
This is a repository copy of Powell-Sabin B-splines and unstructured standard T-splines for
the solution of the Kirchhoff-Love plate theory exploiting Bézier extraction.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100537/

Version: Accepted Version

Article:

May, S., Vignollet, J. and Borst, R.D. (2016) Powell-Sabin B-splines and unstructured 
standard T-splines for the solution of the Kirchhoff-Love plate theory exploiting Bézier 
extraction. International Journal for Numerical Methods in Engineering, 107 (3). pp. 
205-233. ISSN 0029-5981 

https://doi.org/10.1002/nme.5163

This is the peer reviewed version of the following article: May, S., Vignollet, J., and Borst, 
R. (2015) Powell–Sabin B-splines and unstructured standard T-splines for the solution of 
the Kirchhoff–Love plate theory exploiting Bézier extraction. Int. J. Numer. Meth. Engng, 
which has been published in final form at http://dx.doi.org/10.1002/nme.5163. This article 
may be used for non-commercial purposes in accordance with Wiley Terms and 
Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng0000;00:1–26
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

Powell-Sabin B-splines and unstructured standard T-splines for
the solution of the Kirchhoff-Love plate theory exploitingBézier

extraction

Stefan May1, Julien Vignollet1, René de Borst1∗
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SUMMARY

The equations that govern Kirchhoff-Love plate theory are solved using quadratic Powell-Sabin B-splines
and unstructured standard T-splines. Bézier extraction is exploited to make the formulation computationally
efficient. Since quadratic Powell-Sabin B-splines result in C1A-continuous shape functions, they are of
sufficiently high continuity to capture Kirchoff-Love plate theory when cast in a weak form. Unlike Non-
Uniform Rational B-Splines (NURBS) which are commonly usedin isogeometric analysis, Powell-Sabin B-
splines do not necessarily capture the geometry exactly. However, the fact that they are defined on triangles
instead of on quadrilaterals increases their flexibility inmeshing, and can make them competitive with
respect to NURBS, as no bending strip method for joined NURBSpatches is needed. This paper further
illustrates how unstructured T-splines can be modified suchthat they areC1A-continuous around extraordinary
points, and that the blending functions fulfil the partitionof unity property. The performance of quadratic
NURBS, unstructured T-splines, Powell-Sabin B-splines and NURBS-to-NURPS (Non-Uniform Rational
Powell-Sabin B-splines which are obtained by a transformation from a NURBS patch) is compared in a
study of a circular plate. Copyrightc© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: isogeometric analysis, Powell-Sabin B-splines, NURBS-to-NURPS, NURBS, unstruc-
tured T-splines, Bézier extraction

1. INTRODUCTION

Kirchhoff-Love plate theory [1] is well suited for the analysis of thin plates, but requiresC1
A-

continuous shape functions in finite element analyses (the use of the subscript “A” is explained in
Section 2). Other problems which require higher-order continuous shape functions include higher-
order gradient damage models [2], higher-order shear deformation theory [3], or the Cahn-Hilliard
equation [4]. References [2–4] utilise either B-splines, Non-Uniform Rational B-splines (NURBS)
or T-splines [5]. These higher-order continuous shape functions are suitable for problems which
require an interelement continuity that is higher thanC0

A. The idea of applying basis functions like
B-splines, NURBS or T-splines, which are routinely used in Computer Aided Design (CAD), to
analysis as well, was introduced in [6] and termed IsoGeometric Analysis (IGA) in [7].

A vibration analysis for Kirchhoff-Love plates using isogeometric analysis has been carried
out in [8], while an isogeometric formulation for Kirchhoff-Love shell elements was proposed
in [9]. Since multiple NURBS patches are joined withC0

A-continuity, the bending strip method
was proposed in [10] and adds a penalty stiffness between adjacent NURBS patches. This approach

∗Correspondence to: René de Borst, University of Glasgow, School of Engineering, Oakfield Avenue, Rankine Building,
Glasgow G12 8LT, UK. E-mail: Rene.DeBorst@glasgow.ac.uk
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2 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

requires a geometric continuityG1 along theC0
A-continuity lines. Hence, the control points need to

be positioned such that aG1-continuity is obtained. Unfortunately, this (G1, C0
A)-construction has

been applied only to two or four adjacent NURBS patches – it has not been demonstrated how to
position the control points when three or more than four NURBS patches meet at an extraordinary
point.

T-splines are an alternative to NURBS and consist of a singlepatch. However, when three or
more than four elements in a T-spline mesh meet at an extraordinary point, aC0

A-continuity line
is introduced in the vicinity of the extraordinary point andthe blending functions of the T-spline
mesh do not fulfil the partition of unity property. It was demonstrated in [11] how to obtainG1-
continuous blending functions by modifying the coefficients of the Bézier extraction operators in
the one-ring neighbourhood elements of an extraordinary point. It was pointed out in [12] that this
G1-construction also yieldsC1

A-continuous blending functions. However, the approach in [11] does
not result in blending functions that fulfil the partition ofunity property.

Quadratic Powell-Sabin (PS) B-splines also provide shape functions that give a higher
continuity [13]. They are based on a linear triangulation and have quadratic shape functions that are
C1
A-continuous across elements. Powell-Sabin B-splines havebeen cast in terms of Bézier ordinates

in [14, 15] in order to obtain an efficient calculation. It is noted that Powell-Sabin B-splines are
not based on the isogeometric concept as they onlyapproximatethe exact geometry and are not
based on a NURBS patch but on a triangulation. To address thisissue, a method was recently
proposed to transform a single NURBS patch into Non-UniformRational Powell-Sabin B-splines
(NURPS) [16] and denoted NURBS-to-NURPS. The boundary of the NURBS-to-NURPS then
exactly matches the boundary of the NURBS patch while the interior domain of the NURBS-to-
NURPS only approximates the NURBS patch which is relevant for non-planar geometries. Powell-
Sabin B-splines and NURBS-to-NURPS have been used for analysis in [16–19].

After clarifying the term continuity from a CAD and from an analysis perspective, this paper
proposes a Powell-Sabin B-spline formulation for Kirchhoff-Love plates. In this class of problems
theC1

A-continuity of Powell-Sabin splines is fully exploited. Moreover, we will show how Bézier
extraction can be implemented, thus making the method computationally efficient, similar to
Bézier extraction for NURBS and T-splines [20, 21]. Then, unstructured quadratic T-splines will
be modified such that the blending functions fulfil the partition of unity property and areC1

A-
continuous around the extraordinary point. Finally, we compare NURBS, unstructured T-splines and
NURBS-to-NURPS with Powell-Sabin B-splines. As a test problem we take a circular Kirchhoff-
Love plate, and we study the cases with clamped and with simply supported boundary conditions.
Our study goes beyond that in [22], which was for the Poisson equation, and hence required only
C0
A-continuous shape functions. Particular attention is given to cases with extraordinary points in

the mesh, as their effect on the convergence behaviour of fourth-order partial differential equations
has not been studied hitherto.

2. CONTINUITY FOR CAD AND ANALYSIS

In this section we elaborate on the term “continuity” from a CAD perspective as well as from an
analysis perspective.

2.1. Parametric continuityC
We consider the two curved segmentsS1(t1) and S2(t2) which depend on the parametric
coordinatest1 andt2:

S1(t1) = (1− t1)P 1 + t1P 2 0 ≤ t1 ≤ 1,

S2(t2) = (1− t2)P 2 + t2P 3 0 ≤ t2 ≤ 1
(1)

with the coordinates in the physical domainx = (x, y)

P 1 = (1, 1), P 2 = (2, 2), P 3 = (3, 3). (2)

Both curvesS1(t1) andS2(t2) have been plotted in Figure 1(a).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme
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Figure 1. Parametric curves in the physical domainx = (x, y), (a) S1(t1) andS2(t2) are parametrically
C1-continuous atP 2, (b) S̃1(t̃1) andS̃2(t̃2) aregeometricallyG1-continuous at their jointP 2. The triangles

mark isoparametric distances of∆t1 = ∆t2 = ∆t̃1 = ∆t̃2 = 0.1.

Evaluating the first derivative with respect to the parametric coordinate yields for both curves:

∂S1(t1)

∂t1

∣
∣
∣
∣
t1=1

=
∂S2(t2)

∂t2

∣
∣
∣
∣
t2=0

= (1, 1). (3)

Both curves have the same first derivative at their joint: theparametric continuity of the first
derivative in Equation (3) will be denoted asC1.

2.2. Geometric continuityG
Next, we consider the two curved segmentsS̃1(t̃1) and S̃2(t̃2), which depend on the parametric
coordinates̃t1 andt̃2 with:

S̃1(t̃1) = (1− t̃1)P 1 + t̃1P 2 0 ≤ t̃1 ≤ 1,

S̃2(t̃2) = (1− 2t̃2)P 2 + 2t̃2P 3 0 ≤ t̃2 ≤ 1

2
.

(4)

The first derivatives with respect to the parametric coordinate now read:

(1, 1) =
∂S̃1(t̃1)

∂t̃1

∣
∣
∣
∣
t̃1=1

6= ∂S̃2(t̃2)

∂t̃2

∣
∣
∣
∣
t̃2=0

= (2, 2). (5)

Hence, both curves are notC1-continuous. However, Figure 1(b) shows that both curves still have
a continuous geometry in the physical domainx. In order to account for this, the termgeometric
continuity was introduced in [23]. If two curved segments satisfy the condition

∂S̃1(t̃1)

∂t̃1

∣
∣
∣
∣
t̃1=1

= c
∂S̃2(t̃2)

∂t̃2

∣
∣
∣
∣
t̃2=0

, (6)

with a scalarc, then they are calledgeometriccontinuous with respect to the first derivative. This
continuity is denoted asG1. The step from Equation (4) to Equation (1) – replacingt̃2 with t2

2 – is
called reparameterisation. It was pointed out in [24] that the definitions for parametric and geometric
continuity in Equations (3) and (6) may not be clear for overlapping control points.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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4 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

2.3. ContinuityCA for analysis

Now, we consider the notion “continuity” from an analysis perspective. Equation (1) is equivalent
to the parameterisation:

S̄(t) = N1(t)P 1 +N2(t)P 2 +N3(t)P 3 (7)

with 0 ≤ t ≤ 2 and the Lagrangian shape functions (see Figure 2)

N1(t) =

{
1− t for 0 ≤ t ≤ 1
0 for 1 ≤ t ≤ 2

, N2(t) =

{
t for 0 ≤ t ≤ 1

2− t for 1 ≤ t ≤ 2
,

N3(t) =

{
0 for 0 ≤ t ≤ 1

t− 1 for 1 ≤ t ≤ 2
.

(8)

It is noted that the shape functionsNi(t) in Equation (8) can also be derived from the knot vector
T = {0, 0, 1, 2, 2}. The Lagrangian shape functions in Equation (8) have a continuity of C0

A. In
order to distinguish between theparametriccontinuityC of thecurveand the continuityC0

A of the
basis functions, the subscriptA (for analysis) was added. It follows that the continuity which is
required for analysis needs to be distinguished from the parametric or geometric continuity which
is interesting from a designer’s point of view.
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Figure 2.C0A-continuous linear Lagrangian shape functions.

2.4. Geometric continuous basis functions

It was demonstrated in [12] thatGk-continuous basis functions areCk
A-continuous. This will be

illustrated for the case (G1, C1
A) in one dimension. Consider the four basis functionsNi






N1

N2

N3

N4




 =







1 0 0 0 0 0
0 1 1

2
1
2 0 0

0 0 1
2

1
2 1 0

0 0 0 0 0 1
















B1

B2

B3

B4

B5

B6










, (9)

with

B1(ξ1) =
1
4 (1− ξ1)

2

B2(ξ1) =
1
2 (1− ξ21)

B3(ξ1) =
1
4 (1 + ξ1)

2






− 1 ≤ ξ1 ≤ 1,

B4(ξ2) =
1
16 (2− ξ2)

2

B5(ξ2) =
1
8 (4− ξ22)

B6(ξ2) =
1
16 (2 + ξ2)

2






− 2 ≤ ξ2 ≤ 2. (10)

The following physical coordinatePi=xi corresponds to each basis function

P1 = 0, P2 = 1, P3 = 2, P4 = 3. (11)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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The derivativesNi,ξ1 andNi,ξ2 with respect to the parameter coordinatesξ1 andξ2 are plotted in
Figure 3(a) over the physical domainx for all four basis functions.
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Figure 3. (a) The derivatives (N2,ξ1 , N2,ξ2 ) and (N3,ξ1 , N3,ξ2) are discontinuous while (b) the derivatives
N2,x andN3,x are continuous:G1-continuous basis functions are alsoC1A-continuous.

It can be observed that (N2,ξ1 , N2,ξ2) and (N3,ξ1 , N3,ξ2) are discontinuous. However, since the
G1-continuity condition

∂Ni

∂ξ1

∣
∣
∣
∣
ξ1=1

= 2
∂Ni

∂ξ2

∣
∣
∣
∣
ξ2=−2

(12)

holds for all four basis function, they have to beC1
A-continuous: Figure 3(b) shows the derivatives

Ni,x of all four basis functions with respect to the physical coordinatex. All four derivativesNi,x

are now continuous. Thus, the four basis functionNi are C1
A-continuous. The property thatG1-

continuous basis functions areC1
A-continuous is especially useful for connecting surfaces at an

extraordinary point such that the basis functions possess the requiredC1
A-continuity (see Section 5).

In sum, basis functions that fulfil aG1-constraint areC1
A-continuous and the geometry isG1-

continuous for any set of control points. If the basis functions are onlyC0
A-continuous the geometry

can still beG1-continuous by an appropriate choice of the location of the coordinates in the
physical domain. Such a (G1, C0

A)-construction can also be used for solving fourth order partial
differential equations when a rigid link between neighbouring control points along theC0

A-continuity
is introduced, as for the bending strip method [10]. This rigid link transfers theG1-continuity from
the coordinates to the displacement degrees of freedom.

3. KIRCHHOFF-LOVE PLATE THEORY

3.1. Continuum formulation

The moment equilibrium for a Kirchhoff-Love plate reads [25]:

mαβ,αβ = p0 (13)

with p0 the force per unit area, and

mαβ = −
∫ h/2

−h/2

σαβz dz (14)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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6 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

the bending moments. Greek indices take values one and two, acomma denotes differentiation,
while h is the thickness of the plate.σαβ is the stress, and Hooke’s law for plane stress is used:





σ11

σ22

σ12



 =
E

1− ν2





1 ν 0
ν 1 0
0 0 1−ν

2









ε11
ε22
2ε12



 (15)

since it is assumed that|σ33|, |σ13|, |σ23| ≪ |σ11|, |σ22|, |σ12|. The non-zero strain components are
assumed as follows:

ε11 = −z
∂2w

∂x2
, ε22 = −z

∂2w

∂y2
, 2ε12 = −2z

∂2w

∂x∂y
(16)

with the deflectionw(x, y). Upon substitution of Equation (15) and Equation (16) into Equation (14)
we obtain: 



m11

m22

m12





︸ ︷︷ ︸

m

=
Eh3

12(1− ν2)





1 ν 0
ν 1 0
0 0 1−ν

2





︸ ︷︷ ︸

D





κ11

κ22

2κ12





︸ ︷︷ ︸

κ

(17)

with D the elastic stiffness matrix and
καβ = w,αβ (18)

the curvature. The bending moments are assembled in the array m, whileκ contains the curvatures.
Multiplying Equation (13) by a test functionδw, integrating over the domainΩ and exploiting
Gauss’ theorem then results in:

∫

Ω

δw,αβmαβ dxdy +

∫

Γ

δwmαβ,αnβ dΓ−
∫

Γ

δw,βmαβnα dΓ =

∫

Ω

δwp0 dxdy. (19)

Substitution of Equation (18) and omitting the boundary terms that relate to imposed moments and
forces, the resulting weak form becomes:

∫

Ω

δκαβmαβ dxdy =

∫

Ω

δwp0 dxdy. (20)

Since second derivatives appear in this equation,C1
A-continuous functions (functions of classH2)

are necessary with square integrable second derivatives [26].

3.2. Discretisation

Discretisation of the domainΩ into E elements,Ω =
⋃E

e=1 Ω
e, with w the deflection andδw its

variation, leads to:

we = NTw, δwe = NT δw, κe = Bw, δκe = Bδw (21)

where N contains the shape functions, andBT = [N,xx, N,yy, 2N,xy] contains the second
derivatives of the shape functions. It is recalled thatD is the elastic stiffness matrix. Use of
Equation (17) results in the matrix-vector equation:

∫

Ω

δκTDκdxdy =

∫

Ω

δwTN p0 dxdy (22)

which for arbitraryδw gives:
∫

Ω

B
T
DB dxdy

︸ ︷︷ ︸

K

w =

∫

Ω

N p0 dxdy

︸ ︷︷ ︸

f

(23)

with K the stiffness matrix andf the force vector.
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Figure 4. The parameter and physical domains, (ξ) and (x), respectively, for Powell-Sabin B-splines. Each
trianglee has a barycentric coordinate systemτ and can further be subdivided into six mini-triangles with a

barycentric coordinate system̃τ .

4. BÉZIER EXTRACTION FOR QUADRATIC POWELL-SABIN B-SPLINES

This Section starts with a concise description of Powell-Sabin splines, including notions like Powell-
Sabin refinement, Powell-Sabin points, and Powell-Sabin triangles. For a more in-depth treatment
reference is made to [15].

We consider the parameter domainξ = (ξ, η) for a triangulationT (thick black lines) with
e = 1, 2, . . .E triangles andNv vertices in Figure 4(a). A vertexk of the triangulationT has the
coordinatesV k = (ξk, ηk) in the parameter domain.mk triangles are attached to vertexk and will
be denoted as the moleculeΩk.

Each trianglee of the triangulationT has a barycentric coordinate system withτ = (τ1, τ2, τ3),
see Figure 4(c). The pointsV 1, V 2, V 3, R12, R23, R31 andZ have the following barycentric
coordinates(τ1, τ2, τ3):

V 1 = (1, 0, 0), V 2 = (0, 1, 0), V 3 = (0, 0, 1),

R12 = (λ1, λ2, 0), R23 = (0, µ2, µ3), R31 = (ν1, 0, ν3), Z = (a, b, c).
(24)

Splitting each trianglee of the triangulationT in Figure 4(a) into six mini-triangles (n = 1, 2, . . . , 6)
yields the Powell-Sabin refinementT ∗ (thin black lines). Each mini-trianglen has a barycentric
coordinate system̃τ = (τ̃1, τ̃2, τ̃3) and Bézier ordinatesbr,s,t, cf. Figure 4(d).

For each vertexk, its Powell-Sabin points are the vertexk itself and the midpoints of all edges
of the Powell-Sabin refinementT ∗ containing the vertexk. A Powell-Sabin triangle (shown in red),
which contains all Powell-Sabin points (denoted by green dots) is associated with each vertexk.
The Powell-Sabin triangles are chosen such that they share two edges with the convex hull of the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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8 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

Powell-Sabin points [18, 27]. In this way the solution of an expensive optimisation algorithm is
avoided [15].

Three (j = 1, 2, 3) Powell-Sabin B-splinesN j
k(ξ) are associated to each vertexk, i. e. one for

each corner of the Powell-Sabin triangle of vertexk, and have a support in the moleculeΩk of V k.
For an elaborate demonstration for the derivation of the calculation of the Powell-Sabin B-splines
N

j
k(ξ) reference is made to [15]. Here, we only give a brief outline of the procedure.

A Powell-Sabin B-splineN j
k(ξ) in the parameter domainξ must be defined in each of themk

triangles of the moleculeΩk of vertexk,

N
j
k(ξ) = N

j
k

(
ξ(τ )

)
=

mk∑

ek=1

N
j,ek
k (τ ). (25)

Since each triangle of the moleculeΩk is split into six mini-triangles, the Powell-Sabin B-splines
N

j,ek
k (τ ) over a triangleek can be written as:

N
j,ek
k (τ ) = N

j,ek
k

(
τ (τ̃ )

)
=

6∑

n=1

N
j,ek
k,n (τ̃ ). (26)

For clarity of notation, the indicesekn are omitted in the following. The Powell-Sabin B-splines over
each mini-triangle,N j

k(τ̃ ) in Equation (26), can be expressed using the Bézier ordinatesbr,s,t, see
Figure 4(d),

N
j
k(τ̃ ) =

∑

r+s+t=2

br,s,tB
2
r,s,t(τ̃ ), (27)

whereB2
r,s,t(τ̃ ) denote the Bernstein polynomials of degree two:

B2
r,s,t(τ̃ ) =

2!

r!s!t!
τ̃r1 τ̃

s
2 τ̃

t
3. (28)

In order to determine the Bézier ordinatesbr,s,t in Equation (27), the following properties are
assigned to the Powell-Sabin B-splines: For any vertexl 6= k we have

N
j
k(Vl) = 0,

∂

∂ξ
N

j
k(Vl) = 0,

∂

∂η
N

j
k(Vl) = 0, (29)

and otherwise

N
j
k(Vk) = α

j
k,

∂

∂ξ
N

j
k(Vk) = β

j
k,

∂

∂η
N

j
k(Vk) = γ

j
k (30)

with
3∑

j=1

α
j
k = 1,

3∑

j=1

β
j
k = 0,

3∑

j=1

γ
j
k = 0. (31)

The corners of each Powell-Sabin triangle (red in Figure 4(a)) have the coordinatesQj

k
= (ξjk, η

j
k),

which gives the map from the triangle domainτ to the parameter domainξ for a surfaceSξ(τ ), as
follows

Sξ(τ ) =

Nv∑

k=1

3∑

j=1

N
j
k(τ )Q

j

k
. (32)

For each vertexk with coordinates(ξk, ηk) the parametersαj
k, βj

k andγj
k in Equation (31) are then

obtained by solving:




α1
k α2

k α3
k

β1
k β2

k β3
k

γ1
k γ2

k γ3
k









ξ1k η1k 1
ξ2k η2k 1
ξ3k η3k 1



 =





ξk ηk 1
1 0 0
0 1 0



 . (33)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme



POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KIRCHHOFF-LOVE PLATES 9

α
j

1

L
j

1

λ1L
j

1

0

L̃
j

1

λ1L̃
j

1

aL̃
j

1

ν1L̃
j

1

L′
j

1

ν1L′
j

1

0

0

0

0

0

0

0
0

0

(a) Bézier ordinates for the three
Powell-Sabin B-splinesNj

1
(τ̃ ) corre-

sponding to vertexV1

0
0

λ2L′
j

2

L′
j

2

0
λ2L̃

j

2

bL̃
j

2

0

0

0

α
j

2

L̃
j

2

L
j

2

µ2L̃
j

2

µ2L
j

2

0

00

0

(b) Bézier ordinates for the three
Powell-Sabin B-splinesNj

2
(τ̃ ) corre-

sponding to vertexV2

0
0

0
0

0
0

cL̃
j

3

ν3L̃
j

3

0

ν3L
j

3

0

0

0
µ3L̃

j

3

µ3L′
j

3

L′
j

3

L̃
j

3

L
j

3

α
j

3

(c) Bézier ordinates for the three
Powell-Sabin B-splinesNj

3
(τ̃ ) corre-

sponding to vertexV3

Figure 5. Bézier ordinatesbr,s,t for the six (n = 1, 2, . . . , 6) mini-triangles of the Powell-Sabin B-splines
N

j
1 (τ̃ ), N

j
2 (τ̃ ) andNj

3 (τ̃ ).

This equation follows by combining Equation (30), Equation(31) and Equation (32).
Using Equation (24) and Equation (33), the Bézier ordinatesbr,s,t of the mini-triangles in Figure 5

can be evaluated. The Bézier ordinates corresponding toV1 are given by:

L
j
1 = α

j
1 +

1− λ1

2
β̄
j
1, L′j

1 = α
j
1 +

(1− ν1)

2
γ̄
j
1, L̃

j
1 = α

j
1 +

b

2
β̄
j
1 +

c

2
γ̄
j
1, (34)

β̄
j
1 = β

j
1(ξ2 − ξ1) + γ

j
1(η2 − η1), γ̄

j
1 = β

j
1(ξ3 − ξ1) + γ

j
1(η3 − η1), (35)

while for V2 they read,

L
j
2 = α

j
2 +

1− µ2

2
β̄
j
2, L′j

2 = α
j
2 +

(1− λ2)

2
γ̄
j
2, L̃

j
2 = α

j
2 +

c

2
β̄
j
2 +

a

2
γ̄
j
2, (36)

β̄
j
2 = β

j
2(ξ3 − ξ2) + γ

j
2(η3 − η2), γ̄

j
2 = β

j
2(ξ1 − ξ2) + γ

j
2(η1 − η2) (37)

and forV3 we have:

L
j
3 = α

j
3 +

1− ν3

2
β̄
j
3, L′j

3 = α
j
3 +

(1− µ3)

2
γ̄
j
3, L̃

j
3 = α

j
3 +

a

2
β̄
j
3 +

b

2
γ̄
j
3, (38)

β̄
j
3 = β

j
3(ξ1 − ξ3) + γ

j
3(η1 − η3), γ̄

j
3 = β

j
3(ξ2 − ξ3) + γ

j
3(η2 − η3). (39)

For example, the Powell-Sabin B-splinesN j
k(τ̃ ) in the mini-trianglen = 3 of Figure 4(d) can be

expressed as
















N1
1 (τ̃ )

N2
1 (τ̃ )

N3
1 (τ̃ )

N1
2 (τ̃ )

N2
2 (τ̃ )

N3
2 (τ̃ )

N1
3 (τ̃ )

N2
3 (τ̃ )

N3
3 (τ̃ )
















=


















aL̃1
1 0 0 0 0 0

aL̃2
1 0 0 0 0 0

aL̃3
1 0 0 0 0 0

bL̃1
2 L̃1

2 µ2L̃
1
2 α1

2 L1
2 µ2L

1
2

bL̃2
2 L̃2

2 µ2L̃
2
2 α2

2 L2
2 µ2L

2
2

bL̃3
2 L̃3

2 µ2L̃
3
2 α3

2 L3
2 µ2L

3
2

cL̃1
3 0 µ3L̃

1
3 0 0 µ3L

′1
3

cL̃2
3 0 µ3L̃

2
3 0 0 µ3L

′2
3

cL̃3
3 0 µ3L̃

3
3 0 0 µ3L

′3
3



























B2
200(τ̃ )

B2
110(τ̃ )

B2
101(τ̃ )

B2
020(τ̃ )

B2
011(τ̃ )

B2
002(τ̃ )










, (40)

or in matrix-vector format:
N e

n(τ̃ ) = Ce
nB(τ̃ ), (41)
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10 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

where the Bézier extraction operatorCe
n in Equation (40) contains the Bézier ordinatesbr,s,t for

each Powell-Sabin B-splineN j
k(τ̃ ) in the mini-trianglen = 3 of trianglee from Figure 4(c),(d).

Hence, it is possible to apply the Bézier extraction procedure to Powell-Sabin splines, in a fashion
similar to NURBS and T-splines [20,21].

Non-Uniform Rational Powell-Sabin B-splines (NURPS)R
j
k(τ ) can be computed as follows:

R
j
k(τ ) =

w
j
kN

j
k(τ )

∑Nv

k̂=1

∑3
ĵ=1 w

ĵ

k̂
N

ĵ

k̂
(τ )

(42)

with w
j
k the weights associated with each cornerQj

k
of a Powell-Sabin triangle. A NURPS-surface

S(τ ) in the physical domainx can be expressed by a map from the triangle domainτ with

S(τ ) =

Nv∑

k=1

3∑

j=1

R
j
k(τ )P

j
k (43)

where the control pointsP j
k correspond to eachQj

k
, see also Figure 4(b). In matrix-vector format,

the NURPSRe
n for one mini-trianglen of trianglee is obtained from

Re
n(τ̃ ) = W

e
Ce

n

B(τ̃ )

W be
n(τ̃ )

(44)

with
W be

n(τ̃ ) = (wbe
n)

T
B(τ̃ ), wbe

n = (Ce
n)

T
we, W

e = diag(we) (45)

wherewe is the vector containing the weights of trianglee. The derivatives with respect to
coordinates in the domain of the mini-triangle,τ̃ , read:

∂Re
n(τ̃ )

∂τ̃i
= WeCe

n

∂

∂τ̃i

(
B(τ̃ )

W be
n(τ̃ )

)

= WeCe
n

(

1

W be
n(τ̃ )

∂B(τ̃ )

∂τ̃i
− ∂W be

n(τ̃ )

∂τ̃i

B(τ̃ )
(
W be

n(τ̃ )
)2

)

.

(46)
The derivatives in the physical domainx are subsequently obtained as:

∂Re
n(τ̃ )

∂xe
i

=

2∑

j=1

∂Re
n(τ̃ )

∂τ̃j

∂τ̃j

∂xe
i

(47)

where

∂τ̃j

∂xe
i

=





∂xe

∂τ̃1
∂xe

∂τ̃2

∂ye

∂τ̃1

∂ye

∂τ̃2





−1

= J−1, (48)

with the Jacobian matrixJ of the geometry mapping. To further illustrate the procedure, a Matlab
code snippet is given in Appendix A for the Bézier extraction procedure for NURPS, which
computes the second derivatives in the global coordinate systemx and assembles the stiffness matrix
K and the force vectorf in Equation (23).

It was suggested in [17] to evaluate the integrals for each component of the stiffness matrix in
Equation (23) analytically since the integral of a Powell-Sabin B-splineN j

k(τ̃ ) over a mini-triangle
n with areaAn can be computed as [28]:

∫

Ωn

N
j
k(τ̃ )dτ̃1dτ̃2 =

An

6

∑

r+s+t=2

br,s,t. (49)

Relations for the computation of the product of the derivatives of a Powell-Sabin B-spline can then
be derived accordingly [17]. However, this is computationally more expensive than using the Bézier
extraction procedure.
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5. UNSTRUCTURED QUADRATIC T-SPLINES

This section addresses unstructured T-spline meshes of quadratic degree [29]. An unstructured
T-spline mesh contains points with valence three or more than four. These points are called star,
irregular or extraordinary points. Without special treatment, these meshes are non-standard and only
C0
A-continuous around the extraordinary points. The blendingfunctions of a non-standard T-spline

mesh do not fulfil the partition of unity property [30]. It wasdemonstrated in [31] how this can be
detected utilising the global Bézier extraction operator. Herein, it will be demonstrated how these
meshes can be manipulated such that they are standard (blending functionsN i fulfil the partition of
unity property) andC1

A-continuous around the extraordinary points.
The technique presented here is very similar to that in [11].However, the approach in [11] does

not fulfil the partition of unity property for the blending functionN i in the one-ring neighbourhood
elements of an extraordinary point. Herein it is demonstrated how this deficiency can be repaired.

5.1. The unstructured T-spline mesh

Figure 6 shows an unstructured quadratic T-spline mesh. Fordefinition of the terms anchors, edges
and elements, reference is made to [31].

g

Anchors Edges Elements

Figure 6. Example for an unstructured quadratic T-spline mesh. All non-zero knot intervals are assumed to
be uniform. The two extraordinary points of valence three and five are marked with red. Spoke edges (green)

touch an extraordinary point. Anchors with support in element g (light grey) are marked violet.

Extraordinary points are indicated with a red circle. Spokeedges are marked with green: they
touch an extraordinary point. In order to build the Bézier extraction operator for each purple anchor
that has a support in the light grey element g, the knot intervals of the neighbouring rectangles
(marked orange) for element g are required. Some anchors with support in g do not require all their
individual knot intervals in order to determine their Bézier extraction operator in g. This construction
cannot be applied to the blue elements in the one-ring neighbourhood of the extraordinary points.
These elements are called irregular elements, whereas the other elements are regular elements. For
the irregular elements, generalised Bézier extraction will be utilised. Generalised Bézier extraction
defines the transpose of the Bézier extraction operator,CT

e . The blending functionsNe in an
element of a T-spline mesh can be expressed as a linear combination of the Bernstein polynomials
utilising the Bézier extraction operator

Ne = CeBe, (50)
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12 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

where the vectorBe contains the bivariate Bernstein polynomials. Thea = 1 . . . p+ 1 univariate
Bernstein polynomialsBa

ℓ of orderpℓ are defined over the intervalξ̃ℓ ∈ [−1, 1] by

Ba
ℓ (ξ̃ℓ) =

1

2pℓ

(
pℓ

a− 1

)

(1− ξ̃ℓ)
pℓ−(a−1)(1 + ξ̃ℓ)

a−1. (51)

5.2. Generalised B́ezier extraction

Generalised Bézier extraction yields a relation between Bézier control pointsQ
e

and the control
pointsP e with support in elemente

Q
e
= CT

e P e. (52)

Each quadratic element has nine Bézier control points – oneface pointQf

5
, four edge pointsQe

2
,Qe

4
,

Qe

6
, Qe

8
and four vertex pointsQv

1
, Qv

3
, Qv

7
, Qv

9
as depicted in Figure 7(a). Herein, it is assumed

that all non-zero knot intervals are uniform. The general case for non-uniform knot-intervals is
considered in [11] for the cubic case.

Q
f
5

Qe
4

Qe
6

Qv
1

Qe
2

Qv
3

Qv
7

Qe
8

Qv
9

Q
f
5
= PA

Qe

Qf
a

Q
f
b

Qv

Q
f
k

Q
f
K

Q
f
K−1

Q
f
k+1

Q
f
k+2

(a)

(c) (d)

(b)

Figure 7. (a) The nine Bézier control pointsQ
e

for a Bézier element. (b) The control pointPA corresponds
to the anchor in this element. (c) An edge Bézier control point Qe is written in terms of neighbouring face
Bézier control pointsQf in Equation (54). (d) A vertex Bézier control pointQv is written in terms of

neighbouring face Bézier control pointsQf in Equation (55).

The face pointQf

5
(cf. Figure 7(b)) is determined as

Qf

5
= P A , (53)

whereP A denotes the control point coordinate of anchor A. The edge vertexQe in Figure 7(c) is
computed with

Qe =
1

2
Qf

a
+

1

2
Qf

b
, (54)

and the vertex pointQv of Figure 7(d) is obtained utilising

Qv =

K∑

k=1

1

4
Qf

k
, (55)

where it was assumed thatQv is the vertex ofK elements.
After computingCT

e exploiting the generalised Bézier extraction for the one-ring neighbourhood
elements, the T-spline mesh is non-standard, i. e. the blending functionsN do not fulfil the partition
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of unity property. Also, the Bézier extraction operators are non-square matrices for the elements
in the one-ring neighbourhood of an extraordinary point.Ce has full row rank for the one-ring
neighbourhood elements of an extraordinary point with valence three – the blending functions
are locally linearly independent. For the one-ring neighbourhood elements of an extraordinary
point with valence five,Ce does not have full row rank and therefore, the blending functions are
locally linearly dependent. Along spoke edges there isC0

A-continuity. Furthermore, the one-ring
neighbourhood elements of the extraordinary point (the irregular elements) areC1

A-continuous with
the two-ring neighbourhood elements of the extraordinary points. Next, it will be explained how to
enforceC1

A-continuity along spoke edges while preservingC1
A-continuity between the one- and two-

ring neighbourhood elements. Moreover, the partition of unity property of the blending functionsN
will be fulfilled.

5.3. Modifying the B́ezier extraction operator

This section shows how to modify the coefficients of the Bézier extraction operatorCe in the one-
ring neighbourhood elements of an extraordinary point. In afirst step, the Bézier extraction operator
Ce is elevated from degree two to degree four. This is achieved by utilising the degree elevation
matrixE2,4, cf. [32]. Degree elevating the blending functionsN e in Equation (50) with support in
elemente results in

Ne = C2
eB

2
e = C2

eE
2,3B3

e = C2
eE

2,3
E

3,4B4
e = C2

eE
2,4B4

e = C4
eB

4
e, (56)

where the superscript was added in order to indicate the degree. It can be observed from
Equation (56) that degree elevation does not change the blending functionsNe. Also, degree
elevation does not change local dependencies that may exist, i. e. the row rank ofCe is not affected.
After degree elevation, each blending functionN with support over a Bézier element in the one-ring
neighbourhood has 25 Bézier coefficientscα,β (cf. Figure 8(a))

N(ξ) =

5∑

α=1

5∑

β=1

cα,βBα,β(ξ). (57)

c1,1 c1,2 c1,3 c1,4 c1,5

c2,1 c2,2 c2,3 c2,4 c2,5

c3,1 c3,2 c3,3 c3,4 c3,5

c4,1 c4,2 c4,3 c4,4 c4,5

c5,1 c5,2 c5,3 c5,4 c5,5

(a)

ck
1,1 ck

1,2 ck
1,3 ck

1,4 ck
1,5

ck
2,1 ck

2,2 ck
2,3 ck

2,4 ck
2,5

ck−1

1,2 ck−1

2,2 ck−1

3,2 ck−1

4,2 ck−1

5,2

Nk−1(ξ, η)

Nk(ξ, η)

ξ

η

η

(b)

Figure 8. After degree elevation, a blending function with support in a one-ring neighbourhood element has
25 Bézier coefficientscα,β in each one-ring neighbourhood element. (b) Bézier coefficients along a spoke

edge that are involved in theG1-continuity constraint of Equation (62).

Assume thata=1 . . . A blending functionsNa have a support overat least twoof theb=1 . . . B
one-ring neighbourhood elements andc=1 . . . C blending functionsN c have a support inonly one
one-ring neighbourhood elements. Now, the coefficients of the Bézier extraction operator of all
blending functionsNa andN c have to be perturbed. The initial coefficients of the Bézierextraction
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14 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

operator are denoted withca,bα,β , cc,bα,β and the modified coefficients with̃ca,bα,β , c̃c,bα,β. The following
constrained linear least square problem needs to be solved for each extraordinary point

min
c̃∈ S

‖F c̃− f‖
2
, S =

{

c̃ | ‖G c̃− g‖
2
= min

}

, (58)

with the fairing matrixF, the fairing vectorf , the constraint matrixG and the constraint vector
g. The problem in Equation (58) can be transformed into an unconstrained linear least square
problem [33].

The following constraints are assembled intoF andf in Equation (58)

c̃
a,b
α,β − c̃

a,b
α,β+1 = c

a,b
α,β − c

a,b
α,β+1 for 1≤α≤5, 1≤β≤4, 1≤a≤A, 1≤b≤B,

c̃
a,b
α,β − c̃

a,b
α+1,β = c

a,b
α,β − c

a,b
α+1,β for 1≤α≤4, 1≤β≤5, 1≤a≤A, 1≤b≤B,

c̃
c,b
α,β − c̃

c,b
α+1,β = c

c,b
α,β − c

c,b
α+1,β for 1≤α≤5, 1≤β≤4, 1≤c≤C, 1≤b≤B,

c̃
c,b
α,β − c̃

c,b
α+1,β = c

c,b
α,β − c

c,b
α+1,β for 1≤α≤4, 1≤β≤5, 1≤c≤C, 1≤b≤B.

(59)

The fairing equations in Equation (59) prevent oscillations between neighbouring coefficients of the
Bézier extraction operator when perturbing the coefficientscα,β .

Suppose thatα=1, β=1 marks the Bézier control point at the extraordinary point,see
Figure 8(a). In order to preserveC1

A-continuity between one and two-ring neighbourhood elements,
the constraints

c̃
a,b
α,β = c

a,b
α,β for 1≤α≤5, 4≤β≤5, 1≤a≤A, 1≤b≤B,

c̃
a,b
α,β = c

a,b
α,β for 4≤α≤5, 2≤β≤3, 1≤a≤A, 1≤b≤B

(60)

are assembled intoG andg in Equation (58) for blending functions that are non-zero inat least
two one-ring neighbourhood elements. Blending functions thatare non-zero inonly oneone-ring
neighbourhood element are not allowed to change by enforcing

c̃
c,b
α,β = c

c,b
α,β for 1≤α≤5,1≤β≤5, 1≤c≤C, 1≤b≤B. (61)

In order to getC1
A-continuity along spoke edges (between one-ring neighbourhood elementsk−1

and k in Figure 8(b)) for the blending functionN that is non-zero inat least twoone-ring
neighbourhood elements, theG1-continuity condition (see also [34,35])

f(ξ) = r(ξ)
∂Nk−1(ξ, η)

∂η

∣
∣
∣
∣
η=0

+ s(ξ)
∂Nk(ξ, η)

∂ξ

∣
∣
∣
∣
η=0

+ t(ξ)
∂Nk(ξ, η)

∂η

∣
∣
∣
∣
η=0

= r(ξ)Nk−1
,η (ξ) + s(ξ)Nk

,ξ(ξ) + t(ξ)Nk
,η(ξ) = 0 (62)

can be exploited since it was pointed out in [12] that thisG1-condition yieldsC1
A-continuous

blending functions (see also Section 2.4).
In the following, the notation

p+1
∑

i=1

ciB
p
i (ξ) = 〈c1, c2, . . . , cp+1〉p(ξ) (63)

will be used. The polynomialsr(ξ), s(ξ) andt(ξ) in Equation (62) are taken as

r(ξ) = 1, s(ξ) = 〈ζ, 0, 0〉2(ξ), t(ξ) = 1, (64)

whereζ is computed from

ζ = −2 cos(θ), θ =
2π

B
. (65)
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Using Equations (63) and (64) the three terms in Equation (62) can be reworked as:

r(ξ)Nk−1
,η (ξ) = 4〈c̃k−1

1,2 − c̃k1,1, c̃
k−1
2,2 − c̃k1,2, c̃

k−1
3,2 − c̃k1,3, c̃

k−1
4,2 − c̃k1,4, c̃

k−1
5,2 − c̃k1,5〉4(ξ), (66)

s(ξ)Nk
,ξ(ξ) = 〈ζ, 0, 0〉2(ξ)4〈c̃k1,2 − c̃k1,1, c̃

k
1,3 − c̃k1,2, c̃

k
1,4 − c̃k1,3, c̃

k
1,5 − c̃k1,4〉3(ξ), (67)

t(ξ)Nk
,η(ξ) = 4〈c̃k2,1 − c̃k1,1, c̃

k
2,2 − c̃k1,2, c̃

k
2,3 − c̃k1,3, c̃

k
2,4 − c̃k1,4, c̃

k
2,5 − c̃k1,5〉4(ξ). (68)

Since the term in Equation (67) is quintic, the degree ofNk
,ξ needs to be reduced using the

transformation matrixD3,2 [32]

D3,2 =
(
E2,3

)T
[

E2,3
(
E2,3

)T
]−1

. (69)

Reducing the degree ofNk
,ξ(ξ) in Equation (67) then results in

Nk
,ξ(ξ) = 4〈−19

20
c̃k1,1 +

16

20
c̃k1,2 +

6

20
c̃k1,3 −

4

20
c̃k1,4 +

1

20
c̃k1,5,

5

20
c̃k1,1 − c̃k1,2 + c̃k1,4 −

5

20
c̃k1,5,

− 1

20
c̃k1,1 +

4

20
c̃k1,2 −

6

20
c̃k1,3 −

16

20
c̃k1,4 +

19

20
c̃k1,5〉2(ξ), (70)

which, for Equation (67), gives:

s(ξ)Nk
,ξ(ξ) = 4ζ〈−19

20
c̃k1,1 +

16

20
c̃k1,2 +

6

20
c̃k1,3 −

4

20
c̃k1,4 +

1

20
c̃k1,5,

5

40
c̃k1,1 −

1

2
c̃k1,2 +

1

2
c̃k1,4 −

5

40
c̃k1,5,

− 1

120
c̃k1,1 +

4

120
c̃k1,2 −

6

120
c̃k1,3 −

16

120
c̃k1,4 +

19

120
c̃k1,5, 0, 0〉4(ξ). (71)

In order to satisfy Equation (62), Equations (66), (68) and (71) are exploited to make vanish the
following terms:

c̃
k−1
1,2 − c̃

k
1,1 + ζ

(

−
19

20
c̃
k
1,1 +

16

20
c̃
k
1,2 +

6

20
c̃
k
1,3 −

4

20
c̃
k
1,4 +

1

20
c̃
k
1,5

)

+ c̃
k
2,1 − c̃

k
1,1 = 0, (72)

4
(

c̃
k−1
2,2 − c̃

k
1,2

)

+ ζ

(
1

2
c̃
k
1,1 − 2c̃k1,2 + 2c̃k1,4 −

1

2
c̃
k
1,5

)

+ 4
(

c̃
k
2,2 − c̃

k
1,2

)

= 0, (73)

4
(

c̃
k−1
3,2 − c̃

k
1,3

)

+ ζ

(

−
1

30
c̃
k
1,1 +

4

30
c̃
k
1,2 −

6

30
c̃
k
1,3 −

16

30
c̃
k
1,4 +

19

30
c̃
k
1,5

)

+ 4
(

c̃
k
2,3 − c̃

k
1,3

)

= 0, (74)

c̃
k−1
4,2 − c̃

k
1,4 + c̃

k
2,4 − c̃

k
1,4 = 0, (75)

c̃
k−1
5,2 − c̃

k
1,5 + c̃

k
2,5 − c̃

k
1,5 = 0. (76)

Moreover, the fourth derivative off(ξ) has to vanish. This constraint results in

c̃k1,1 − 4c̃k1,2 + 6c̃k1,3 − 4c̃k1,4 + c̃k1,5 = 0. (77)

Equations (72) – (77) need to be assembled inG andg along all spoke edges for all blending
functions that are non-zero inat least twoone-ring neighbourhood elements.

In order to fulfil the partition of unity property [31], the following equation must be satisfied for
all blending function that are non-zero inat least oneone-ring neighbourhood element

A∑

a=1

c̃
a,b
α,β +

C∑

c=1

c̃
c,b
α,β = 1

{
for 1 ≤ α ≤ 3, 1 ≤ β ≤ 3
in all one-ring neighbourhood elementsb = 1 . . . B.

(78)

Computing the term
‖G c̃− g‖

2
(79)
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16 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

after solving Equation (58) results in a computed zero (i.e.within machine precision), so that all the
imposed constraints are satisfied.

Upon solution of the constrained linear least square problem in Equation (58), the support of
the blending functions that are non-zero intwo one-ring neighbourhood elements has changed, see
Figure 9.

Anchors Edges Elements

(a)

Anchors Edges Elements

(b)

Figure 9. Modifying the Bézier coefficientscα,β in the one-ring neighbourhood elements of an extraordinary
point (red) results in a modified support of blending functions N that are non-zero intwo one-ring
neighbourhood elements after generalised Bézier extraction: green marks the support of the two blue
blending functions (a) before and (b) after solving the constrained least square problem in Equation (58).

The Bézier extraction operatorsCe for the one-ring neighbourhood elements of an extraordinary
point are not square matrices, i. e. hierarchical refinement[31] or Bézier projection [32] are
not applicable. For the one-ring neighbourhood elements ofthe extraordinary point with valence
three, the Bézier extraction operatorCe has full row rank – the blending functionsN are locally
linearly independent. The blending functionsN are locally linearly dependent for the one-ring
neighbourhood elements of the extraordinary point with valence five sinceCe does not have full
row rank.

Figures 10 and 11 show a blending functionN and its first derivativesN,x andN,y in the physical
domain before and after modifying the Bézier coefficientscα,β . It can be seen thatN,x andN,y

are continuous after smoothing. Thus, the blending functions N are C1
A-continuous. Modifying

the Bézier coefficientscα,β for the cubic case such that the unstructured T-spline mesh fulfils
the partition of unity property for the blending functionsN and isC1

A-continuous around the
extraordinary points has been considered in [29].

If a T-spline mesh does not fulfil the partition of unity property it is non-analysis-suitable
according to [36]. However, analysis can also be performed with non-analysis-suitable T-spline
meshes, see also the discussion of the term “analysis-suitable” in [31]. For instance, the unstructured
T-spline meshes utilised in [37–45] are non-analysis-suitable T-spline meshes since the blending
functions do not fulfil the partition of unity property in theone-ring neighbourhood elements of an
extraordinary point.

Furthermore, it was concluded in [46] that the unstructuredT-spline mesh in [42] is an analysis-
suitable T-spline. Unfortunately, it was not taken into account in [46] that the blending functions of
an analysis-suitable T-spline have to fulfil the partition of unity property which is not the case for
the unstructured T-spline meshes in [42]. This shows that itmay not be possible to conclude from
the topology of an unstructured T-spline mesh whether it fulfils the partition of unity property or not
and that instead, the Bézier extraction operator should beexploited as in [31].
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(a) N (b) N,x (c) N,y

(d) N (e) N,x (f) N,y

Figure 10. Contour plots of a quadratic blending functionN and its derivativesN,x, N,y in the physical
domain before (a)-(c) and after (d)-(f) smoothing. The blending function corresponds to an anchor that is

located in the one-ring neighbourhood of the extraordinarypoint of valence five.

(a) N (b) N,x (c) N,y

(d) N (e) N,x (f) N,y

Figure 11. Contour plots of a quadratic blending functionN and its derivativesN,x, N,y in the physical
domain before (a)-(c) and after (d)-(f) smoothing. The blending function corresponds to an anchor that is

located in the two-ring neighbourhood of the extraordinarypoint of valence five.

6. THE REPRESENTATION OF A DISC WITH NURBS, T-SPLINES, NURBS-TO-NURPS
AND POWELL-SABIN B-SPLINES

In Section 7, an analysis will be carried out for a Kirchhoff-Love plate with a circular geometry.
Therefore, we now create a number of discretisations for this geometry using NURBS, NURBS-to-
NURPS, unstructured T-splines and Powell-Sabin B-splines. The first two methods can representCopyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme



18 STEFAN MAY, JULIEN VIGNOLLET AND RENÉ DE BORST

a circular boundary exactly, while the unstructured T-spline and Powell-Sabin B-spline mesh only
approximate the circle.

6.1. Representation of a disc with NURBS

6.1.1. Single patch
An area with a circular boundary can be created with a single quadratic NURBS patch (or one
element) using nine control points, see Figure 12(a). The isoparametric lines indicate where
singularities blue (i. e. the determinant of the Jacobian matrix J in Equation (48) vanishes) are
introduced: at control points one, three, seven and nine, see also [47]. Uniformh-refinement will be
applied for the convergence study in Section 7.

1

2 3

4

5

6

7 8

9

Control points

Element boundaries

Isoparametric lines

(a)

1=9

2 3 4

5

678

10=18

11 12 13

14

151617

19-27

Control points

Element boundaries

Isoparametric lines

C
0
A

-continuity lines

(b)

Figure 12. Representation of a disc using NURBS with (a) one single quadratic element / patch and (b) a
polar parameterisation using four patches.

6.1.2. Polar parameterisation
Another possibility to construct a circle is by a polar parameterisation with 27 control points that
uses four NURBS patches, Figure 12(b). This results in a singular / degenerated point in the centre
where the determinant of the Jacobian matrixJ in Equation (48) vanishes. Also, fourC0

A-continuity
lines (orange) are introduced. As for the single NURBS-patch from the previous section, uniform
h-refinement will be applied for the convergence study in Section 7.h-refinement does not change
the number ofC0

A-continuity lines.
The bending strip method proposed in [10] will be employed inSection 7 at theseC0

A-continuity
lines. The bending strip method adds a stiffness matrix of the form

KBS =

∫

Ω

BTQTDBS QBw dxdy (80)

to Equation (23) at the interfaces between patches in order to regainC1
A-continuity in an approximate

sense. In Equation (80)

DBS =
h3

12





EBS 0 0
0 0 0
0 0 0



 (81)
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represents the penalty matrix with the penalty bending stiffnessEBS and

Q =





n1 n2 0
−n2 n1 0
0 0 1



 (82)

is the rotation matrix with the normal vectorn of the bending strip. The rotation matrixQ aligns
the bending matrixDBS with the bending direction.

6.2. Representation of a disc using unstructured T-splines

The approach from Section 5 generatesC1
A-continuous blending functions that fulfil the partition of

unity property for an unstructured quadratic T-spline meshwith extraordinary points. The T-spline
mesh for the circular disc is shown for the index domain in Figure 13(a).

Anchors Edges Elements

(a)

Control points

Element boundaries

(b)

Figure 13. An unstructured quadratic T-spline mesh in (a) the index domain and (b) in the physical domain.
(a) Extraordinary points are marked red, spoke edges green and one-ring neighbourhood elements of an
extraordinary point blue. (b) The T-spline mesh in the physical domain only approximates the circular

boundary.

A circular geometry cannot be represented exactly without double knots, see [48]. Hence, the
unstructured quadratic T-spline mesh can only approximatethe circular geometry since it isC1

A-
continuous in the entire domain. ThenB control points on the boundaryP i

B are determined by
solving

nB∑

i=1

N i(ξ̄k)P
i
B = SCircle(ξ̄k) for k=1 . . . nB. (83)

ξ̄ is the coordinate along the circle with0≤ ξ̄≤360, andSCircle(ξ̄k) the curve representing the circle.
Along the boundary arenB elements. The centre of each boundary element is located at

ξ̄k =
360

nB
k +

180

nB
for k=1 . . . nB. (84)
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Substitutingξ̄k from Equation (84) into Equation (83) results in the following system










6
8

1
8 0 0 0 . . . 0 1

8
1
8

6
8

1
8 0 0 . . . 0 0

0 1
8

6
8

1
8 0 . . . 0 0

...
...

...
...

...
.. .

...
...

1
8 0 0 0 0 . . . 1

8
6
8




















P 1
B

T

P 2
B

T

P 3
B

T

...
P nB

B
T











=










ST
Circle(ξ̄1)

ST
Circle(ξ̄2)

ST
Circle(ξ̄3)

...
ST

Circle(ξ̄nB
)










, (85)

which can be solved for the control points on the boundaryP i
B. The values in the matrix of

Equation (85) stem from




Nk−1(ξk)
Nk(ξk)

Nk+1(ξk)



 =





1
2 0 0
1
2 1 1

2
0 0 1

2









B1(ξk)
B2(ξk)
B3(ξk)



 =





1
2 0 0
1
2 1 1

2
0 0 1

2









1
4
2
4
1
4



 =





1
8
6
8
1
8



 . (86)

The location of the control points in the interior of the T-spline mesh in Figure 13 is determined by
solving

∂

∂ξβ

(
∂xα

∂ξβ
+

∂xβ

∂ξα

)

= 0 (87)

in the sub-parameter domainξα, while the location of the control points on the boundaryP i
B of the

disc is prescribed. The resulting T-spline mesh in the physical domain is depicted in Figure 13(b).
Two T-spline meshes with a different refinement level are notnested – for each refinement level,
Equations (85) and (87) are solved for the determination of the control points. As already discussed
in Section 5, the Bézier extraction operatorsCe for the elements in the one-ring neighbourhood of an
extraordinary point are not square matrices. Hence, these elements cannot be refined hierarchically
as in [31] and the Bézier projection procedure [32] cannot be applied since the inverse of Bézier
extraction operator – the reconstruction operator – is required.

6.3. Representation of a disc using the NURBS-to-NURPS methodology

We now transform the single NURBS patch of Section 6.1.1 intoa NURPS mesh (NURBS-to-
NURPS) following [16]. The boundary of the NURBS-to-NURPS matches exactly the boundary
defined by the single NURBS patch, see Figure 14. In order to represent the circular boundary
exactly, the Powell-Sabin triangles that correspond to thecornersξ = (0, 0); (0, 1); (1, 0); (1, 1) in
the parameter domain need to be degenerated into a line in thephysical domainx (dashed lines in
Figure 14(c) and Figure 14(d)). It is noted that the NURBS-to-NURPS approach is based on a single
NURBS patch, and that a method for transforming multiple NURBS patches into a NURPS has so
far not been proposed.

6.4. Representation of a disc with Powell-Sabin B-splines

A linearC0
A finite element triangulationT can be transformed into aC1

A Powell-Sabin B-spline mesh
T ∗, see [14,15]. This corresponds to a NURPS mesh with the location of the control pointsP j

i = Qj

i

and for all weightswj
i = 1 in Equation (43), i. e. the parametric and the physical domains,ξ andx,

respectively, are identical. For this case, the circular boundary of the disc is only approximated. The
Powell-Sabin triangles on the boundary are constrained in such a way that one corner of the Powell-
Sabin triangle is always equivalent to the vertex coordinate, see Figure 15. Upon mesh refinement,
the Powell-Sabin triangles on the boundary progressively deteriorate into lines, see Figure 15(b).

7. NUMERICAL RESULTS

In this section the circular Kirchhoff-Love plate of Figure16 is considered for two different
boundary conditions: simply supported and clamped. The parameters areE = 2.1× 105MPa,
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0 0.2 0.4 0.6 0.8 1
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η

Triangulation T PS refinement T ∗

PS points PS triangles

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

η

Triangulation T PS refinement T ∗

PS points PS triangles

(b)

Control points

Element boundaries

(c)

Control points

Element boundaries

(d)

Isoparametric lines NURBS

Isoparametric lines NURBS-to-NURPS

(e)

Isoparametric lines NURBS

Isoparametric lines NURBS-to-NURPS

(f)

Figure 14. Generation of a NURBS-to-NURPS mesh from a singleNURBS patch. From the left to the right
column, the triangulation in the NURBS patch is refined. (a) and (b) show the triangulationT and Powell-
Sabin refinementT ∗ in the parameter domainξ. (c) and (d) show the NURBS-to-NURPS mesh in the
physical domainx; dashed lines connect the control points of the corners of the Powell-Sabin triangles. (e)
and (f) show isoparametric lines for the NURBS and the NURBS-to-NURPS meshes in the physical domain
x. Upon refinement, the NURBS-to-NURPS representation converges to the NURBS parameterisation.
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Triangulation T PS refinement T ∗

PS points PS triangles

(a)

Triangulation T PS refinement T ∗

PS points PS triangles

(b)

Figure 15. Approximation of a circle using Powell-Sabin B-splines for two different levels of refinement.
The Powell-Sabin triangles on the boundary are constrainedin such a way that one corner of each Powell-

Sabin triangle is equivalent to the vertex.

w
r

h

p0

a

(a)

w
r

h

p0

a

(b)

Figure 16. Computational set-up for (a) the simply supported and (b) the clamped circular Kirchhoff-Love
plate.

ν = 0.3, p0 = 0.16MPa,a = 250mm andh = 10mm. The analytical solutionswex for both cases
can be found in [25]. In the following, the results for the single NURBS patch from Section 6.1.1
will be plotted in all convergence plots for comparison. TheL2 error norm is computed from

wL2
=

√
∫

Ω
(w − wex)

2
dxdy

√∫

Ω
w2

ex dxdy
. (88)

The convergence rate for the fourth order partial differential equation in Equation (13) is equal to
two for quadratic basis functions (p = 2) according to [49],

wL2
≤ Chmin(p+1,2p−2) = Ch2 (89)

with the mesh sizeh and a constantC. In order to transform Equation (89) onto the degrees of
freedom DOF, the relation

h =
p+ 1√
DOF

(90)

is used so that we obtain
wL2

≤ C̃ DOF−1. (91)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
Prepared usingnmeauth.cls DOI: 10.1002/nme



POWELL-SABIN B-SPLINES AND UNSTRUCTURED T-SPLINES FOR KIRCHHOFF-LOVE PLATES 23

For the NURBS and T-spline meshes, the deflectionw for the outer control points is set to zero
for the simply supported case, while the deflectionw of the two outer rows of control points is set to
zero for the clamped case. For the Powell-Sabin B-splines and NURBS-to-NURPS, the deflection
w of a control point associated to a vertex on the boundary is set to zero for the simply supported
case ifαj

k > 0 holds in Equation (30)(a). For the clampled case, the deflectionw of all three control
points which are associated to a vertex that lies on the boundary is set to zero.
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Figure 17. Convergence plots for the single NURBS patch and for the polar NURBS parameterisation using
four NURBS patches for (a) the simply supported and (b) the clamped boundary conditions.

Figure 17 shows the error in theL2-norm when the circle is represented with four NURBS patches
and a polar parameterisation with a singular point in the centre as in Section 6.1.2. For this (G1, C0

A)-
construction, the bending strip method has been applied along theC0

A-continuity lines for different
values of the penalty stiffnessEBS . The results do not converge well for the finer meshes. Moreover,
the value of the penalty stiffnessEBS for which the lowest errorwL2

is obtained, is different for
both boundary conditions.
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Figure 18. Convergence plots for the single NURBS patch and the T-spline mesh for (a) the simply supported
and (b) the clamped boundary conditions.

Figure 18 gives the results upon mesh refinement for the unstructured T-spline mesh from
Section 6.2, again together with the results that stem from the single NURBS patch for comparison.
In contrast to the previous (G1, C0

A)-construction using the bending strip method, a constant
convergence rate is observed for the simply supported and clamped case for the unstructured T-
spline mesh. The errorwL2

for the unstructured T-spline mesh is larger than the errorwL2
for

the single NURBS patch. A convergence study was also carriedout for an unstructured T-spline
mesh without theG1-construction that yieldsC1

A-continuous blending functions for the one-ring
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neighbourhood elements, i. e. a T-spline mesh that is onlyC0
A-continuous along spoke edges and

non-standard. This T-spline mesh gives almost identical results for the errorwL2
and the results

are not plotted in Figure 18 since they are not distinguishable from the error for standard T-spline
meshes withC1

A-continuity along spoke edges.
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Figure 19. Convergence plots for the single NURBS patch, theNURBS-to-NURPS approach and the Powell-
Sabin B-splines for (a) the simply supported and (b) the clamped boundary conditions.

Finally, the results for the NURBS-to-NURPS configuration and for the standard Powell-Sabin
B-spline computations are given in Figure 19. Unexpectedly, the Powell-Sabin B-spline mesh,
which onlyapproximatesthe geometry, gives the lowest errorwL2

in case of the simply supported
boundary conditions, even lower than the single NURBS patch. This is not the case for the clamped
boundary conditions, but also then the standard Powell-Sabin B-spline mesh, which approximates
the geometry, gives results that are superior to those from the NURBS-to-NURPS. A possible
explanation is that the effect of the distorted elements (degenerated Powell-Sabin triangles), which
are introduced by the NURBS-to-NURPS approach, is not compensated by the improved (exact)
capturing of the boundary.

8. CONCLUDING REMARKS

In this paper a method has been developed to solve boundary value problems that stem from
Kirchhoff-Love plate theory using quadratic Powell-SabinB-splines. By virtue of the fact that these
interpolation functions areC1

A-continuous, the resulting fourth-order partial differential equation
can be solved properly. Numerical efficiency is achieved by exploiting Bézier extraction, similar
to procedures that have been developed for NURBS and T-splines [20, 21]. Further, the Bézier
coefficients in an unstructured quadratic T-spline meshes have been modified such that the resulting
mesh isC1

A-continuous in the entire domain and fulfils the partition ofunity property.
Quadratic Powell-Sabin B-splines have a disadvantage compared to NURBS as the geometry is

generally not captured exactly. Conversely, the fact that they areC1
A-continuous everywhere avoids

using the bending strip method [10] for joined NURBS patches. Furthermore, using the Powell-
Sabin technique, aC1

A-continuous triangulations can be created from arbitrary discretisation as a
pre-processing step and is simpler than having to deal with several NURBS patches or complex
T-spline technology.

In a first assessment of the advantages and drawbacks of quadratic Powell-Sabin B-splines
compared to NURBS and T-splines, a circular Kirchhoff-Loveplate has been considered. Different
representations of the disc have been examined, including asingle NURBS patch, a polar
parameterisation consisting of four joined NURBS patches,a T-spline mesh with extraordinary
points, a NURBS-to-NURPS configuration, and Powell-Sabin B-splines. The numerical results
show that the use of the bending strip method can impair convergence when the discretisation
is refined. In all cases the single NURBS patch performed better than the NURBS patches or
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the T-splines. The Powell-Sabin B-spline mesh performed almost as well as the single NURBS
patch in the calculations for the clamped boundary conditions, and better than the single NURBS
patch for the case with simply supported boundary conditions. For both cases the Powell-Sabin
splines yielded more accurate results than the NURBS-to-NURPS approach. This observation
comes somewhat at a surprise, since the geometry of the boundary isapproximatedin the Powell-
Sabin B-spline mesh. The explanation may be that the inability of Powell-Sabin B-splines to capture
the boundary exactly is more than off-set by the loss of accuracy that stems for the badly shaped
triangles in the NURBS-to-NURPS discretisations.

A. CODE SNIPPET FOR THE B́EZIER EXTRACTION PROCEDURE FOR NURPS

Algorithm 1 gives the Bézier extraction procedure in a Matlab code snippet for the evaluation of the
stiffness matrixK and the force vectorf in Equation (23).

Input : ControlPts, Weights, Bézier extraction operator COperator for all mini-triangles,
Connectivity Conn, Number of Gauss points ngauss
Output : Stiffness matrix K, force vector f

% get the values of the Bernstein polynomials and their derivatives at the GPs of the barycentric coordinate system
τ̃

for i = 1 : ngauss do
[B(:,i), dBdt1(:,i), dBdt2(:,i), d2Bdt1(:,i), d2Bdt2(:,i), d2Bdt1dt2(:,i),] =
f d1Bernstein(tildetau1(i),tildetau2(i));

end
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47. Schmidt R, Kiendl J, Bletzinger KU, Wüchner R. Realization of an integrated structural design process: analysis-

suitable geometric modelling and isogeometric analysis.Computing and Visualization in Science2010;13(7):315–
330.

48. Piegl L, Tiller W. A menagerie of rational B-spline circles. IEEE Computer Graphics and Applications1989;
9(5):48–56.
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K = zeros(NoControlPts,NoControlPts);
f = zeros(NoControlPts,1);
% element loop (loop over triangles of triangulationT )
for e = 1 : NoElements do

% connectivity for this element
sctr = Conn(e,:);
elco = ControlPts(sctr,1:2);
We = diag(Weights(sctr));
we = Weights(sctr);
Ke = zeros(length(sctr),length(sctr));
fe = zeros(length(sctr),1);
% loop over mini-triangles of triangulationT ∗

for n = 1 : 6 do
% Bézier extraction operator for this mini-triangle
Cen = COperator{e,n};
wb = Cen’*we;
% loop over Gauss points
for i = 1 : ngauss do

Wb = wb’*B(:,i);
dWbdt1 = wb’*dBdt1(:,i);
dWbdt2 = wb’*dBdt2(:,i);
d2Wbdt1 = wb’*d2Bdt1;
d2Wbdt2 = wb’*d2Bdt2;
d2Wbdt1dt2 = wb’*d2Bdt1dt2;

R = We*Cen*B/Wb;
dRdt1 = We*Cen*(dBdt1/Wb - B/Wb∧2*dWbdt1);
dRdt2 = We*Cen*(dBdt2/Wb - B/Wb∧2*dWbdt2);
d2Rdt1 = We*Cen*(d2Bdt1/Wb - 2*dBdt1/Wb∧2*dWbdt1 + 2*B/Wb∧3*dWbdt1∧2 -
B/Wb∧2*d2Wbdt1);
d2Rdt2 = We*Cen*(d2Bdt2/Wb - 2*dBdt2/Wb∧2*dWbdt2 + 2*B/Wb∧3*dWbdt2∧2 -
B/Wb∧2*d2Wbdt2);
d2Rdt1dt2= We*Cen*(d2Bdt1dt2/Wb - dBdt2*dWbdt1/Wb∧2 - dBdt1*dWbdt2/Wb∧2 -
B*d2Wbdt1dt2/Wb∧2 + 2*B*dWbdt2*dWbdt1/Wb∧3);

dxdt1 = elco(:,1)’*dRdt1;
dydt1 = elco(:,2)’*dRdt1;
dxdt2 = elco(:,1)’*dRdt2;
dydt2 = elco(:,2)’*dRdt2;
d2xdt1 = elco(:,1)’*d2Rdt1;
d2ydt1 = elco(:,2)’*d2Rdt1;
d2xdt2 = elco(:,1)’*d2Rdt2;
d2ydt2 = elco(:,2)’*d2Rdt2;
d2xdt1dt2 = elco(:,1)’*d2Rdt1dt2;
d2ydt1dt2 = elco(:,2)’*d2Rdt1dt2;

jacob = [dxdt1 dxdt2;dydt1 dydt2];
detJelem = det(jacob);
invJacob = inv(jacob);
dRdx = [dRdt1 dRdt2] * invJacob;

d2Rdt1t2 = [d2Rdt1’; d2Rdt2’; d2Rdt1dt2’];
d2xydt1t2 = [d2xdt1 d2ydt1; d2xdt2 d2ydt2; d2xdt1dt2 d2ydt1dt2];
dxydt1t2 = [ dxdt1*dxdt1 dydt1*dydt1 2*dxdt1*dydt1;

dxdt2*dxdt2 dydt2*dydt2 2*dxdt2*dydt2;
dxdt1*dxdt2 dydt1*dydt2 dxdt1*dydt2 + dxdt2*dydt1];

d2Rdx = dxydt1t2\(d2Rdt1t2 - d2xydt1t2*dRdx’);

d2Rdx2(1,:) = d2Rdx(1,:);
d2Rdy2(1,:) = d2Rdx(2,:);
d2Rdxdy(1,:)= d2Rdx(3,:);

Be = [d2Rdx2; d2Rdy2; 2*d2Rdxdy];
Ke = Ke + 1/2*w(i)*(Be’*D*Be)*detJelem;
fe = fe + 1/2*w(i)*(R’*p0)*detJelem;

end
end
K(sctr,sctr) = K(sctr,sctr) + Ke;
f(sctr,1) = f(sctr,1) + fe;

end

Algorithm 1 : Algorithm for the Bézier extraction procedure for NURPS for the calculation of
the stiffness matrix and the force vector in Equation (23).
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