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the solution of the Kirchhoff-Love plate theory exploitiBgzier
extraction
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SUMMARY

The equations that govern Kirchhoff-Love plate theory aexd using quadratic Powell-Sabin B-splines
and unstructured standard T-splines. Bézier extraci@xploited to make the formulation computationally
efficient. Since quadratic Powell-Sabin B-splines resalC}-continuous shape functions, they are of
sufficiently high continuity to capture Kirchoff-Love pltheory when cast in a weak form. Unlike Non-

Uniform Rational B-Splines (NURBS) which are commonly ugeiogeometric analysis, Powell-Sabin B-

splines do not necessarily capture the geometry exacthyeMer, the fact that they are defined on triangles
instead of on quadrilaterals increases their flexibilitymeshing, and can make them competitive with
respect to NURBS, as no bending strip method for joined NURBhes is needed. This paper further

illustrates how unstructured T-splines can be modified suatthey are } -continuous around extraordinary
points, and that the blending functions fulfil the partitioihunity property. The performance of quadratic
NURBS, unstructured T-splines, Powell-Sabin B-splined BitvRBS-to-NURPS (Non-Uniform Rational

Powell-Sabin B-splines which are obtained by a transfaionafrom a NURBS patch) is compared in a
study of a circular plate. Copyrigi® 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: isogeometric analysis, Powell-Sabin B-splindslRBS-to-NURPS, NURBS, unstruc-
tured T-splines, Bézier extraction

1. INTRODUCTION

Kirchhoff-Love plate theory [1] is well suited for the analg of thin plates, but requires} -
continuous shape functions in finite element analyses @#keofithe subscript “A” is explained in
Section 2). Other problems which require higher-order iootaus shape functions include higher-
order gradient damage models [2], higher-order shear ohefiion theory [3], or the Cahn-Hilliard
equation [4]. References [2—4] utilise either B-splinespNUniform Rational B-splines (NURBS)
or T-splines [5]. These higher-order continuous shapetfons are suitable for problems which
require an interelement continuity that is higher tiddn The idea of applying basis functions like
B-splines, NURBS or T-splines, which are routinely used om@uter Aided Design (CAD), to
analysis as well, was introduced in [6] and termed IsoGenowhalysis (IGA) in [7].

A vibration analysis for Kirchhoff-Love plates using isageetric analysis has been carried
out in [8], while an isogeometric formulation for Kirchhefove shell elements was proposed
in [9]. Since multiple NURBS patches are joined witf}-continuity, the bending strip method
was proposed in [10] and adds a penalty stiffness betweecedj NURBS patches. This approach

*Correspondence to: René de Borst, University of Glasgohp8l of Engineering, Oakfield Avenue, Rankine Building,
Glasgow G12 8LT, UK. E-mail: Rene.DeBorst@glasgow.ac.uk
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2 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

requires a geometric continuigy* along theC{ -continuity lines. Hence, the control points need to
be positioned such that@ -continuity is obtained. Unfortunately, thig{, C%)-construction has
been applied only to two or four adjacent NURBS patches —dgtriet been demonstrated how to
position the control points when three or more than four NI$3R#itches meet at an extraordinary
point.

T-splines are an alternative to NURBS and consist of a sipgteh. However, when three or
more than four elements in a T-spline mesh meet at an extreoydpoint, ac{ -continuity line
is introduced in the vicinity of the extraordinary point atieé blending functions of the T-spline
mesh do not fulfil the partition of unity property. It was demstrated in [11] how to obtaig®-
continuous blending functions by modifying the coefficenf the Bézier extraction operators in
the one-ring neighbourhood elements of an extraordinairytpid was pointed out in [12] that this
G'-construction also yield§} -continuous blending functions. However, the approachi i floes
not result in blending functions that fulfil the partition wifity property.

Quadratic Powell-Sabin (PS) B-splines also provide shapections that give a higher
continuity [13]. They are based on a linear triangulatiod have quadratic shape functions that are
Cx-continuous across elements. Powell-Sabin B-splines begr cast in terms of Bézier ordinates
in [14, 15] in order to obtain an efficient calculation. It istad that Powell-Sabin B-splines are
not based on the isogeometric concept as they apfyroximatethe exact geometry and are not
based on a NURBS patch but on a triangulation. To addresssthie, a method was recently
proposed to transform a single NURBS patch into Non-Unif&ational Powell-Sabin B-splines
(NURPS) [16] and denoted NURBS-to-NURPS. The boundary ef MURBS-to-NURPS then
exactly matches the boundary of the NURBS patch while therimt domain of the NURBS-to-
NURPS only approximates the NURBS patch which is relevanmém-planar geometries. Powell-
Sabin B-splines and NURBS-to-NURPS have been used for sinaty[16—19].

After clarifying the term continuity from a CAD and from analysis perspective, this paper
proposes a Powell-Sabin B-spline formulation for KircHHadve plates. In this class of problems
the C} -continuity of Powell-Sabin splines is fully exploited. Mmver, we will show how Bézier
extraction can be implemented, thus making the method ctatipnally efficient, similar to
Bézier extraction for NURBS and T-splines [20, 21]. Thenstuuctured quadratic T-splines will
be modified such that the blending functions fulfil the pamitof unity property and ar€}-
continuous around the extraordinary point. Finally, we pane NURBS, unstructured T-splines and
NURBS-to-NURPS with Powell-Sabin B-splines. As a test feabwe take a circular Kirchhoff-
Love plate, and we study the cases with clamped and with gisugported boundary conditions.
Our study goes beyond that in [22], which was for the Poisspragon, and hence required only
CQ-continuous shape functions. Particular attention ismieecases with extraordinary points in
the mesh, as their effect on the convergence behaviour ahfauder partial differential equations
has not been studied hitherto.

2. CONTINUITY FOR CAD AND ANALYSIS

In this section we elaborate on the term “continuity” from AL perspective as well as from an
analysis perspective.

2.1. Parametric continuity

We consider the two curved segmerfis(t;) and S,(t2) which depend on the parametric
coordinates; andts:
S/(t)=1-t)P,+t,:P, 0<t; <1,

1
Sy(te) = (1 —ta)Py+t2Py 0<ty<1 @)
with the coordinates in the physical domain= (z, y)
P, =(11), P,=(2,2), P;=(3,3). (2)
Both curvesS; (¢;) andS: (t2) have been plotted in Figure 1(a).
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KEHHOFF-LOVE PLATES 3

- Curve S, (t;) A~ Curve S, () ‘ =7 Curve §,(f;) =& Curve S, (7»)

(@) (b)
Figure 1. Parametric curves in the physical domais (z,y), (&) S1(t1) and Sz(t2) are parametrically

C!-continuous aP,, (b) S1 (1) andS, (i) aregeometricallyG'-continuous at their joinP,. The triangles
mark isoparametric distances&f; = Aty = Aty = Aip = 0.1.

Evaluating the first derivative with respect to the paramoewordinate yields for both curves:

8§1 (ﬁl)
oty

_ 95,(t2)

22 =), ®)

t1=1 to=0

Both curves have the same first derivative at their joint: paeametric continuity of the first
derivative in Equation (3) will be denoted &s.
2.2. Geometric continuity

Next, we consider the two curved segmestgi;) and S, (i), which depend on the parametric
coordinates; andt, with:

Si(th) =1 —t)P, + 1P,y 0<t <1,
o B . .1 4)
Sy(tz) = (1 =2t2)Py 4 2t5 Py 0 <ty < 3"
The first derivatives with respect to the parametric coatimow read:
(1,1) = 8§17~(tl) 8§27~(t2) =(2,2). 5)
ot t1=1 Ots f2=0

Hence, both curves are nét-continuous. However, Figure 1(b) shows that both curvilshsive
a continuous geometry in the physical domainin order to account for this, the tergeometric
continuity was introduced in [23]. If two curved segmentssfathe condition

08, (f1)

08, (t2)

= C—

(6)
fi=1 Oto

oty

L
t2=0

with a scalare, then they are calledeometriccontinuous with respect to the first derivative. This
continuity is denoted ag'. The step from Equation (4) to Equation (1) — repladipgvith 22 —is
called reparameterisation. It was pointed out in [24] thatdefinitions for parametric and geometric
continuity in Equations (3) and (6) may not be clear for capping control points.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
Prepared usingimeauth.cls DOI: 10.1002/nme



4 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

2.3. ContinuityC, for analysis

Now, we consider the notion “continuity” from an analysisggective. Equation (1) is equivalent
to the parameterisation:

S(t) = N1(t)Py + Na(t)Py + N3(t) Py (7)
with 0 < ¢ < 2 and the Lagrangian shape functions (see Figure 2)

1—t foro<¢<1 _ t for0<t¢<1
Nl(’f)_{ 0 fori<t<2’ NQ(t)_{zt forr<t<2

0 foro<t<1
N3(t>{ t—1 for1<t<?2

It is noted that the shape functiong(¢) in Equation (8) can also be derived from the knot vector
T ={0,0,1,2,2}. The Lagrangian shape functions in Equation (8) have a woityi of C. In
order to distinguish between tiparametriccontinuity C of the curveand the continuity’} of the
basis functionsthe subscriptA (for analysis) was added. It follows that the continuity ethis
required for analysis needs to be distinguished from tharpatric or geometric continuity which
is interesting from a designer’s point of view.

(8)

[— M) == No(t) = Ns(1) |

0.8 | 3

0.6 |- 3

04 .

02 ,

OO 02 04 06 08 1 1.2 14 16 18 2

t

Figure 2.C{ -continuous linear Lagrangian shape functions.

2.4. Geometric continuous basis functions

It was demonstrated in [12] th&t*-continuous basis functions aé -continuous. This will be
illustrated for the casej(, C}) in one dimension. Consider the four basis functidis

By
Ny 1 0 0 0 0 0| |B2
Nao|f 01 3 L 0 0| |Bs
Nyl oo IEo1 o] B ©)
Ny 0 0 0 0 0 1| |[Bs
Bg
with
Bi(&) = %(1%1)2 By(&2) = 15(2 — &)°
By(&1) = 5(1-¢€7) —1<& <1, Bs()=35(4-8&) —2<& <2 (10)
B3(&) = 1(1+&)? Bs(&) = 15(2 + &)?
The following physical coordinat®, = z; corresponds to each basis function
P,=0, P,=1, P3=2, P,=3. (11)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KGHHOFF-LOVE PLATES 5

The derivativesV, ¢, and N, ¢, with respect to the parameter coordinagesindé, are plotted in
Figure 3(a) over the physical domaitfor all four basis functions.

= (N1,&,» N1g,) == (Nog,, Nag,) = Niz=——=DNo,
m— (N3,¢,» N3g,) === (Nug,, Nig,) m— N3 gy === Ny

1 T T T T T T T T T 1

0.5 |- 0.5 |- .

)< |

(=1
=}
o
—
—
o
N
N
o
w
(=1
=}
o
—
—
o
N
N
o
w

(@) (b)

Figure 3. (a) The derivatives\g ¢, , Na ¢,) and (V3 ¢, N3 ¢,) are discontinuous while (b) the derivatives
Ns , andNs , are continuousg ' -continuous basis functions are alépcontinuous.

It can be observed thai\g ¢,, N2 ¢,) and (V3 ¢,, N3 ¢,) are discontinuous. However, since the
G'-continuity condition

ON;

96

ON;
=2

ol C0g (12)

§o=—2

holds for all four basis function, they have to 8g-continuous: Figure 3(b) shows the derivatives
N, ., of all four basis functions with respect to the physical coatex. All four derivativesn; ,
are now continuous. Thus, the four basis functignare C} -continuous. The property thgt'-
continuous basis functions adg -continuous is especially useful for connecting surfaceana
extraordinary point such that the basis functions pos$esseqjuired’ ; -continuity (see Section 5).
In sum, basis functions that fulfil &'-constraint areC}-continuous and the geometry {%'-
continuous for any set of control points. If the basis fumiesi are onlyCQ -continuous the geometry
can still beG'-continuous by an appropriate choice of the location of therdinates in the
physical domain. Such &t, C%)-construction can also be used for solving fourth ordetiglar
differential equations when arigid link between neighlogicontrol points along thé? -continuity
is introduced, as for the bending strip method [10]. Thigrlink transfers thej!-continuity from
the coordinates to the displacement degrees of freedom.

3. KIRCHHOFF-LOVE PLATE THEORY

3.1. Continuum formulation

The moment equilibrium for a Kirchhoff-Love plate reads]i25

Map.ap = Po (13)
with p, the force per unit area, and
h/2
Mapg = —/ oapzdz (14)
—h/2
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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6 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

the bending moments. Greek indices take values one and teomana denotes differentiation,
while % is the thickness of the plate,z is the stress, and Hooke’s law for plane stress is used:

011 B 1 14 0 €11
022 | = m v 1 0 £992 (15)
g12 0 0 PTV 2612

since it is assumed thétss|, |o13], |o23] < |o11], |o22], |o12]. The non-zero strain components are
assumed as follows:
0%w 9w 5 5 0w
€11 = =237 5 €22 = =255 €12 = —4%
0x? 0y? 0x0y

(16)

with the deflectionu(z, y). Upon substitution of Equation (15) and Equation (16) intp&tion (14)
we obtain:

mi1 3 1 v 0 K11
Eh
Moo | = 712(1 — v 1 0 K22 17)
mio 0 0 1;” 2%12
m D K
with D the elastic stiffness matrix and
Rap = W,apB (18)

the curvature. The bending moments are assembled in therarrevhile k contains the curvatures.
Multiplying Equation (13) by a test functiotww, integrating over the domaif2 and exploiting
Gauss'’ theorem then results in:

/5w7a5maﬂ dmdy—i—/éwma@ang dF—/éwﬁmaﬂna dF:/éwpo dedy.  (19)
Q r r Q

Substitution of Equation (18) and omitting the boundarynzthat relate to imposed moments and
forces, the resulting weak form becomes:

/5/<;a5ma5 dxdy:/éwpo dxdy. (20)
Q Q

Since second derivatives appear in this equatigrcontinuous functions (functions of clags?)
are necessary with square integrable second derivatiggs [2

3.2. Discretisation

Discretisation of the domaift into E elementsQ = |J”_, Q¢, with w the deflection andw its
variation, leads to:

w*=N"w, w’=N"sw, k°=Bw, k°=Béw (21)

where N contains the shape functions, a®f = [N .., N, 2N,,] contains the second
derivatives of the shape functions. It is recalled tiatis the elastic stiffness matrix. Use of
Equation (17) results in the matrix-vector equation:

/ 65" Dk dady = / sw" N po dedy (22)
Q - Q
which for arbitrarydw gives:
/ B'DBdedy w= [ Npodady (23)
Q Q
K f

with K the stiffness matrix ang the force vector.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KGHHOFF-LOVE PLATES 7

mmm Triangulation 77— PS refinement 7 @ _Control points
e  PSpoints — PS triangles — Element boundaries

bo2o
=]l
0] v, Triangle e with barycentric Mini-Triangle 3 with barycentric [0
coordinates T coordinates T
(© (]

Figure 4. The parameter and physical domaigsafd &), respectively, for Powell-Sabin B-splines. Each
trianglee has a barycentric coordinate systerand can further be subdivided into six mini-triangles with a
barycentric coordinate systefn

4. BEZIER EXTRACTION FOR QUADRATIC POWELL-SABIN B-SPLINES

This Section starts with a concise description of Powelli$aplines, including notions like Powell-
Sabin refinement, Powell-Sabin points, and Powell-Saiangtes. For a more in-depth treatment
reference is made to [15].

We consider the parameter domajn= (£,n) for a triangulation7 (thick black lines) with
e=1,2,...E triangles andV, vertices in Figure 4(a). A vertek of the triangulatior7” has the
coordinated,. = (&, ) in the parameter domaim;, triangles are attached to vertéxand will
be denoted as the molecule.

Each triangle: of the triangulation7 has a barycentric coordinate system with- (71, 72, 73),
see Figure 4(c). The poin¥,, V,, V;, R,,, R,;, Rs;; and Z have the following barycentric
coordinategr , 72, 73):

V,=(1,0,0), V,=(0,1,0), V;=(0,0,1), (24)

ElQ = ()\1’)\2’0)7 EQS = (0)/‘1’2511']’3)’ ESl = (V1507V3)1 Z: (a,b,c).
Splitting each triangle of the triangulatiory” in Figure 4(a) into six mini-triangles(= 1,2, ..., 6)
yields the Powell-Sabin refinemefit* (thin black lines). Each mini-triangle has a barycentric
coordinate systerft = (71, 72, 73) and Bézier ordinatéls. ; ;, cf. Figure 4(d).

For each vertex, its Powell-Sabin points are the vert&itself and the midpoints of all edges
of the Powell-Sabin refinemefit* containing the vertek. A Powell-Sabin triangle (shown in red),
which contains all Powell-Sabin points (denoted by greets)ds associated with each vertéx
The Powell-Sabin triangles are chosen such that they sharedges with the convex hull of the

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
Prepared usingimeauth.cls DOI: 10.1002/nme



8 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

Powell-Sabin points [18, 27]. In this way the solution of atqpensive optimisation algorithm is
avoided [15]. _

Three ¢ = 1,2, 3) Powell-Sabin B-splinesv] (§) are associated to each vertexi. e. one for
each corner of the Powell-Sabin triangle of verkexand have a support in the moleclg of V...
For an elaborate demonstration for the derivation of theutation of the Powell-Sabin B-splines
N} (&) reference is made to [15]. Here, we only give a brief outlifithe procedure.

A Powell-Sabin B-splineVy (¢) in the parameter domaifi must be defined in each of they,
triangles of the molecul@,, of vertexk,

my

Ni(€) = Ni(&@) = Y NP (). (25)

ekzl

Since each triangle of the moleculg is split into six mini-triangles, the Powell-Sabin B-sg@
N}°*(r) over a trianglez;, can be written as:

NI (@) = N (D) = D0 NI (E): (6)

n=1

For clarity of notation, the indices are omitted in the following. The Powell-Sabin B-splinegov
each mini-triangleNj () in Equation (26), can be expressed using the Bézier oebnat ;, see
Figure 4(d),

Ni#) = D broiBl i (3), (27)
r+s+t=2
whereB? _ ,(7) denote the Bernstein polynomials of degree two:
2 ~ 20 o
Br,s,t(l) = mﬁ T3 T3- (28)

In order to determine the Bézier ordinatgs ; in Equation (27), the following properties are
assigned to the Powell-Sabin B-splines: For any velrtgx: we have

0 0

Ni(V) =0, a—gN,z’(vn:o, a—nN,am:o, (29)
and otherwise 5 9
N (Vi) = o, a—gN;i(Vk) =B a—nN;i(Vk) =7 (30)
with
3 3. 5.
dag=1, Y pl=0 Y Al=0 (31)
j=1 j=1 j=1

The corners of each Powell-Sabin triangle (red in Figure)4@aye the coordinat@i =( i, ﬂi%
which gives the map from the triangle domairto the parameter domaifor a surfaceS, (r), as

follows
N, 3

Sc(r) =3 Ni(D)Q. (32)

k=1 j=1

For each vertex with coordinategé;, n;) the parameters?’,, 87 and+; in Equation (31) are then
obtained by solving:

ap ap all (& m 1 & e 1
By Bi Bl |& m 1f=|1 0 0f. (33)
e M el L& w1 0 1 0

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KEHHOFF-LOVE PLATES 9

(a) Bézier ordinates for the three (b) Bézier ordinates for the three (c) Bézier ordinates for the three
Powell-Sabin B- spllnegﬂ( ) corre-  Powell-Sabin B-splinesV3 (7) corre-  Powell-Sabin B-splines’ (7) corre-
sponding to vertex; sponding to verteX sponding to verteX’s

Figure 5. Bézier ordinatels. ;. for the six @ = 1,2, ..., 6) mini-triangles of the Powell-Sabin B-splines
NJ( ), NJ( )andNJ( ).

This equation follows by combining Equation (30), Equat{8h) and Equation (32).
Using Equation (24) and Equation (33), the Bézier ordis&te , of the mini-triangles in Figure 5
can be evaluated. The Bézier ordinates correspondiifg éme given by:

; o1 =X = B 1-— i
Ll =adl + D) LBl LY =d) +( 21/1)7{1 L] =of + BJ"‘ 71’ (34)
Bl = Bl(& — &) + 712 —m), ﬁz%@—m+%%—mx (35)
while for V; they read,
; 1-— 11—\ 5 ~
Lﬁ—oﬁ"‘ mﬁw L’é—aé—i—i( 5 2)7751 L —a2+ 52"‘ 721 (36)
B = 55(53 — &)+ s —m), A =B& - &) +72(771 - 772) (37)
and forVs we have:
; ; 1-— i i = 1-— 5 b
%=%+—¥%§z%=%+L%@%,L—%+ﬁﬁ-% (38)
By =Bi(& — &)+ —m3), 7 =B(& — &)+ (2 — n3). (39)

For example, the Powell-Sabin B—splinﬁg(j) in the mini-trianglen = 3 of Figure 4(d) can be
expressed as

PN ()T Ll 0 0 0 0 0
N%(i) alﬁ 0 0 0 0 0 B2 (s
N3(F al3 0 0 0O 0 0 200(%)
i(@) =1 F1o1 g1 1| | Bo(7)
Ny (T) bLy Ly poly o Ly polsp Béw )
NAE)| = |bL3 L3 gL of Li gnli| |phtT, (40)
ND)| (b} L} mali o} i L] |0
N% (T) cly 0 psly 0 0 psl/; B2y, (7)
NE@) o fel: 0 el 0 0 sl
M@ el 0 pEd 0 0wl
or in matrix-vector format:
N (T) = C, ' B(T), (42)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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10 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

where the Bézier extraction operafGf, in Equation (40) contains the Bézier ordinateg ; for

each Powell-Sabin B-splinﬁfg(f) in the mini-trianglen = 3 of triangle e from Figure 4(c),(d).
Hence, it is possible to apply the Bézier extraction procedo Powell-Sabin splines, in a fashion
similar to NURBS and T-splines [20, 21]. '

Non-Uniform Rational Powell-Sabin B-splines (NURPS)(7) can be computed as follows:

wi N} (z)
S S wl N (x)

with w], the weights associated with each cor@rof a Powell-Sabin triangle. A NURPS-surface
S(7) in the physical domair: can be expressed by a map from the triangle domairith

Rj(1) =

(42)

S(r)=) ] Ri(1)P] (43)

where the control pothJ correspond to eao@ﬂ see also Figure 4(b). In matrix-vector format,
the NURPSR, for one mini-trianglen of trlanglee is obtained from

€ e e B(i)
En( ) E gn Wbe (i) (44)
with
Whe(7) = (w") B(), w = (C:) w’, W° = diag(w") (45)

where w® is the vector containing the weights of triangle The derivatives with respect to
coordinates in the domain of the mini-triangle,read:

OR,(T) _ yprece 9 (_B@E) ) _ e 1 0B(x) 0W'(7) B(¥)
ke (W“’(%)> wg”(“”’i(i) o7 0 (Wee (7))

0T = =" 87

The derivatives in the physical domairare subsequently obtained as:

GR" 8R" ) OF

Z - (47)

GTJ 0x§
where
] dz°  0z° -1
872 _ 071 OT2 _ i—l ’ (48)
Ox; oy°  oy° -
87 072

with the Jacobian matrid of the geometry mapping. To further illustrate the procegdarMatlab
code snippet is given in Appendix A for the Bézier extractijorocedure for NURPS, which
computes the second derivatives in the global coordinatesy: and assembles the stiffness matrix
K and the force vectof in Equation (23).

It was suggested in [17] to evaluate the integrals for eachpoment of the stiffness matrix in
Equation (23) analytically since the integral of a Powelb# B- spllneNJ( ) over a mini-triangle

n with area4,, can be computed as [28]:

oA,
/Qn N} (7)drd7 = s Z brs,t- (49)

r4+s+t=2

Relations for the computation of the product of the denxegtiof a Powell-Sabin B-spline can then
be derived accordingly [17]. However, this is computatibnadore expensive than using the Bézier
extraction procedure.
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KGHHOFF-LOVE PLATES 11

5. UNSTRUCTURED QUADRATIC T-SPLINES

This section addresses unstructured T-spline meshes dfrajiadegree [29]. An unstructured
T-spline mesh contains points with valence three or mora fbar. These points are called star,
irregular or extraordinary points. Without special treati) these meshes are non-standard and only
C{-continuous around the extraordinary points. The blenélimgtions of a non-standard T-spline
mesh do not fulfil the partition of unity property [30]. It wdemonstrated in [31] how this can be
detected utilising the global Bézier extraction operalttarein, it will be demonstrated how these
meshes can be manipulated such that they are standardifgéadctionsN* fulfil the partition of
unity property) and’; -continuous around the extraordinary points.

The technique presented here is very similar to that in [Hibjvever, the approach in [11] does
not fulfil the partition of unity property for the blendingriation N7 in the one-ring neighbourhood
elements of an extraordinary point. Herein it is demonsttéiow this deficiency can be repaired.

5.1. The unstructured T-spline mesh

Figure 6 shows an unstructured quadratic T-spline meshd&fanition of the terms anchors, edges
and elements, reference is made to [31].

» Anchors — Edges m Elements

Figure 6. Example for an unstructured quadratic T-splinelhm@ll non-zero knot intervals are assumed to
be uniform. The two extraordinary points of valence threa fare are marked with red. Spoke edges (green)
touch an extraordinary point. Anchors with support in elatge(light grey) are marked violet.

Extraordinary points are indicated with a red circle. Speklges are marked with green: they
touch an extraordinary point. In order to build the Bézidraction operator for each purple anchor
that has a support in the light grey element g, the knot ialsref the neighbouring rectangles
(marked orange) for element g are required. Some anchdrsswjitport in g do not require all their
individual knot intervals in order to determine their B&zextraction operator in g. This construction
cannot be applied to the blue elements in the one-ring neigttood of the extraordinary points.
These elements are called irregular elements, whereashbealements are regular elements. For
the irregular elements, generalised Bézier extractidhbsiutilised. Generalised Bézier extraction
defines the transpose of the Bézier extraction oper&idr, The blending functiongdV, in an
element of a T-spline mesh can be expressed as a linear caiiobiof the Bernstein polynomials
utilising the Bézier extraction operator

ﬂe = gegel (50)

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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12 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

where the vectoB. contains the bivariate Bernstein polynomials. The 1...p + 1 univariate
Bernstein polynomial®; of orderp, are defined over the intervgd € [—1, 1] by

Bi(&) = i( P )(1 RN AT (51)

T ope \a—1

5.2. Generalised &zier extraction

Generalised Bézier extraction yields a relation betweénid control pointx) and the control

points P, with support in elemert

Q=CP,. (52)
Each quadratic element has nine Bézier control points -fa[mapoingg, four edge point§);, Q'
Qg Q; and four vertex point®)|, Q:, Q. Q; as depicted in Figure 7(a). Herein, it is assumed
that aﬁ non-zero knot intervals are uni?orm. The generalector non-uniform knot-intervals is

considered in [11] for the cubic case.

Q&

[ ] &
Il
v
>

N
[
R

(©) (d)

Figure 7. (a) The nine Bézier control poirgs for a Bézier element. (b) The control poiRt, corresponds

to the anchor in this element. (c) An edge Bézier controhp@® is written in terms of neighbouring face

Bézier control pointsﬁ_?f in Equation (54). (d) A vertex Bézier control poi@" is written in terms of
neighbouring face Bézier control poim_zaf in Equation (55).

The face poingg (cf. Figure 7(b)) is determined as
Q; = BA! (53)

where P, denotes the control point coordinate of anchor A. The edgex€° in Figure 7(c) is
computed with

1 1
Q =50/ +50Q/, (54)
and the vertex poinR" of Figure 7(d) is obtained utilising

K
Q=
k=1

where it was assumed th@t’ is the vertex ofK” elements.
After computingC! exploiting the generalised Bézier extraction for the oing-neighbourhood
elements, the T-spline mesh is non-standard, i. e. the ilgfidnctionsN do not fulfil the partition

Ql, (55)

] =
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POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KEHHOFF-LOVE PLATES 13

of unity property. Also, the Bézier extraction operators aon-square matrices for the elements
in the one-ring neighbourhood of an extraordinary po@®t. has full row rank for the one-ring
neighbourhood elements of an extraordinary point with vedethree — the blending functions
are locally linearly independent. For the one-ring neigihrhood elements of an extraordinary
point with valence fiveC. does not have full row rank and therefore, the blending fonstare
locally linearly dependent. Along spoke edges theréSiscontinuity. Furthermore, the one-ring
neighbourhood elements of the extraordinary point (thegyistar elements) ax@} -continuous with
the two-ring neighbourhood elements of the extraordinaipts. Next, it will be explained how to
enforceC} -continuity along spoke edges while preserviigcontinuity between the one- and two-
ring neighbourhood elements. Moreover, the partition dfyyproperty of the blending function¥
will be fulfilled.

5.3. Modifying the Bzier extraction operator

This section shows how to modify the coefficients of the Beeitraction operatd€. in the one-
ring neighbourhood elements of an extraordinary point.firsastep, the Bézier extraction operator
C. is elevated from degree two to degree four. This is achieyedtitising the degree elevation
matrix E**, cf. [32]. Degree elevating the blending functiaNs. in Equation (50) with support in
element results in

N, =CB? = C’E**B? = C’E>*E*’'B. = C’E*'B! = C:B., (56)

where the superscript was added in order to indicate theededt can be observed from
Equation (56) that degree elevation does not change thalibgriunctionsiv,. Also, degree
elevation does not change local dependencies that mayiexisthe row rank ofC. is not affected.
After degree elevation, each blending functigrwith support over a Bézier element in the one-ring
neighbourhood has 25 Bézier coefficieats; (cf. Figure 8(a))

5

5
N(§) = Z Z CaﬁBuﬁ (§) (57)
p=1

a=1

7]A

. Y
Coo G392

N1, n)

ny
(@) (b)

Figure 8. After degree elevation, a blending function witport in a one-ring neighbourhood element has
25 Bézier coefficients,, g in each one-ring neighbourhood element. (b) Bézier caeffts along a spoke

edge that are involved in thg!-continuity constraint of Equation (62).

Assume that=1... A blending functionsV* have a support oveat least twoof theb=1...B
one-ring neighbourhood elements andl . .. C blending functionsv¢ have a support ionly one
one-ring neighbourhood elements. Now, the coefficientshefBézier extraction operator of all
blending functionsV* and N¢ have to be perturbed. The initial coefficients of the Béeidraction

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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14 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

operator are denoted wit " B C 5 and the modified coefficients wnﬁ; o ” . The following

constrained linear least square problem needs to be saveadcth extraordlnary point
min|Ee—fl,,  §={elIGe-gl, = min}, (58)

with the fairing matrixF, the fairing vectorf, the constraint matrixG and the constraint vector
g. The problem in Equation (58) can be transformed into an ositained linear least square
problem [33].

The following constraints are assembled iitand f in Equation (58)

~ab ~a,b a,b a,b

ey = =y — gy for1<a<s5,1<<4,1<a<A,1<b<B,

b sab a,b b

Cop = Cat1p=Cap—Cay1p Torl<a<4,1<p<5,1<a<A, 1<b<B, (59)
b ~ch b b

C;B_Cfx-s-lﬂ C;B_Cfx-s-lﬂ for1<a<5,1<A<4,1<c<C,1<b<B,

~c,b ~c,b c,b c,b

Coa = Coat18=Cap — Catlp for1<a<4,1<p<5,1<e<C,1<b<B.

The fairing equations in Equation (59) prevent oscillasibetween neighbouring coefficients of the
Bézier extraction operator when perturbing the coeffitsien s.

Suppose thatv=1, 8=1 marks the Bézier control point at the extraordinary posege
Figure 8(a). In order to preserdg -continuity between one and two-ring neighbourhood elesjen
the constraints

e =t for1<a<5,4<B<5,1<a<A, 1<b<B, ©0)
&l =it ford<a<b5,2<B<3,1<a<A,1<b<B

are assembled intG: andg in Equation (58) for blending functions that are non-zeratrieast
two one-ring neighbourhood elements. Blending functions #énatnon-zero ironly oneone-ring
neighbourhood element are not allowed to change by enfprcin

&l =co for1<a<s5,1<p<5,1<e<C, 1<b<B. (61)

In order to getC -continuity along spoke edges (between one-ring neighizmd elements —1
and k£ in Figure 8(b)) for the blending functiov that is non-zero imat least twoone-ring
neighbourhood elements, té-continuity condition (see also [34, 35])
ONF=1(¢, ONk (¢, ONk(¢,
(& n) a(g n) +1(6) a( n)
n=0 K n=0

=r(NEHE) + s(ONEE) +tENE () =0 (62)

can be exploited since it was pointed out in [12] that thiscondition yieldsC}-continuous
blending functions (see also Section 2.4).
In the following, the notation

f(&) =r(©)

Z ¢iBP(€) = (c1,¢a, .., cpi1)P(€) (63)

will be used. The polynomials(¢), s(¢) andt(¢) in Equation (62) are taken as

r@ =1 s =1(007%€), t&=1 (64)

where( is computed from

¢ = —2cos(0), 0= %”. (65)
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Using Equations (63) and (64) the three terms in Equation¢é2 be reworked as:

rONLTHE) =4(E5! — &1, 85 — &0 8yt — 5,80 — & ds' — &5 (€),  (66)
5(§)N,]Z-(§) =(¢,0,0)? (5)4<le 2 le,p 51{3 - C]f,zv le,4 - C]f,:sv 51{,5 - C]f,4>3(€ ) (67)
t(§)N”j](§) = 4<5§,1 - élf,b 05,2 - C]f,zv 515,3 - 5]{37 515,4 - 5]{47 515,5 - 51{,5>4(€)- (68)

Since the term in Equation (67) is quintic, the degreeNjg needs to be reduced using the
transformation matriD*? [32]

-1
D - ()" [B* ()] . (69)
Reducing the degree (Nfz (€) in Equation (67) then results in

19, 16, 6 4, 1

N,]Z(f):4< 20 i1+ 55 20 Cio+ 57 20 15 2001,4+2_001f,5a
5 _ _ . 5
%01,1 _01,2+le,4 2001f57
Sl g 6,f 16, 19,

011 012 2013 %5 +20015>2(€), (70)

which, for Equation (67), gives:
19 _ 16 _ 6 4 _ 1.
3(§)N,12(€):4C< 20 If1+ 20 ]f2+ 20 15 200544_2_00]{’5’
) 1._ 1_ 5
4001{1 2C]f2+2 If4 4001{5,

1 4 6 _ 16 _ 19 _
~ 120 11+ 120 ]f2 120 ]fg 120 ]f4+ 12001f570 0)*(¢). (71)

In order to satisfy Equation (62), Equations (66), (68) antl) are exploited to make vanish the
following terms:

k— _k 19 16 _x 6 ok 4 1 k _k

01,21*01,1+C(*%C11+20 f2+ 5568 — 35 14+2001 5) +éy1—¢i1 =0, (72)
- 1

4(0126,21*012)+C( - 2012+2C14*5015)+4(022*C12) 0, (73)

_k 1 _ 4 6 _k 16 ~k 19 1 _k
4(03,2 - 5) +C( 30C1,1+%C1,2*%C1,3 30 €14+ 3001 5) +4(025*01 3) =0, (74)
Gy — a3 a=0, (75)
& —dis s —dis=0. (76)

Moreover, the fourth derivative gf(¢) has to vanish. This constraint results in
&y -4, +68 5 — 4, + 5 =0. (77)

Equations (72) — (77) need to be assembledszirand g along all spoke edges for all blending
functions that are non-zero at least twoone-ring neighbourhood elements.

In order to fulfil the partition of unity property [31], the fowing equation must be satisfied for
all blending function that are non-zeroan least onene-ring neighbourhood element

A c
~ab b fori1<a<3,1<p<3
Z:l Carp T ;C‘“ﬁ =1 { in all one-ring neighbourhood elemets- 1. .. B. (78)
Computing the term
IGe—gl, (79)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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16 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

after solving Equation (58) results in a computed zeroWithin machine precision), so that all the
imposed constraints are satisfied.

Upon solution of the constrained linear least square probite Equation (58), the support of
the blending functions that are non-zerawo one-ring neighbourhood elements has changed, see
Figure 9.

» Anchors — Edges M Elements » Anchors — Edges M Elements

@ (b)

Figure 9. Modifying the Bézier coefficients g in the one-ring neighbourhood elements of an extraordinary

point (red) results in a modified support of blending funesiaV that are non-zero inwo one-ring

neighbourhood elements after generalised Bézier eidracgreen marks the support of the two blue
blending functions (a) before and (b) after solving the t@msed least square problem in Equation (58).

The Bézier extraction operato@. for the one-ring neighbourhood elements of an extraorginar
point are not square matrices, i. e. hierarchical refinenf@hf or Bézier projection [32] are
not applicable. For the one-ring neighbourhood elements@fextraordinary point with valence
three, the Bézier extraction opera®r has full row rank — the blending function€ are locally
linearly independent. The blending functions are locally linearly dependent for the one-ring
neighbourhood elements of the extraordinary point witleneé five sinceC. does not have full
row rank. o

Figures 10 and 11 show a blending functidrand its first derivative®’ , andN ,, in the physical
domain before and after modifying the Bézier coefficientg. It can be seen thav , and N,
are continuous after smoothing. Thus, the blending funstiy are C}-continuous. Modifying
the Bézier coefficients, g for the cubic case such that the unstructured T-spline mekits f
the partition of unity property for the blending functioné and is C'}-continuous around the
extraordinary points has been considered in [29].

If a T-spline mesh does not fulfil the partition of unity propeit is non-analysis-suitable
according to [36]. However, analysis can also be perform&d mon-analysis-suitable T-spline
meshes, see also the discussion of the term “analysidhiita [31]. For instance, the unstructured
T-spline meshes utilised in [37—45] are non-analysisaflit T-spline meshes since the blending
functions do not fulfil the partition of unity property in tlome-ring neighbourhood elements of an
extraordinary point.

Furthermore, it was concluded in [46] that the unstructuregline mesh in [42] is an analysis-
suitable T-spline. Unfortunately, it was not taken into@aat in [46] that the blending functions of
an analysis-suitable T-spline have to fulfil the partitidruaity property which is not the case for
the unstructured T-spline meshes in [42]. This shows thaiy not be possible to conclude from
the topology of an unstructured T-spline mesh whetherfii$ithe partition of unity property or not
and that instead, the Bézier extraction operator shoukkpwited as in [31].
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Figure 10. Contour plots of a quadratic blending functigrand its derivativesv ., N in the physical
domain before (a)-(c) and after (d)-(f) smoothing. The Hlag function corresponds to an anchor that is
located in the one-ring neighbourhood of the extraordinenint of valence five.
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Figure 11. Contour plots of a quadratic blending functigrand its derivativesv ., N in the physical
domain before (a)-(c) and after (d)-(f) smoothing. The diag function corresponds to an anchor that is
located in the two-ring neighbourhood of the extraordinamint of valence five.

6. THE REPRESENTATION OF A DISC WITH NURBS, T-SPLINES, NURB®-NURPS
AND POWELL-SABIN B-SPLINES

In Section 7, an analysis will be carried out for a Kirchhbffve plate with a circular geometry.
Therefore, we now create a number of discretisations fargaometry using NURBS, NURBS-to-

MRRR U ARl -arRlines and Powell-Sabin B-splifiee firshiwonmetheasrcaAFRIGsent
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18 STEFAN MAY, JULIEN VIGNOLLET AND RENE DE BORST

a circular boundary exactly, while the unstructured Trspland Powell-Sabin B-spline mesh only
approximate the circle.

6.1. Representation of a disc with NURBS

6.1.1. Single patch

An area with a circular boundary can be created with a singkdrptic NURBS patch (or one
element) using nine control points, see Figure 12(a). Tlpasmetric lines indicate where
singularities blue (i. e. the determinant of the Jacobiatrimd in Equation (48) vanishes) are
introduced: at control points one, three, seven and nimeals® [47]. Uniformh-refinement will be
applied for the convergence study in Section 7.

[ ] Control points
[ ] Control points === Element boundaries
=== Element boundaries —— Isoparametric lines
—— Isoparametric lines C?\—continuity lines

Figure 12. Representation of a disc using NURBS with (a) angles quadratic element / patch and (b) a
polar parameterisation using four patches.

6.1.2. Polar parameterisation
Another possibility to construct a circle is by a polar paedenisation with 27 control points that
uses four NURBS patches, Figure 12(b). This results in aukimg degenerated point in the centre
where the determinant of the Jacobian malrir Equation (48) vanishes. Also, fodR -continuity
lines (orange) are introduced. As for the single NURBS{pé&tom the previous section, uniform
h-refinement will be applied for the convergence study in i8act. h-refinement does not change
the number o€’} -continuity lines.

The bending strip method proposed in [10] will be employe8éttion 7 at thes€R -continuity
lines. The bending strip method adds a stiffness matrix@fdhm

Kps = / B'Q"Dys QB wdrdy (80)
| B'Q"D»sQ

to Equation (23) at the interfaces between patches in aodegainC; -continuity in an approximate
sense. In Equation (80)

B3 Eps 0 0
235 = B 0 0 0 (81)
0 0 0
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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represents the penalty matrix with the penalty bendinfnsssE g5 and

ni na 0
Q=|-n2 n1 0 (82)
o 0 0 1

is the rotation matrix with the normal vectar of the bending strip. The rotation mat aligns
the bending matrilD 55 with the bending direction. o

6.2. Representation of a disc using unstructured T-splines

The approach from Section 5 generatgscontinuous blending functions that fulfil the partition of
unity property for an unstructured quadratic T-spline megh extraordinary points. The T-spline
mesh for the circular disc is shown for the index domain irurégl3(a).

° Control points
’ o Anchors — Edges M Elements ‘ —— Element boundaries

(@ (b)

Figure 13. An unstructured quadratic T-spline mesh in (@)inidex domain and (b) in the physical domain.

(a) Extraordinary points are marked red, spoke edges gnegrome-ring neighbourhood elements of an

extraordinary point blue. (b) The T-spline mesh in the ptgisdomain only approximates the circular
boundary.

A circular geometry cannot be represented exactly withauibte knots, see [48]. Hence, the
unstructured quadratic T-spline mesh can only approxirteecircular geometry since it i} -
continuous in the entire domain. The; control points on the bounda®’; are determined by
solving

> NU&)Pjy = Scyae(és) fork=1...np. (83)

i=1

¢ is the coordinate along the circle with< £ < 360, andS ;... (&) the curve representing the circle.
Along the boundary arep elements. The centre of each boundary element is located at

= 360 180
ng—k—l—— fOfk‘Zl...nB. (84)
np np
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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Substitutingt;, from Equation (84) into Equation (83) results in the follogisystem

3 B T T e

% % 0 0 0 ... 0 % EIBT Clrcle(é )

5 ? % (1) 0O ... 00 BQBT Sglrcle(§ )

0§ 8§ § 0 .. 00| p3T|_| Sl |, (85)
1 1 (; : 3

s 00 00 s sl | pne T_ §gircle (&ns)

which can be solved for the control points on the boundgl’jy. The values in the matrix of
Equation (85) stem from

N (&) 3 0 0] [B(&) 2 0 0] [y 5
NME) | = |5 1 % B*&)| = |3 1 % il =I5 (86)
NFHL(&) 0 0 3| B¢ 0 2] Lz 3
The location of the control points in the interior of the Tisp mesh in Figure 13 is determined by
solving
0 &’CQ 83:5)
— [ —+=—= =0 87
o6 (o6 + 52 &0

in the sub-parameter domajp, while the location of the control points on the bound&jy of the
disc is prescribed. The resulting T-spline mesh in the mayslomain is depicted in Figure 13(b).
Two T-spline meshes with a different refinement level arermestted — for each refinement level,
Equations (85) and (87) are solved for the determinatioh@tbntrol points. As already discussed
in Section 5, the Bézier extraction operat@isfor the elements in the one-ring neighbourhood of an
extraordinary point are not square matrices. Hence, tHesgeats cannot be refined hierarchically
as in [31] and the Bézier projection procedure [32] canrapplied since the inverse of Bézier
extraction operator — the reconstruction operator — isiredu

6.3. Representation of a disc using the NURBS-to-NURP Soaheithgy

We now transform the single NURBS patch of Section 6.1.1 atdURPS mesh (NURBS-to-
NURPS) following [16]. The boundary of the NURBS-to-NURP &teches exactly the boundary
defined by the single NURBS patch, see Figure 14. In orderpeesent the circular boundary
exactly, the Powell-Sabin triangles that correspond toctir@erse = (0,0); (0,1); (1,0); (1,1) in
the parameter domain need to be degenerated into a line phirsical domaine (dashed lines in
Figure 14(c) and Figure 14(d)). Itis noted that the NURBNtRPS approach is based on a single
NURBS patch, and that a method for transforming multiple NB¥patches into a NURPS has so
far not been proposed.

6.4. Representation of a disc with Powell-Sabin B-splines

Alinear(y, finite element triangulatiofi can be transformed into@ Powell-Sabin B-spline mesh
T*, see [14,15]. This corresponds to a NURPS mesh with theitotat the control pointd! = Q{

and for all Weighteu;{ = 1in Equation (43), i. e. the parametric and the physical dosygiandz,
respectively, are identical. For this case, the circulamutary of the disc is only approximated. The
Powell-Sabin triangles on the boundary are constraineddh a way that one corner of the Powell-
Sabin triangle is always equivalent to the vertex coordinsgée Figure 15. Upon mesh refinement,
the Powell-Sabin triangles on the boundary progressivetgribrate into lines, see Figure 15(b).

7. NUMERICAL RESULTS

In this section the circular Kirchhoff-Love plate of Figulés is considered for two different
boundary conditions: simply supported and clamped. Tharpaters aref) = 2.1 x 10°MPa,
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Figure 14. Generation of a NURBS-to-NURPS mesh from a siNgI&BS patch. From the left to the right
column, the triangulation in the NURBS patch is refined. (@& éb) show the triangulatio and Powell-
Sabin refinemen?™ in the parameter domaig. (c) and (d) show the NURBS-to-NURPS mesh in the
physical domairne; dashed lines connect the control points of the cornerseoPttwell-Sabin triangles. (e)
and (f) show isoparametric lines for the NURBS and the NUR8IJRPS meshes in the physical domain
z. Upon refinement, the NURBS-to-NURPS representation agegeto the NURBS parameterisation.
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Figure 15. Approximation of a circle using Powell-Sabin f@hses for two different levels of refinement.
The Powell-Sabin triangles on the boundary are constramsedch a way that one corner of each Powell-
Sabin triangle is equivalent to the vertex.

Do Do

(@ (b)

Figure 16. Computational set-up for (a) the simply supgbeed (b) the clamped circular Kirchhoff-Love
plate.

v = 0.3, pp = 0.16MPa, a = 250mm andh = 10mm. The analytical solutions., for both cases
can be found in [25]. In the following, the results for theg@@ NURBS patch from Section 6.1.1
will be plotted in all convergence plots for comparison. Theerror norm is computed from

_ \/fgz (w — Wex)” da:dy.

\ /fQ w2, dady

The convergence rate for the fourth order partial diffaedrgquation in Equation (13) is equal to
two for quadratic basis functions & 2) according to [49],

(88)

wr

wr, < CR™NWHL272) — Cp? (89)

with the mesh sizé. and a constanC. In order to transform Equation (89) onto the degrees of
freedom DOF, the relation

p+1
= 90
vDOF (%0)
is used so that we obtain .
wr, < CDOF . (91)
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For the NURBS and T-spline meshes, the deflectidior the outer control points is set to zero
for the simply supported case, while the deflectioof the two outer rows of control points is set to
zero for the clamped case. For the Powell-Sabin B-splind\NwRBS-to-NURPS, the deflection
w of a control point associated to a vertex on the boundarytiosgero for the simply supported
case ifer, > 0 holds in Equation (30)(a). For the clampled case, the déieat of all three control
points which are associated to a vertex that lies on the kaynis set to zero.

—e— One NURBS patch  —e— Polar Eg = 10° MPa —e— One NURBS patch  —e— Polar Eg = 10° MPa
—~&— Polar Egs = 107 MPa =6~ Polar Egg = 10° MPa ~&— Polar Egs = 107 MPa =6~ Polar Egg = 10° MPa

wi, for clamped case

1074 -

wy, for simply supported case

1076 | |

|
10° 10! 10? 103 104 10° 10° 10°

Figure 17. Convergence plots for the single NURBS patch anth& polar NURBS parameterisation using
four NURBS patches for (a) the simply supported and (b) taenpled boundary conditions.

Figure 17 shows the error in tHe-norm when the circle is represented with four NURBS patches
and a polar parameterisation with a singular point in thereeas in Section 6.1.2. For thigY(, C%)-
construction, the bending strip method has been appliewatweC -continuity lines for different
values of the penalty stiffnegszs. The results do not converge well for the finer meshes. Magov
the value of the penalty stiffnedszs for which the lowest errotv;,, is obtained, is different for
both boundary conditions.

| -o— One NURBS patch —o— T-spline | |-o— One NURBS patch —o— T-spline |

wy, for simply supported case
wi, for clamped case

10-6 | | | |
10° 10! 10 10° 10 10° 10° 10! 10 10° 10 10°
DOF DOF

(@ (b)

Figure 18. Convergence plots for the single NURBS patch laadspline mesh for (a) the simply supported
and (b) the clamped boundary conditions.

Figure 18 gives the results upon mesh refinement for the ustated T-spline mesh from
Section 6.2, again together with the results that stem ftawrsingle NURBS patch for comparison.
In contrast to the previousG{, C%)-construction using the bending strip method, a constant
convergence rate is observed for the simply supported ardped case for the unstructured T-
spline mesh. The errow;, for the unstructured T-spline mesh is larger than the eurpy for
the single NURBS patch. A convergence study was also caotgdor an unstructured T-spline
mesh without theg*-construction that yield§';-continuous blending functions for the one-ring
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neighbourhood elements, i. e. a T-spline mesh that is 6fkgontinuous along spoke edges and
non-standard. This T-spline mesh gives almost identicallte for the errorw,, and the results
are not plotted in Figure 18 since they are not distinguishtbm the error for standard T-spline
meshes with} -continuity along spoke edges.

\ —o— One NURBS patch —6— NURBS-to-NURPS —&— PS B-spline \ \ —o— One NURBS patch —6— NURBS-to-NURPS —&— PS B-spline \

100 |- 100] 8

107 - 1

102 1

wy, for simply supported case
wi, for clamped case

| | | | |
10° 10! 10? 10° 10* 10° 10° 10! 10? 10° 10* 10°
DOF DOF

(@ (b)

Figure 19. Convergence plots for the single NURBS patchNthBBS-to-NURPS approach and the Powell-
Sabin B-splines for (a) the simply supported and (b) the pkdfrboundary conditions.

Finally, the results for the NURBS-to-NURPS configuration dor the standard Powell-Sabin
B-spline computations are given in Figure 19. Unexpecteitly Powell-Sabin B-spline mesh,
which onlyapproximateshe geometry, gives the lowest erroy, in case of the simply supported
boundary conditions, even lower than the single NURBS pathls is not the case for the clamped
boundary conditions, but also then the standard Powelir®dspline mesh, which approximates
the geometry, gives results that are superior to those flenNURBS-to-NURPS. A possible
explanation is that the effect of the distorted elementgéderated Powell-Sabin triangles), which
are introduced by the NURBS-to-NURPS approach, is not cosgted by the improved (exact)
capturing of the boundary.

8. CONCLUDING REMARKS

In this paper a method has been developed to solve boundarg peoblems that stem from
Kirchhoff-Love plate theory using quadratic Powell-SaBhsplines. By virtue of the fact that these
interpolation functions ar€}-continuous, the resulting fourth-order partial diffetiahequation
can be solved properly. Numerical efficiency is achieved Xplating Bézier extraction, similar
to procedures that have been developed for NURBS and Tesp[@0, 21]. Further, the Bézier
coefficients in an unstructured quadratic T-spline meshgs heen modified such that the resulting
mesh isC} -continuous in the entire domain and fulfils the partitiorunfty property.

Quadratic Powell-Sabin B-splines have a disadvantage amedgo NURBS as the geometry is
generally not captured exactly. Conversely, the fact they aireC} -continuous everywhere avoids
using the bending strip method [10] for joined NURBS patctegthermore, using the Powell-
Sabin technique, &}-continuous triangulations can be created from arbitrasgrétisation as a
pre-processing step and is simpler than having to deal veileral NURBS patches or complex
T-spline technology.

In a first assessment of the advantages and drawbacks ofatjcaBowell-Sabin B-splines
compared to NURBS and T-splines, a circular Kirchhoff-L@late has been considered. Different
representations of the disc have been examined, includirsingle NURBS patch, a polar
parameterisation consisting of four joined NURBS patclze3;spline mesh with extraordinary
points, a NURBS-to-NURPS configuration, and Powell-SabigpBnes. The numerical results
show that the use of the bending strip method can impair agenee when the discretisation
is refined. In all cases the single NURBS patch performecebéftan the NURBS patches or
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the T-splines. The Powell-Sabin B-spline mesh performedoat as well as the single NURBS
patch in the calculations for the clamped boundary conati@nd better than the single NURBS
patch for the case with simply supported boundary conditi¢ior both cases the Powell-Sabin
splines yielded more accurate results than the NURBS-t®RSE approach. This observation
comes somewhat at a surprise, since the geometry of the bouiscdpproximatedn the Powell-
Sabin B-spline mesh. The explanation may be that the imgabiliPowell-Sabin B-splines to capture
the boundary exactly is more than off-set by the loss of amuthat stems for the badly shaped
triangles in the NURBS-to-NURPS discretisations.

A. CODE SNIPPET FOR THE BZIER EXTRACTION PROCEDURE FOR NURPS

Algorithm 1 gives the Bézier extraction procedure in a Mhttode snippet for the evaluation of the
stiffness matrixK and the force vectof in Equation (23).

Input: ControlPts, Weights, Bézier extraction operata©@erator for all mini-triangles,
Connectivity Conn, Number of Gauss points ngauss
Output: Stiffness matrix K, force vector f

% get the values of the Bernstein polynomials and their dévigs at the GPs of the barycentric coordinate system
T
for i = 1 : ngauss do
[B(:,i), dBdt1(:,i), dBdt2(:,i), d2Bdtl(:,i), d2Bdt2(), d2Bdt1ldt2(:,i),] =
f_d1Bernstein(tildetaul(i),tildetau2(i));
end
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K = zeros(NoControlPts,NoControlPts);

f = zeros(NoControlPts,1);

% element loop (loop over triangles of triangulatidh
for e =1: NoElements do

% connectivity for this element

sctr

elco = ControlPts(sctr,1:2);

= diag(Weights(sctr));

we = Weights(sctr);

Ke = zeros(length(sctr),length(sctr));

We

fe =

% loop over mini-triangles of triangulation™
forn=1:6do

end

K(sctr,sctr) = K(sctr,sctr) + Ke;
f(sctr,1) = f(sctr,1) + fe;

end

=Conn(e,);

zeros(length(sctr),1);

% Beézier extraction operator for this mini-triangle

Cen = COperatofe,n};

wb = Cen™*we;

% loop over Gauss points

for i = 1: ngauss do
Wb = wb™B(,i);
dWhdtl = wb*dBdt1(:,i);
dWhbdt2 = wb™*dBdt2(:,i);
d2Whbdtl = wb*d2Bdt1;
d2Whdt2 = wb*d2Bdt2;
d2Whdt1dt2 = wb*d2Bdt1dt2;

R = We*Cen*B/Whb;

dRdtl = We*Cen*(dBdt1/Whb - B/Wb2*dWhdt1);

dRdt2 = We*Cen*(dBdt2/Wb - B/Wb2*dWhbdt2);

d2Rdt1 = We*Cen*(d2Bdt1/Whb - 2*dBdt1/WR2*dWhbdtl + 2*B/Wh"3*dWhdt1" 2 -
B/Wb"2*d2Whdt1);

d2Rdt2 = We*Cen*(d2Bdt2/Whb - 2*dBdt2/WR2*dWhbdt2 + 2*B/Wb"3*dWhdt2" 2 -
B/Wb"2*d2Whdt2);

d2Rdt1dt2= We*Cen*(d2Bdt1dt2/Wb - dBdt2*dWhdt1/WB - dBdt1*dWhbdt2/WBH 2 -
B*d2Whdt1dt2/Wh' 2 + 2*B*dWhdt2*dWhdt1/Wh" 3);

dxdtl = elco(;,1)*dRdt1;

dydtl = elco(;,2)*dRdt1;

dxdt2 = elco(;,1)*dRdt2;

dydt2 = elco(;,2)*dRdt2;

d2xdtl = elco(:,1)*d2Rdt1,
d2ydtl = elco(:,2)*d2Rdt1,
d2xdt2 = elco(:,1)*d2Rdt2;
d2ydt2 = elco(:,2)*d2Rdt2;
d2xdt1dt2 = elco(;,1)*d2Rdt1dt2;
d2ydt1dt2 = elco(;,2)*d2Rdt1dt2;

jacob = [dxdtl dxdt2;dydtl dydt2];
detJelem = det(jacob);
invJacob = inv(jacob);
dRdx = [dRdt1 dRdt2] * invJacob;

d2Rdt1t2 = [d2Rdt1’; d2Rdt2’; d2Rdt1dt2’];
d2xydt1t2 = [d2xdtl d2ydtl; d2xdt2 d2ydt2; d2xdt1dt2 d2ydiP];
dxydtlt2 = [ dxdt1*dxdtl dydt1l*dydtl 2*dxdt1*dydt1;
dxdt2*dxdt2 dydt2*dydt2 2*dxdt2*dydt2;
dxdt1*dxdt2 dydtl*dydt2 dxdtl*dydt2 + dxdt2*dydtl];
d2Rdx = dxydt1t®(d2Rdt1t2 - d2xydt1lt2*dRdx’);

d2Rdx2(1,:) = d2Rdx(1,:);
d2Rdy2(1,:) = d2Rdx(2,:);
d2Rdxdy(1,:)= d2Rdx(3,:);

Be = [d2Rdx2; d2Rdy2; 2*d2Rdxdy];
Ke = Ke + 1/2*w(i)*(Be*D*Be)*detJelem;
fe = fe + 1/2*w(i)*(R™*p0)*detJelem;

end

Algorithm 1: Algorithm for the Bézier extraction procedure for NURRS the calculation of

the stiffness matrix and the force vector in Equation (23).
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