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Abstract—In this paper, the authors show that structured social
media data can act as an accurate predictor for wireless data
demand patterns at a high spatial-temporal resolution. A case-
study is performed on Greater London covering a 5000km2 area.
The data used includes over 0.6 million geo-tagged Twitter data,
over 1 million mobile phone data demand records, and UK census
data. The analysis shows that social media activity (Tweets/s n)
can accurately predict the long-term traffic demand for both the
uplink and downlink channels. The relationship between social
media activity and traffic demand obeys a power law and the
model explains for over 71-79% of the variance in real traffic
demand. This is a significant improvement over existing methods
of long-term traffic prediction such as census population data
(R2=0.57). The authors also show that social media data can
also forward predict short-term traffic demand for up to 2 hours
on the same day and for the same time in the following 2-3 days.

I. INTRODUCTION

Over the past few years, large volumes of data has been
transforming businesses to deliver higher precision and more
personalised services. Fine-grain traffic data can transform the
business model of cellular network operators by enabling the
deployment of small-cells [1]. Historically, Call Detail Record
(CDR) based research, has yielded useful macroscopic statis-
tical models on the spatial-temporal pattern of traffic demand.
For example: the number of active users in a BS is ∼ Pois(.)
distributed and the 3G traffic demand per user session is
∼ Log-N(.) distributed [2]–[4]. As operators seek to deploy
small-cells to efficiently scale the overall network capacity and
target traffic hotspots or signal blind-spots, there is a need to
move from macroscopic traffic models to microscopic traffic
modeling.

Small-cell deployment needs to consider a number of im-
portant parameters [5], [6]: 1) high resolution traffic demand
data over a small coverage radius (10-25m), 2) interference
with adjacent cells, and 3) high resolution signal propagation
modeling that is sensitive to building architecture and materi-
als. In this paper, we focus on addressing challenge 1), which
has received relatively little attention, but is crucial to the
economic feasibility of the small-cell business. Traditionally,
traffic is measured using CDR data, but as CDR is typically
aggregated over the relatively large coverage area of macro
Base Stations (BSs). Even with cooperative localization and
antenna information, the accuracy is not sufficient for small
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Fig. 1: Twitter data in 5000km2 area centred on London: (a)
0.4 million geo-tagged data, (b) 0.6 million at ward level.

cell deployment and the BS data is operator-specific. Alterna-
tive methods that are operator-neutral have been prototyped
in recent years include using mobile apps to mine device
data usage [7]. However, both of these methods require large-
scale participation from smartphone users, which is difficult
to achieve without financial incentives.

On the other hand, large volumes of real time online social
network (OSN) data can provide network operators with an
opportunity to analyze and combine into existing cell planning
and operational practices. The advantage of using social media
data over operators own data are as follows: 1) it can discover
the overall traffic demand across all wireless networks (RATs)
and operators (i.e., the whole market, as opposed to its own),
2) it can uncover textual data about how people feel about
various aspects of service (not analysed in this paper), and 3)
it provides updated data demand: current base stations were
deployed by the operator many years ago, and new data trends
will have emerged due to changes in the city.

To the best of our knowledge, mapping traffic patterns using
OSN data has not been studied in academia (see industrial
progress [8]) and the closest example is using OSN data to
infer channel occupancy in cognitive radio [9] and customer
complaints [10], [11]. In this paper, the authors demonstrate
that structured OSN data can act as a superior predictor for
long-term and short-term data demand. The paper is organised
as follows. In Section II, the authors briefly explain the data
sets and analyze the correlation between them. In Section
III, the authors demonstrate the ability for Twitter data to
predict long-term traffic data and also forward predict short-
term traffic demand. Furthermore, the authors show that the
operator- and technology-neutral short-term peak demand can
be accurately predicted using long-term statistical parameters.
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II. DATA SETS AND BASIC CORRELATIONS

A. Data Sets and Metrics

In this particular paper, the authors utilize four data sets:
1) Structured Social Media Data: 0.6 million geo-tagged

Tweets purchased from Twitter over a period of 2 weeks
(time resolution in seconds) for the Greater London and
surrounding suburbs area (40km radius from centre of
London). An example of the Twitter data is mapped in
Fig. 1a with ward level aggregate in Fig. 1b.

2) 3G Mobile Traffic Data: 1.2 million mobile phone
usage records - Uplink (UL) and downlink (DL) usage,
data is aggregated to the ward level. The 3G packet-
switched data traffic load (demand) is obtained from
the core network over a period of 2 weeks, the time
resolution of the data is on a minute basis.

3) 3G Base Station Data: BS location data for an operator.
4) Registered Population Data: ward population and ge-

ographical data from the 2011 UK census [12]. The
data includes both residential (number of people per
household) and business workforce data (number of
employees per company).

In order to compare between data sets, the coefficient of
determination R2 is used. It is a number that indicates how
well the statistical regression model fits the data, or in other
words: the percentage of variance explained by the model. For
a data vector y = [y1, y2, ...yK ] (with mean y) and a predicted
data vector using the regression model ŷ, the residue vector
is defined as e = y − ŷ. The coefficient of determination R2

is defined as R2 ≡ 1 −
∑

k e2k∑
k(yk−y)2 . Adjusted R2 is used in

this paper to take into account of additional fit parameters P ,
where adjusted R2 = 1− (1−R2) K−1

K−P−1 .

B. Correlations for Existing Data

The population data of residents and businesses (see Fig. 2a)
is widely used in traditional cell planning and spectrum pur-
chases to both gauge the number of potential subscribers and
estimate the long-term traffic demand. The data is an important
input to deciding where BSs are deployed (see Fig. 2b). The
paper first examines the correlation between macro BSs with
existing registered population data from the UK census in
order to establish a baseline. Fig. 2c shows a scatter plot of the
spatial correlation of population density versus BS density in
all the London wards. The regression result shows that there
is a weak spatial correlation (adjusted coefficient of determi-
nation, R2 = 0.24), indicating that other factors such as the
number of commuters/tourists, historical mobile usage levels,
and the local signal propagation account for the remaining
76% of the variance in BS deployment densities. Using the 3G
traffic data, Fig. 2d shows a scatter plot of the spatial correla-
tion between 3G traffic load (demand) versus both population
and BS density in London wards. The results show that there
is weak spatial correlation (adjusted R2 = 0.29) between the
density of BSs and the 3G traffic demand, and an adequate
spatial correlation (adjusted R2 = 0.57) between the census
population data and the 3G traffic demand. We compare outlier
wards to gain better understanding on why the traffic data

(a)	Population	Density (b)	Base	Station	Density

(c)

(d)

Fig. 2: Normalised density in London Wards of (a) population
density, (b) Base Station (BS) density, and scatter plots of: (c)
population and BS density, and (d) 3G traffic load (Demand)
vs. population and BS density.

doesn’t correlate well with the BS density (c) and population
density (d). We construct a rank of the densities and compare
the rank difference. We discover one particular ward (outlier
wards) that has the largest rank difference between traffic and
both BS density and population density: Marylebone High
Street. The area is host to a number of major commercial
streets (bounded by Oxford Street in the south) and tourist
attractions (Sherlock Holmes and Madame Tussauds to the
north). The traffic demand is ranked one of the highest, and
yet both the working and residential population (5th lowest)
and BS density are of the lowest. This indicates that existing
macro BSs are not well deployed to meet the current traffic
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Fig. 3: Spatial Correlation of average 3G Traffic Load (De-
mand) vs. Number of Tweets.

patterns, and static population census data alone cannot act
as an accurate predictor for both the long-term traffic demand
or the short-term traffic temporal patterns. In the following
sections, the authors will examine how Twitter data can be
used to provide a better estimate for long- and short-term
traffic demand.

III. TRAFFIC DEMAND ESTIMATION USING TWITTER

A. Long-Term Spatial Traffic Demand Estimation

One of the key metrics that drive small cell deployment
is the expected traffic load (demand) in its small coverage
area. For deployment of small cells, the short-term temporal
variation of the traffic demand is of less interest than the
long-term spatial variation. In order to obtain high spatial
resolution data, the authors plot the spatial traffic demand
pattern against the Twitter activity intensity over the Greater
London area. The hypothesis is that Twitter activity level can
be used as a proxy for estimating the real wireless traffic
demand in both the UL and DL channels. There has already
been studies which show that the number of Tweets is highly
correlated with the number of people in confined spaces (i.e.,
a stadium or an airport) [13]. Therefore, the authors in this
paper go a step further and infer the traffic demand directly.
The data available for analysis from Twitter records only UL
Tweets, which consumes negligible bandwidth. Therefore, it
is not immediately obvious on why small volumes of UL data
should be representative of overall UL and DL data demand,
especially given the variety of multimedia and social media
applications. Yet, the authors hypothesize that Twitter activity
is closely related to other multimedia activities, simply because
average human behaviour associates Twitter uplink with all
other mobile activities. In fact, in this section the authors show
that Twitter activity level is highly correlated with both the UL
and DL traffic demand.

In Fig. 3, the ward average 3G data load (UL and DL)
is plotted against the number of Tweets per second. Each
data point represents a ward, which approximately equals the
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Fig. 4: Temporal Correlation of average 3G Traffic Load
(Demand) vs. Number of Tweets over 7 Days.

coverage area of a BS. The results show that a log-linear
relationship exists between estimated traffic load r̂ (kbps) and
the Twitter activity level n (Tweets/s):

log10(r̂i) = ai log10(n) + bi, (1)

where [aUL = 0.86 kb/Tweet bUL = 1.97 kbps], and [aDL =
0.88 kb/Tweet, bDL = 2.37 kbps]. Alternatively, this can be
expressed as a power law: r̂i = 10bi(n)ai . A polynomial
least-squares regression is used with the minimum number
of parameters P that maximizes the adjusted R2 value, as
increasing the parameters P will trade-off improved accuracy
vs. a decreased adjusted R2 value. The correlation achieved
is high: R2 = 0.71 for UL and R2 = 0.79 for DL. In
other words, the regression model on Twitter data explains
71-79% of the variations in the 3G traffic data. The supports
our initial hypothesis that OSN data can be used as a more
reliable predictor for traffic demand than the census data.
Furthermore, OSN data is operator neutral and radio-access-
technology (RAT) neutral, potentially giving insight on all
mobile customers. In general, it is also worth noting that the
data rate in UL and DL is fairly low, showing that whilst the
aggregate demand is increasing rapidly, the average demand
per second remains below the capacity of current BSs. The
outlier wards are ones with high average traffic loads and
correspond to tourism hotspots in the wards situated in the
Westminster and City of London boroughs.

In terms of caveats, the analysis in the paper has only
utilized on geo-tagged Tweets. That is to say, we do not
understand how the total number of Tweets correlate with the
traffic demand, since most Tweets do not have an accurate
location (approximately 1% of Tweets are geo-tagged in the
London area). Whilst an increasing number of Tweets and
other OSN data are becoming geo-tagged, most data can
not be used to identify the traffic pattern. For long-term
traffic prediction, historical Twitter and OSN data is more
than sufficient. Over several weeks and a large area, this
paper was able to show with 0.6 million Tweets that a power
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Fig. 5: Predicting Short Term Peak Traffic Demand with Long-
Term Statistics.

law relationship between existing geo-tagged Tweets and data
demand. However, how accurately can this data be used to
predict short-term traffic demand is less clear.

B. Short-Term Temporal Traffic Demand Estimation

As mentioned previously, another challenge is whether
the current Twitter data can be used to accurately predict
upcoming short-term traffic demand (i.e., either in a few hours
time or the same time a few days later). This has strong
applications in self-organising-network (SON) operations [14],
such as load balancing. In all of these cases, the upcoming
short-term temporal patterns in the traffic demand are of
interest. By using cross-correlation between Twitter intensity
n[k] (complex conjugate n ∗ [k]) and the 3G traffic load r[k]
defined as

∑+N
m=−N n ∗ [m]r[m + k] with lag m (minutes),

the authors examined the normalised correlation value. Fig. 4
shows the normalised cross-correlation value against the lag
value. The results show that for a lag of approximately 120
minutes, the correlation is strong (> 0.9), meaning that the
traffic can be accurately predicted for the next 2 hours using
current Twitter activity level. At the same time the next day,
the correlation remains strong (> 0.85), but this value falls
on the third day to 0.7 and on the fourth day to 0.5. The
correlation trend is very similar for UL and DL traffic. That
is to say, current Twitter data can be used to predict the UL
and DL traffic for the next 2 hours and for the same time
on the next day. However, future traffic prediction will need
continuous monitoring of geo-tagged Twitter data, which can
be expensive to obtain.

C. Predicting Short-Term Peak Demand

Previously, the authors have shown that a constant stream
of OSN data is needed to obtain up to date high temporal
resolution traffic statistics. Nonetheless, there are short-term
traffic attributes (i.e., peak demand) that are of interest and
can be predicted by using long-term statistics (i.e., the mean
and variance). The authors are motivated to use OSN Twitter
data to estimate peak demand in order to be operator- and
RAT-neutral. In Fig. 5, the authors attempt to predict the peak

Twitter activity level for a particular time period t (npeak,t),
by showing that the peak demand is log-linear related to the
product of the mean n and variance σ2

n of the OSN activity
level, such that a least-squares linear regression would yield:

log10(npeak,t) = c log 10

(
n× σ2

n

)
+ d, (2)

where c = 0.17 and d = 1.11 with a strong correlation
(adjusted R2 = 0.68). Using the relationship in Eq. (1)
developed between social media activity level n and the real
traffic demand r, one can predict the peak traffic demand:
rpeak,t = 10bi [10d(nσ2

n)
c]ai . The estimated peak traffic de-

mand can be used to avoid service outages by offloading users
ahead of time to small cells and neighbouring macro BSs.

IV. CONCLUSIONS

Social media data presents service providers with an un-
precedented opportunity to better understand end user con-
sumption patterns and design better systems. In this paper,
the authors have shown that the large volumes of real time
Twitter data allows for a scalable way to create accurate maps
of mobile data demand. In particular, an empirical relationship
between the number of Tweets and the data demand is found
for uplink and downlink channels, which enables accurate
forward traffic prediction up to 2 hours on the same day and
for the same time period over the following 1-2 days.
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