions between different mimetic alleles, which lock to-

gether multiple genes [31]. Current evidence points to

just one of these genes, cortex, as having a major effect on

phenotype [33��], but it is still too early to say whether
www.sciencedirect.com
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other genes in the inversions might act with cortex to

produce some of the phenotypes. Molecular investigation

of other systems has also shown that in some cases super-

genes can involve the action of multiple genes locked

together in inversions [49,58,59].

Something that is clear is that these loci have not evolved

through genomic rearrangements that have brought to-

gether previously unlinked genes from around the ge-

nome [60]. Indeed, in Heliconius the steps involved in

building a supergene can be observed. The three major

loci described above (optix, cortex and WntA) control most

colour pattern variation not only in the co-mimetic spe-

cies H. erato and H. melpomene but also in H. hecale and H.
ismenius, which have spotted patterns like H. numata
(Figure 2) [24�]. This, together with other studies [39],

illustrates that each of these loci can have diverse effects

on phenotype and that these effects can sometimes be

overlapping and can vary in their magnitude. It is there-

fore not a great leap to see how accumulation of mutations

concentrated at just one of these loci could take on broad

phenotypic effects, with polymorphism at other loci being

reduced. Indeed traces of this process can still be seen in

H. numata, where variation linked to wntA, optix, K, and

chromosome 13 was found to have minor effects on

phenotype (Figure 2) [61].

This also demonstrates that the genetic variants in these

systems are in fact the product of a, probably lengthy,

process of refinement, that has likely led to a reduction in

the number of loci controlling colour pattern. Selection

will act against unfit recombinant phenotypes, and will be

strongest in fully polymorphic populations and weaker

(but still present) where morphs are parapatric [32].

Therefore, we need to be cautious about making infer-

ences from these systems about the earliest stages of

divergence and the distributions and effect sizes of the

first mutations that were targeted by selection. It is likely

that multiple mutations at each of these loci have led to

the current polymorphic alleles, and evolution may also

have been facilitated by mutations at unlinked loci, at

which polymorphism was later lost due to selection [60].

A key remaining question is why the patterns of gene re-

use are so different between Helcionius and Papilio, espe-

cially when, superficially, the workings of the different

Papilio species seem so similar. One obvious possibility is

the different forms of mimicry involved: Heliconius are

Müllerian mimics, with different species converging on

the same patterns, while the Papilio species mimic dif-

ferent, distantly related species. Maybe this is why the

different Heliconius species use the same loci, while the

Papilio species do not. However, the use of the same loci

even in species that have very different patterns, like H.
melpomene and H. hecale, suggests that this is not the whole

story. Another plausible explanation could be the ubiq-

uity of both colour pattern polymorphism and gene-flow
www.sciencedirect.com 
throughout Heliconius. This could have helped to main-

tain polymorphism at the tool-kit genes, making them

predictable targets for selection whenever a new colour

pattern became favourable. By contrast, the polymorphic

Papilio species are more sparsely distributed both geo-

graphically and on the phylogeny, perhaps making the

evolution of mimicry somewhat more ‘independent’ be-

tween each species. This argument does not hold for

other examples of gene re-use, however. For example,

why the peppered moth and admiral butterfly have also

used two of the Heliconius tool-kit genes [37�,41�], as these

events are clearly evolutionarily distinct. Ultimately, the

question of what drives patterns of gene use can only be

answered by comparing more systems and understanding

the genetic basis of further adaptive and polymorphic

traits.
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