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Direct Digital Demultiplexing of

Analog TDM Signals for Cable Reduction

in Ultrasound Imaging Catheters
Thomas M. Carpenter, M. Wasequr Rashid, Maysam Ghovanloo,

David M. J. Cowell, Steven Freear, F. Levent Degertekin

Abstract—In real-time catheter based 3-D ultrasound imag-
ing applications, gathering data from the transducer arrays is
difficult as there is a restriction on cable count due to the
diameter of the catheter. Although area and power hungry
multiplexing circuits integrated at the catheter tip are used in
some applications, these are unsuitable for use in small sized
catheters for applications like intracardiac imaging. Further-
more, the length requirement for catheters and limited power
available to on-chip cable drivers leads to limited signal strength
at the receiver end. In this paper an alternative approach using
Analog Time Division Multiplexing (TDM) is presented which
addresses the cable restrictions of ultrasound catheters. A novel
digital demultiplexing technique is also described which allows
for a reduction in the number of analog signal processing stages
required. The TDM and digital demultiplexing schemes are
demonstrated for an intracardiac imaging system that would
operate in the 4-11MHz range. A TDM integrated circuit (IC)
with 8x1 multiplexer is interfaced with a fast ADC through a
micro-coaxial catheter cable bundle, and processed with an FPGA
RTL simulation. Input signals to the TDM IC are recovered
with -40dB crosstalk between channels on the same micro-coax,
showing the feasibility of this system for ultrasound imaging
applications.

Index Terms—TDM, ICE, FPGA, CMUT, CMUT-on-CMOS,
Catheter

I. INTRODUCTION

C
ATHETER based real-time 3D imaging, such as used in

3-D transesophageal echography (TEE), requires data to

be captured from many transducer elements simultaneously

to avoid motion artefacts [1]. Direct connection to each of the

elements in the 2-D arrays is either impossible or very limiting

due to size of the catheter, especially in the case of small sized

catheters for intracardiac echography (ICE) [2]. It is partially

because of these limitations that current 3D ICE probes do

not have a large field of view [3]. Furthermore, current ICE
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and TEE catheters are used in conjunction with harmful X-ray

imaging (fluoroscopy) for navigation [4].

To realize an ICE catheter that can be used under MRI

guidance avoiding ionizing radiation, the cable count needs to

be reduced significantly so as to reduce RF induced heating

of the metal conductors [5]. Therefore, cable reduction tech-

niques with electronics complexity, area, and power require-

ments suitable for integration at the tip of an ICE catheter

would have a significant impact in catheter based ultrasound

imaging applications, both in terms of implementing large

field of view ICE catheters, and by eliminating the need for

fluoroscopy. These techniques can then be implemented using

monolithic CMUT-on-CMOS, or ICs integrated with CMUT

or piezoelectric transducer arrays in a multi-chip package [6]

[7] [8] [9].

In this paper, a TDM approach with relatively simple

electronics on the catheter tip along with a direct digital

modulation scheme at the back end for signal recovery is

demonstrated. After a review of channel multiplexing methods

motivating the need for this approach, details of the TDM

system are presented along with the IC implementation in

CMOS. Real-Time Direct Digital Demodulation (DDD) as

realized in an FPGA is described and finally experimental

results on the overall system are presented.

II. CHANNEL MULTIPLEXING METHODS

In developing the proposed TDM scheme, several methods

for reducing cable count were considered. Using on-chip

digital multiplexing techniques would provide a method of

reducing cable count while maintaining signal integrity as a

digital output would be less prone to noise than transmitting

the observed echo responses directly. However, such a system

would require Analog to Digital (A/D) conversion of the

signals individually for every receiver element. While research

into lower power and smaller size ADCs continues [10], even

with the current state of the art technologies, for example a

35MSPS SAR ADC consuming 54mW of power and using

0.239mm2 area [11], having one ADC per element on-chip for

a 96 element transducer would still use upwards of 22mm2

area and consume over 5W of power. In a size and power

constrained system, such as an imaging catheter, this would

be simply unfeasible to implement.

Another approach, which has been demonstrated in [12] [13]

[14] [15] and [16], involves performing partial beamforming
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(µ-Beamforming) with analog delay chains in the transducer.

By performing delay-sum beamforming in the transducer,

fewer cables are required as the raw signals from every ele-

ment do not need to be transferred to front end for processing.

This approach requires a large number of capacitors and

switches for each channel in order to achieve the required

analog delays, which makes it unsuitable for systems with

size restrictions. This method would also be incompatible

with systems which make use of advanced imaging techniques

requiring all of the echo raw data.

A third approach for cable reduction is Frequency Division

Multiplexing (FDM) [17]. One such method of FDM, using

Analog Modulation (AM) has been shown to be feasible for

ICE applications and could be applicable to other ultrasound

applications. This design uses AM to multiplex multiple

signals on to each cable allowing all of the raw data to be

transferred by making better use of the channel bandwidth.

However this approach requires multiple analog filters and

mixers to produce the multiplexed output. Compact imple-

mentations of these electronic circuits on silicon are sensitive

to silicon process variations which means using the technique

in applications with hundreds of elements would be difficult

to ensure uniformity across all channels. Furthermore, FDM

would also require complex digital signal processing hardware

and software to demodulate and recover the signals prior to

image reconstruction, especially if real-time imaging or high

element counts are required.

Multiplexing the channels in time is also a possibility

for reducing the cable count for the system. The approach

allows multiple channels to share the same cable by assigning

each channel a time slot in which to transmit. Time-Division

Multiplexing (TDM) can be performed using many schemes,

the versatility and simplicity of which has resulted in extensive

use in communications and telephony applications [18] [19]

[20], and also for applications in ultrasound systems.

An approach with potential for small area, low element

count ultrasound applications is to convert the analog data

directly to a digital PWM signal, encoding the analog voltage

as the duty cycle – essentially performing on-chip digitiza-

tion without the need for an ADC [21]. The downside of

this approach is the massive bandwidth requirements for the

transmission channel when scaled to larger element counts.

The bandwidth is directly proportional to not only the number

of elements, and the sampling frequency, but also increases

exponentially to the number of bits of analog resolution

required. A system with 16 transducer elements each sampled

at 20MSPS with a 10bit resolution would require over 300GHz

of bandwidth to send down a single cable, which is simply not

feasible.

Analog TDM requires a relatively small amount of hardware

at the transmitter compared with the other schemes discussed

here. At the bare minimum, only an analog multiplexer and

simple digital counting logic is required to multiplex analog

data streams. The sequencing approach of the transducer

elements can be varied, allowing for different options in

assigning time slots based on the application.

In one approach the time slots are assigned on a per-firing

basis whereby each element in the array is connected to the

cable for a full firing. On each subsequent firing the next

element is connected, and so on until data for each element

has been collected. This approach is has been demonstrated in

several systems [22] [23] [24]. While this approach does allow

for cable reduction, it requires multiple firings to collect the

information as only one element per cable can be sampled in

a given firing. For very high element counts this will reduce

the maximum possible frame rate for imaging, and can lead to

more prominent motion artefacts as the time over which the

image is collected is increased.

In cases where data must be collected for all channels

simultaneously, perhaps due to high element counts, or if

high frame rates are required, the multiplexing scheme can

be designed so that the time slots are made short enough that

each channel can be sampled at above the Nyquist rate. In this

approach, rather than changing channel on each firing, instead

the multiplexer scans through every element in turn using a

sampling clock which is at least n times the Nyquist rate

(where n is the number of channels). This approach was briefly

presented in [25] in which 12 channels were multiplexed onto

a single cable using this technique. The approach has since

been demonstrated in [26] and [27] in which 8:1 and 4:1

reduction in cable counts were achieved respectively.

III. SIMULTANEOUS COLLECTION TDM SCHEME

In this paper, the TDM approached for simultaneous collec-

tion of data from all elements is discussed in detail, building

on the system demonstrated in [26]. There are two key areas

of focus, the multiplexing electronics which would be located

with the transducer, and the direct digital demultiplexing

design which makes up the receiver.

A minimal TDM transmit system requires only an analog

multiplexer and a buffer for each channel and so requires

much less space to implement than the other channel reduction

schemes considered. At the receiver end the signals then

need to be demultiplexed which requires additional hardware.

If done in the analog domain this would require the high

frequency multiplexed signals to be passed through a syn-

chronous demultiplexer, filtered, and then passed into an ADC

dedicated to each channel. Each of these stages would add

noise to the system, would present additional complexity in

matching the circuits across all channels, and would require a

large number of ADCs.

As there is now increasingly widespread availability of very

high speed ADCs with effective number of bits on the order of

10 or more [28] [29], and also FPGAs capable of performing

complex DSP functions on many channels in parallel, much of

the receiver hardware complexity can be eliminated by moving

all of the demultiplexing requirements from the analog domain

into an FPGA and allowing demultiplexing to be done directly

in the digital domain.

The clock frequency of the multiplexer will be much higher

than the sampling frequency for each channel, in an 8 channel

25MSPS design as an example, the clock frequency would be

200MHz. The analog signals are modulated onto pulses which

must rise and stabilize fast enough that the amplitude can be

extracted by the ADC correctly. The cables connecting the
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Fig. 1. Analog TDM Scheme using Direct Digital Demultiplexing - AFE CMOS IC Placed with Transducer Array to Multiplex Signals

multiplexer and ADC need sufficient bandwidth to limit the

amount of distortion of the high frequency TDM signals.

In Fig. 1 an overview of the simplified TDM scheme

is shown. The receiver end consists only of an LNA and

ADC in the analog path, which is then followed by an

FPGA to perform the digital demultiplexing. The transmitter

end consists of an analog front end (AFE) followed by a

sample and hold (S/H) capacitor for each channel, each of

which is then connected to an analog multiplexer. The Time-

Gain Compensation (TGC) in the AFE can be controlled

via a single cable to digitally cycle through fixed levels, or

alternatively controlled using an analog reference signal for

finer adjustment.

The multiplexing is controlled by digital circuitry which

generates sample clocks for each channel, and control signals

for the multiplexer. This circuitry is controlled by a clock

signal generated by the receiver and transmitted over an

additional cable. The ADC clock is synchronized to this same

clock signal to ensure that each ADC sample corresponds

exactly to one channel in the multiplexed data. As a result

of this synchronization, demultiplexing theoretically becomes

a simple task of separating the data into groups consisting of

every nth sample.

IV. MIXED SIGNAL MULTIPLEXER DESIGN

The multiplexing circuitry is to be placed with the trans-

ducer to receive the signals and connect them with a reduced

number of connections to the back end electronics. To directly

interface with the transducers an AFE is required which

is suited to the technology. For example a Transimpedance

Amplifier (TIA) based AFE would be suitable for CMUT

designs [22]. Also required is an anti-aliasing filter prior

to the signals being sampled. Additional electronics such as

integrated TX/RX switches may also be needed in the front

end.

Following the AFE is the sampling circuitry. This consists

of a sample and hold buffer, an analog multiplexer, and

sequencing logic. An overview of this is shown in Fig. 2. The

sequencing logic generates sample clock and multiplexer select

signals for each channel based on a counter which keeps track

of which channel is to be connected. The sequencing signals

are demonstrated in Fig. 3.

Buf.

Grey Code
Counter

S/H

S/H

Sample Select

Mux

Sequencing
Logic

TDM Clock

Link Training
Mode Select

Mux Select

Fig. 2. TDM Multiplexer Design and Control Signaling

Ch 1

Ch 2

Ch N

...

Mux Select

Sample Sel.

Sample/Hold + Mux

(a) (b)

Fig. 3. Control Signal Timing for (a) Sample/Hold and (b) Multiplexer

When a given channel is not being driven on to the cable,

the S/H capacitor is connected via a pass transistor to the

output of the TGC. This gives time for the capacitor to match

the signal voltage and sample the signal (Fig. 3a). Once it is

time for that channel to be connected to the output, the S/H

capacitor is disconnected from the input, and after a short dead

time, is then connected via a buffer and the multiplexer to the

cable driver (Fig. 3b).

The S/H circuitry has been included in the transmitter

to ensure the signals are correctly sampled and transmitted.

Sampling in the transmitter ensures that during each time

period on the cable, a constant value is sent. This means that

the high speed cable driver can settle to a constant value after a

short switching transient rather than having to precisely follow

a time varying signal during each period. This should ensure

that an accurate sample is quantized by the ADC for that time

period.
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Fig. 4. (a) Link Training Waveform to Locate First Multiplexer Channel
(b) Edge Detection Scheme Used for Phase Alignment

A key part of the TDM scheme is alignment between the

ADC and the multiplexer. Two types of alignment are required

to ensure that the samples are correctly digitized: channel

alignment and phase alignment. The former is required to

ensure the sample for channel 1 on the multiplexer is known

to be channel 1 when demultiplexing – without this alignment

the elements could get mixed up during demultiplexing. The

latter is used to ensure that the TDM and ADC clocks are

correctly phase aligned to account for propagation delays in

the cabling. This phase alignment is critical to ensure the ADC

is taking samples when the signal on the cable has stabilized

rather than during switching transients.

Both alignment requirements are satisfied during an initial-

ization sequence which consists of a training pattern being

generated by the multiplexer and analyzed in the FPGA.

During the training sequence, the inputs to the multiplexer are

internally tied to bias voltages, with the first channel connected

to one voltage level, and all other channels connected to a

second voltage level as shown in Fig. 4. By analyzing the

converted data it is possible to correctly align the system.

The alignment starts with channel 1 being identified by

way of the quantized codes being significantly different in one

sample than the others as illustrated in Fig. 4a. After this the

phase of the TDM clock is adjusted to find the optimal phase

shift between the ADC and TDM clocks. The TDM clock

phase can be adjusted using a Phase-Locked Loop (PLL) in

the FPGA to determine the optimum alignment, as shown in

Fig. 4b. Initially the phase shift is increased to locate the point

at which the difference between channel 1 and the others is

reduced by half, ΦL. The phase difference is then reduced

until the point at which the difference drops to the same

amount, ΦR. These two points identify at which phases the

switching transients are occurring, so the optimal phase where

the sampling should be performed, ΦO, must be the midpoint.

V. MULTIPLEXER IMPLEMENTATION IN CMOS

A prototype TDM multiplexer stage for 8 channels, com-

prised of a single 8:1 multiplexer, has been fabricated in

0.35µm 2P4M TSMC process and operates from a 3.3V

supply. The implemented circuitry, shown in Fig. 5, occupies

an area of 0.80mm x 0.26mm (without the bond pads). The

chip consumes on average 3.9mW of power, assuming a 10%

duty cycle on time. The circuitry was designed to run at

200MHz, sampling each channel at 25MSPS. Furthermore, as

it was designed solely for testing the TDM scheme only, there

is no AFE present in the design. Instead the input stage is a

unity gain buffer.

Input Bu�ers

Output Bu�er

Sample/Hold

Sequencing Logic

Transducer

Side

Cable

Side

1½

1

½

(mm)

Fig. 5. Micrograph of CMOS Implementation of TDM Multiplexer Design
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Fig. 6. Direct Digital Demultiplexing Design Overview of FPGA

The input buffer drives the signal into the S/H capacitor via

a pass transistor which allows the input to be sampled when

connected, and then disconnected to hold the value ready to be

multiplexed. The S/H capacitor has a capacitance of 400fF and

is implemented as a Poly-to-Poly (PIP) device, 19µm x 19µm

in size. Each input buffer also has a controllable resistor, either

pull-up or pull-down, which are enabled when the sequencing

logic is switched into link training mode in order to generate

the required pulse sequence.

Next, the S/H capacitors are buffered and connected to a

analog multiplexer which consists of a pair of pass transistors

for each channel. A digital Gray code counter is implemented

which generates control signals for these pass transistors to

sequence selection of each channel. Dead time is generated

between channels using digital delay chains in the sequencing

logic to delay the rising edge of the control signal separately

from the falling edge. The final output stage is a current feed-

back buffer adopted from [30] which has an output bandwidth

of 450MHz when driving a 75Ω||15pF load.

VI. DIGITAL DEMULTIPLEXER DESIGN

Demultiplexing is performed using an FPGA to replicate in

the digital domain all of the filtering that would be required in

a traditional analog TDM scheme using DSP techniques. For

imaging purposes, a large number of receive elements are used

which means that multiple TDM channels would be required

and so to achieve real-time processing of the data, a high

performance FPGA is required. Fig. 6 shows an overview of

the operations which the FPGA is configured to perform with

the incoming data from the ADCs.
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The firmware has been designed to interface with the high

speed ADCs required for the TDM scheme, to complete link

training, and to perform demultiplexing. The firmware must

also beamform the data streams and to transfer images to

a display. In the case of this design, the ADC interface is

performed using the JESD204b protocol, which is a recently

standardized protocol [31] becoming common with high speed

ADCs. By using a standard interface, then if a higher sample

rate or channel count is required, faster ADCs (or more of

them) can be simply substituted in to the design. Transfer of

image data is also done using a standardized protocol, in this

case a PCIe link to a workstation computer from which images

can be displayed, or further processing such as 3D rendering

can be performed.

One of the key roles for the FPGA is demultiplexing the

TDM streams. This on the face of it should be a simple task,

basically a case of taking each sample from the ADC and

splitting it apart on a cyclic basis so that every n samples con-

tains one sample for each of the different channels. However

the task is actually somewhat more complex due to the way in

which the channels are sampled by the multiplexer. Referring

back to Fig. 3a, it is apparent that the samples for each channel

are not taken simultaneously. While each channel is sampled

at the same rate, there is a 45 phase shift from channel to

channel - in fact for any multiplexing factor n, the phase shift

between channels will be 360 divided by n. This is done to

minimize the multiplexer circuit size and to ensure that each

sample once taken is immediately driven to the cable rather

than being held in a leaky capacitor for longer than necessary.

Correction of the channel to channel phase shift must be

performed before beamforming can take place. If the data

streams were directly summed, the phase shift would act as

an unwanted beamforming delay which would be different for

each channel. The phase shift must be removed for correct

reconstruction, however to do so would require the data to

be shifted in the digital domain by less than one sample, a

fractional delay, which is difficult to remove [32].

The method used in this design approach is to perform

interpolation of the data up to the TDM clock rate using a

multi-rate interpolation FIR filter. Once at the TDM clock rate,

the required phase shifts become an integer number of samples

where the length depends on the channel – the first channel is

delayed by 1 cycle, the second by 2 cycles, and so on. With

the delays in place, all channels in the interpolated stream will

have been realigned and the phase shift from the multiplexer

removed. The resulting data stream can then be demultiplexed

and, if required, decimated to reduce the volume of data.

The demultiplexer design has been developed primarily

using Verilog HDL and Qsys (Altera). From this design,

an RTL (Register-Transfer Level) simulation model has been

generated to allow for design verification and also to allow

test processing of data without the need for physical FPGA

hardware. The design has also been synthesized to verify that

it can be implemented in an FPGA. The design has been

built around a Stratix V GS FPGA (5SGSMD5K2F40C2N)

from Altera. Using a test design for a 96 channel receiver (12

cables), all of the required hardware can be fit into the design,

utilizing roughly 70% of the resources of the FPGA, and

Chip Carrier

200MHz Clock Input

ADC - TI ADC16DX370

1m µCoax Cable

Low Noise Amp.

Fig. 7. Equipment Setup for Testing TDM Multiplexing and ADC Capture
Demultiplexing is Performed using RTL Simulation of FPGA

capable of achieving a maximum clock frequency of around

350MHz - more than sufficient for a 200MHz TDM clock

rate. The TDM clock PLL can run with a Voltage-Controlled

Oscillator (VCO) frequency of 1.6GHz which would afford a

phase resolution of 78.125ps when adjusting the clock phase

during link training.

VII. EQUIPMENT SETUP

Dynamic TDM was demonstrated in an earlier paper [26]

for the same sampling rate and channel count. However, the

earlier setup used only post layout simulation data which

was fed from an Arbitrary Waveform Generator. To properly

characterize the TDM multiplexer design and verify that the

approach is viable, data from manufactured silicon is required.

In this paper physical silicon results have been obtained. The

setup used is shown in Fig. 7.

The TSMC multiplexer design described earlier in the paper

has been fabricated and was used in the experimental setup.

The silicon was diced and wire bonded to a chip carrier and

connected to a generic PCB which brings each of the ICs

connections out to SMA type connectors. The various bias

voltages and power supplies required by the IC were connected

to carefully decoupled power supplies to minimize noise. As

the silicon design has no AFE, each of the inputs must also

be biased to avoid saturation of the S/H buffers.

The output of the multiplexer was connected to a 1m length

of 48AWG µCoax cable with 0.15mm outer diameter, as could

be used in a catheter application, to ensure the results take into

account the realistic effects of a bandwidth limited channel.

Furthermore, as the TDM clock signal must also be routed to

the multiplexer and may potentially present crosstalk issues,

the clock in this experiment was fed through a µCoax cable

in the same bundle as the analog signal.

At the receiving end, a Texas Instruments LMH5401 LNA is

used. This amplifier is connected using an evaluation module

which has been modified to act as an active balun with 12dB

voltage gain. The amplifier input is AC coupled and config-

ured to be single ended with input impedance approximately

matched to the characteristic impedance of the cable. The

impedance matching was performed in order to limit signal

reflections which were causing large crosstalk issues in the



6 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL

earlier paper. The output of the amplifier was configured to

be fully differential and connected directly to the input of a

high speed ADC – a TI ADC16DX370EVM board. The ADC

has an input bandwidth of 800MHz, and a 16bit resolution of

which approximately 10bits of resolution is used, though this

will depend on the amplitude of the transducer signals.

As the hardware for interfacing the FPGA to the ADC has

not yet been implemented, the data from the ADC has been

captured using an evaluation module which interfaces the ADC

with a PC via USB. The link training was performed by man-

ually adjusting the phase between the ADC and TDM clocks

which were produced by two high speed signal generators

with a common reference clock. To complete the chain, the

demultiplexing and processing of the data has been performed

using the simulation model that was generated from the FPGA

firmware design. The simulation model will exhibit exactly the

same behavior as the targeted FPGA will, which makes the

model a perfectly valid tool for processing experimental data.

For this design, a 200MHz clock signal is used, which

means that each of the 8 channels is sampled at 25MSPS prior

to being multiplexed. The frequency was chosen as a trade-off

between sampling rate and the bandwidth requirements of the

cable.

VIII. RESULTS AND COMPARISONS

Using the setup explained in VII, several experiments were

performed in order to characterize the TDM silicon and the

system as a whole. Of specific interest are two key points,

firstly can ADC be synchronized correctly to allow the signals

feeding the input of the TDM IC to be recovered using

the direct digital demultiplexing approach, and secondly to

determine how much crosstalk is present between channels

as a result of distortion of the multiplexed signal through the

cable.

During each test, signal generators were used to feed signals

into either one channel, or multiple channels (with other

channels receiving DC). Specifically, the tests involved using

either a simple tone signal, or a more realistic sinc pulse.

Using a tone allows for any crosstalk to be easily identified

by analyzing the spectrum of each recovered signal – a spike

at the frequency of the tone indicates that crosstalk is present.

The sinc pulse allows for seeing the response of the system

over the full bandwidth of each channel.

Fig. 8 shows the results from one of the experiments, in

which only channel 1 of the eight was fed a signal, and the

others tied to a DC bias. Fig. 8a and Fig. 8b show the recovered

signal for the case of a 7MHz tone, both in the time and

frequency domain – the results are from the output of the

FPGA simulation, which after the interpolation and decimation

performed by the FPGA, are sampled at 50MSPS. Fig. 8c and

Fig. 8d show the recovered signal for the case of a sinc pulse

with a bandwidth of approximately 11MHz, again both in the

time and frequency domain.

As seen from Fig. 8a, the tone has clearly been recovered in

the demultiplexing process, with the FFT of the signal showing

a clear spike at 7MHz. There is some crosstalk occurring

between channels as evidenced by the 7MHz spike in Fig. 8b

on the other channels which should have no signal. The level

of the crosstalk signals is less than -40dB when compared

to the signal on channel 1. It should be noted that this is

a measurement of the crosstalk between signals in the same

µCoax cable as a result of the multiplexing scheme. The

electrical crosstalk between the two separate µCoax cables

in a catheter bundle was measured to be below -60dB at

frequencies up to 600MHz, therefore it is the TDM crosstalk

which represents the limiting factor in this scheme.

The frequency domain also shows clear spikes present at

3MHz, 4MHz, and 11MHz, with smaller spikes at 8MHz

and 10MHz also. It seems plausible that they are caused by

aliasing within the multiplexer. For example, if the 7MHz tone

feeding the IC had some signal present at the second and third

harmonics, this would account for two of the spikes (4MHz

and 11MHz) as a result of aliasing. Investigation of into the

cause of these spikes was not complete at the time the paper

was submitted.

Observing the signal recovered from feeding in a sinc pulse,

Fig. 8c, the signal has also clearly been recovered correctly,

with a fairly flat response across the pass band of the spectrum.

The signals are band-pass filtered in the FPGA with cut-off

frequencies of 3MHz and 10MHz resulting in the relatively

empty spectrum outside this band. It is difficult to determine

from the frequency domain in Fig. 8d what level of crosstalk

is present between channels, however by measuring the peaks

in the time domain, this crosstalk is roughly -36dB – similar

levels to the tone test.

These results show a significant improvement over those

of the earlier work [26]. The source of this improvement is

almost certainly the result of changes made at the receiving

end, specifically the inclusion of an amplifier that has an input

impedance closely matched to the characteristic impedance of

the cable. This matching helps to reduce the amount of signal

reflection in the cable which is one of the major sources of

crosstalk between channels.

The crosstalk levels still appear to be large. However it

is important to place these results in the context of the

application. In a practical ultrasound imaging system, the

input of the multiplexer would be connected to a transducer

array in which each channel on the same multiplexer is an

adjacent element. The variation in signal on adjacent channels

of the multiplexer is much less than in these tests and as a

result the channel to channel crosstalk can be significantly

less. Furthermore, even at the presented crosstalk levels, the

system would still provide suitable performance for ultrasound

imaging catheters [33].

IX. CONCLUSIONS

To produce 3-D ICE catheters with large element counts,

cable reduction is a key requirement not only to minimize the

catheter diameter but also to allow operation under MRI where

the risk of burns from induced heating in cables is a concern.

While there are currently a large variety of cable reduction

strategies, many of these are not suitable for this application

due to size, power, or other limitations.

Time-division multiplexing coupled with direct digital de-

multiplexing presents an alternative reduction strategy which
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(a) 7MHz Tone Demultiplexed from TDM and Interpolated to 50MSPS (b) FFT of 7MHz Tone Showing Crosstalk Levels

(c) Sinc Pulse Demultiplexed from TDM and Interpolated to 50MSPS (d) FFT of Sinc Pulse Showing Available Bandwidth

Fig. 8. Digitally Demultiplexed Experimental Results

is well suited to the requirements of ultrasound catheters. This

TDM approach has been developed and demonstrated in this

paper. In the system design a cable reduction ratio of at least

8:1 can be achieved whilst allowing for simultaneous sampling

of echo signals by sampling a time multiplexed signal at a very

high sample rate. The signals were then in the digital domain

using DSP techniques in RTL simulation of firmware for a

high performance FPGA.

Experimental results have been obtained using a CMOS

multiplexer fabricated in a 0.35µm process coupled with a

1m length of narrow diameter µCoax cable and a high-speed

ADC, and have been presented. These results demonstrate that

the design is able to achieve a crosstalk between channels on

the same cable of about -40dB. This suggests the approach

could provide suitable performance in an ultrasound imaging

catheter while significantly reducing cable count.
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