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C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations 1	

that evolved more than 60 times to boost carbon uptake compared to the ancestral 2	

C3 photosynthetic type
1-3

. Although C4 photosynthesis has the potential to drive 3	

faster growth rates
4,5

, experiments directly comparing C3 and C4 plants have not 4	

shown consistent effects
1,6,7

. This is problematic, because differential growth is a 5	

crucial element of ecological theory
8,9

 explaining C4 savanna responses to global 6	

change
10,11

, and research to increase C3 crop productivity by introducing C4 7	

photosynthesis
12

. Here, we resolve this long-standing issue by comparing growth 8	

across 382 grass species, accounting for ecological diversity and evolutionary 9	

history. C4 photosynthesis causes a 19-88% daily growth enhancement. 10	

Unexpectedly, during the critical seedling establishment stage, this enhancement is 11	

driven largely by a high ratio of leaf area to mass, rather than fast growth per unit 12	

leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for 13	

the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. 14	

Our data demonstrate a general suite of functional trait divergences between C3 15	

and C4 species, which simultaneously drive faster growth and greater investment in 16	

water and nutrient acquisition, with important ecological and agronomic 17	

implications. 18	

 19	

The repeated emergence of C4 photosynthesis across multiple independent plant lineages 20	

transformed plant evolutionary history, and represents a remarkable example of 21	

convergent evolution
1,2

. Despite accounting for only 3% of extant plant species, C4 22	

lineages today dominate warm, open environments and account for 25% of terrestrial 23	

carbon fixation
9,10

. C4 grasses include some of the world’s most important food and 24	

energy crops, and C4 grassy savannas provide critical ecosystem services for more than a 25	
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billion people
13

. Understanding how the C4 photosynthetic pathway changes plant 1	

growth is therefore crucially important for plant evolution, crop production and 2	

ecosystem ecology. 3	

 Models of crop production and ecosystem dynamics assume that C4 species have 4	

higher rates of photosynthesis than C3 species under hot and sunny conditions, which 5	

lead to faster growth
5,10

. However, the numerous direct comparisons of C3 and C4 plant 6	

production made over the last 50 years have not consistently shown a growth rate 7	

advantage associated with C4 photosynthesis (reviewed elsewhere
1,6,7

). We hypothesize 8	

that this inconsistency arises from the large variation in growth rates among ecologically 9	

diverse species, coupled with low statistical power arising from small sample sizes. 10	

Others have argued that it may arise from environmental limitations, or differences in 11	

internal resource consumption and allocation between C3 and C4 species
6,7

. 12	

 To address this long-standing biological problem, we used an exceptionally large 13	

screening experiment to compare 382 grass species grown under controlled 14	

environmental conditions, within a phylogenetic and ecological framework. Species 15	

were sampled broadly across the two main clades of the Poaceae (grasses): i) the BEP 16	

lineage, comprised solely of C3 species; and ii) the PACMAD lineage, which includes 17	

22-24 independently evolved C4 lineages
14

, and a smaller but still substantial number of 18	

C3 species. The sampling was structured to encompass species from different climate 19	

regions, characterised by alternative temperature (tropical and temperate), precipitation 20	

(arid and wet/humid) and tree cover (forested and open landscapes) combinations (Fig. 21	

1). The species sample also incorporated both annual and perennial plants, and wild and 22	

domesticated crop species (Supplementary Table 1), but excluded bamboos, from which 23	

seeds are difficult to source. Ten plants per species were grown for five weeks under 24	

resource-rich, tropical conditions. Destructive harvesting over this period allowed us to 25	
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estimate species-specific relative growth rate (RGR) using a non-linear growth model. 1	

Accounting for size in this analysis is critical because RGR often declines as plants 2	

become larger
15

. RGR values were therefore estimated from growth models at small 3	

(20
th

 percentile of the biomass distribution across harvests for all species) and large (60
th

 4	

percentile) sizes. The sizes were chosen as extremes in the size range over which all 5	

species were destructively sampled (excluding small or large sizes which were not 6	

attained by all species). 7	

 We resolved the key drivers of variation in RGR using a phylogenetic 8	

comparative analysis, selecting explanatory variables on the basis of a priori 9	

expectations about the ecological and life history traits that influence growth rate
16

. Life 10	

history (annual/perennial) had a large and highly significant effect, with annuals 11	

growing faster than perennials (Fig. 1; Supplementary Table 2). The other factors made 12	

smaller contributions, suggesting unexpectedly that neither adaptations to climatic 13	

region (tropical/temperate, humid/arid) nor specialisation within extreme habitats 14	

(waterlogged or dry soils, and open or shaded forest environments) exert strong effects 15	

on growth. Once all of these factors were taken into account, and evolutionary history 16	

was considered, the evolution of C4 photosynthesis across the 16 origins sampled in our 17	

experiment had a major positive impact on growth (Fig. 1; Supplementary Table 2). 18	

 The positive effect of C4 photosynthesis on growth under controlled tropical 19	

conditions was detected at both small and large plant sizes, but its magnitude was highly 20	

size-dependent (Fig. 2). The acquisition of C4 photosynthesis generated a 19%, or 0.039 21	

g g
-1

 d
-1

 increase in RGR at a small plant size (df=1,350, t=6.26, Pagel’s λ=0.48, 22	

p<0.001; Supplementary Table 2, see also Fig. 2). However, at a large plant size, this 23	

effect increased to 88%, or a 0.125 g g
-1

 d
-1

 difference in RGR between the C3 and C4 24	

species (df=1,330, t=5.27, Pagel’s λ=0.29, p<0.001; Supplementary Table 2, see also Fig. 25	
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2). This strong size-dependence arose because the maximum plant size was five-times 1	

larger in C4 than C3 species (0.70g vs 0.12g, respectively: df=1,380, t=5.23, Pagel’s 2	

λ=0.54, p<0.001), allowing C4 species to continue growing faster for longer 3	

(Supplementary Fig. 1). The inclusion of bamboos would be unlikely to influence this 4	

result because these belong to the BEP clade, and are an outgroup to the direct 5	

comparisons between closely related C4 and C3 PACMAD species. 6	

 Growth rate variation can be decomposed into three components, representing: 7	

1) the leaf area relative to leaf mass (specific leaf area, SLA); 2) the mass allocated to 8	

leaves relative to total plant mass (leaf mass ratio, LMR); and 3) the growth rate per unit 9	

leaf area (net assimilation rate, NAR). Almost since the discovery of C4 photosynthesis, 10	

it has been assumed that higher photosynthetic rates increase the growth of C4 species 11	

per unit of leaf area
17

, i.e. through an increased NAR. Previous pairwise comparisons of 12	

C3 and C4 species have shown this expected effect (e.g. ref. 18). However, in large, 13	

multi-species comparisons, there has been little evidence either that high area-based 14	

photosynthesis generally translates into greater NAR
19 

or that NAR is a major 15	

component of growth in C4 species
20

. In our experiment, we also found no significant 16	

difference in NAR between C4 and C3 species at small sizes (df=1,380, t=0.95, Pagel’s 17	

λ=0.50, p=0.34; Fig. 3). However, the difference in NAR between C4 and C3 species 18	

increased dramatically at large plant sizes, with values of 1.87 and 0.96 mg m
-2

 d
-1

, 19	

respectively, resulting in a near-doubling in C4 compared to C3 species (df=1,341, t=4.80, 20	

Pagel’s λ=0.36, p<0.001). The difference in NAR underpinned 82% of the variation in 21	

RGR at large plant sizes (Fig. 3; Supplementary Table 3), and is consistent with faster 22	

net carbon assimilation in the C4 species. Photosynthesis in the C4 species could have 23	

been further enhanced in the high light conditions of our experiment by greater canopy 24	
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temperatures and improved shoot water relations arising from lower stomatal 1	

conductance in C4 than C3 species
20,21

. 2	

 Whilst NAR was not important for growth in small plants, SLA (specific leaf 3	

area) had a substantial effect. Values of SLA were 33% greater in C4 than C3 species at 4	

small plant sizes, 436 cm
2
 g

-1
 compared to 328 cm

2
 g

-1
, respectively (df=1,380, t=3.5, 5	

λ=0.54, p<0.001). Variation in SLA was the main driver of variation in RGR (Fig. 3; 6	

Supplementary Table 3).  At large sizes, SLA was still 39% higher in C4 than C3 species 7	

(df=1,380, t=4.28, λ=0.49, p<0.001) (Fig. 3; Supplementary Table 3). The high 8	

productivity of C4 species is therefore driven by higher SLA at small plant sizes, and a 9	

longer period of rapid growth during which NAR becomes increasingly important 10	

(Supplementary Figs. 2-3 and Supplementary Discussion).  11	

 For plants in general, the maintenance of a large root system carries a respiratory 12	

burden, which reduces the availability of carbon for growth
19

. Fast growth is therefore 13	

often achieved via greater allocation to shoots relative to roots
19

, but this may 14	

compromise root properties that depend on size, such as competition for below-ground 15	

resources
22

 and the belowground storage of energy reserves
23

. Our data provide strong 16	

empirical support for the hypothesis
7
 that C4 photosynthesis allows plants to 17	

fundamentally change this inherent trade-off between growth and allocation. Despite 18	

growing faster than C3 species, C4 plants allocated 54% more biomass to roots, with root 19	

mass ratios (root mass/plant mass) averaging 0.46 in C4 and 0.29 in C3 plants (df=1,380, 20	

t=5.54, λ=0.40, p<0.001; Supplementary Fig. 4). This simultaneous adjustment of 21	

growth and allocation in C4 species permits a diverse range of novel ecological 22	

strategies and opportunities that are unavailable to C3 plants
7
. 23	

 It has been noted previously that C4 species may have high SLA (or a low 24	

investment of leaf mass per unit area)
24

. However, the generality of this observation and 25	
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its full significance for the high productivity of C4 species has not been appreciated. We 1	

also sought a mechanistic explanation for the SLA variation among species in terms of 2	

leaf thickness and density, following previous authors in using leaf dry matter content 3	

(LDMC, the ratio of leaf dry mass to fresh mass) as a proxy for density
25

. Leaf thickness 4	

did not differ significantly between C3 and C4 species (df=1,380, t=0.34, λ=0.51, 5	

p=0.74). However, variation in LDMC accounted for 70% of the variation in SLA 6	

between C3 and C4 species. The LDMC was significantly lower in C4 than C3 species, 7	

with a value of 18% compared to 23%, respectively (df=1,380, t=3.50, λ=0.52, p<0.001).  8	

Approximately 25% of the between-species variance in leaf density was linked to 9	

changes in photosynthetic pathway (Supplementary Table 4). At first sight, this result 10	

seems puzzling, since proportions of high-density tissues such as bundle sheath and 11	

sclerenchyma are higher in C4 than C3 leaves
26

, and proportions of air spaces are lower
27

. 12	

Instead, the overall difference in leaf density must arise from other changes in tissue 13	

density associated with the C4 pathway, including: a decrease in the proportion of cell 14	

walls caused by larger cells or thinner cell walls; a decrease in the total protein content 15	

driven by reduced mesophyll investment in C3 cycle enzymes, which include the most 16	

abundant proteins in plants
7,28

; or a difference in vascular structure and architecture, 17	

associated with leaf hydraulics
29

. 18	

 Controlled environment screening experiments of the kind performed here can 19	

provide important insights into the fundamental differences in growth characteristics 20	

among species. However, they necessarily focus on plants during the early phase of 21	

rapid growth, so that many species remain immature for the duration of the experiment. 22	

Furthermore, the application of a simplified, common environment is inevitably sub-23	

optimal for the growth of certain species. The general significance of the growth 24	

characteristics identified here must therefore be tested for mature plants under field 25	
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conditions, where responses are mediated by abiotic (e.g. drought limitations) and biotic 1	

(e.g. mycorrhizal symbioses) interactions. Similarly, the ecological adaptations to 2	

climatic region and extreme habitats considered here are necessarily coarse global 3	

descriptors of ecology, and do not capture finer scale ecological adaptations to factors 4	

like soil fertility, which are known to influence RGR
16

. 5	

 We have clarified an important and long-standing controversy in the literature 6	

via a phenotyping study of unprecedented scale, coupled to an analysis that accounted 7	

for ecology and evolutionary history simultaneously. These novel aspects of the work 8	

have enabled us to demonstrate profound effects of C4 photosynthesis on growth and 9	

allocation, a strong size-dependence in these effects that is linked to maximum plant size, 10	

and a central mediating role for leaf construction costs. The effects were resolved for 11	

juvenile plants within a controlled environment and might be altered in mature plants in 12	

natural environments by local environmental processes acting at the population or 13	

species levels. The work therefore highlights the vital importance of using comparative 14	

screening in controlled environments to study physiological innovations within the 15	

context of the whole organism. It has crucial implications for the ecological behaviour 16	

and interactions of species in grassy biomes, and for the introduction of novel 17	

physiological traits into crops to improve yields. 18	

 19	

[Main Text, including introductory paragraph 2,042 words] 20	
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Figure Legends 1	

 2	

Figure 1. Relative growth rate of the sampled species according to photosynthetic 3	

pathway, life history, realised climatic niche and phylogeny.  4	

From the centre, the black tips of the phylogeny indicate annual species, and the grey 5	

tips perennials. The inner red-coloured circle represents mean annual temperature across 6	

the distribution of each species, while the outer blue-coloured circle represents mean 7	

annual precipitation. The length of bars around the outside are scaled to represent 8	

relative growth rate (RGR) in small plants (at the 20
th

 size percentile), with red bars 9	

showing C4 species and black bars C3 species in the PACMAD and BEP clades of 10	

Poaceae (grasses). 11	

 12	

Figure 2: Relative growth rate. 13	

a. Relative growth rate (RGR) in small (20
th

 size percentile) and b. large (60
th

 size 14	

percentile) plants. Comparisons between sister C3 (black) and C4 (red) lineages are 15	

highlighted by coloured shading and linked points. For each lineage, means and standard 16	

errors were calculated from raw data. Error bars are not visible in some cases because 17	

they are smaller than the symbol, whereas in other cases lineages are represented by a 18	

single species (Supplementary Table 1 for the species in each lineage). The overall 19	

difference between C3 and C4 species calculated in a phylogenetic analysis is shown at 20	

the bottom of each panel. 21	

 22	

Figure 3. Components of growth. 23	

Net assimilation rate (NAR, a, d), specific leaf area (SLA, b, e) and leaf mass ratio 24	

(LMR, c, f) in small (20
th

 size percentile, a, b, c) and large (60
th

 size percentile, d e, f) 25	
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plants. Comparisons between sister C3 (black) and C4 (red) lineages are highlighted by 1	

coloured shading and linked bars. For each lineage, means and standard errors were 2	

calculated from raw data, and the overall difference between C3 and C4 species is at the 3	

bottom of each panel. Error bars are not shown in some cases for the reasons outlined in 4	

Fig. 2.  5	
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METHODS 1	

Growth experiment. Seeds were obtained from seed banks, commercial suppliers, or 2	

the wild, and sterilized prior to germination (Supplementary Table 1). Seedlings were 3	

transplanted into 1-litre pots (Length: 5cm, Width: 5cm, Height: 40cm), containing 90% 4	

vermiculite and 10% sand by volume. 5	

The experiment compared the growth of 382 species under the same 6	

environmental conditions. We used a controlled environment chamber (MTPS 120, 7	

Conviron, Winnipeg, Manitoba, Canada) to provide a day/night temperature of 8	

30
o
C/25

o
C and 70% RH. Daylength in the chamber was 14 h, with a maximum 9	

photosynthetic photon flux density measured at canopy height of 1,600 µmol m
-2

 s
-1

. We 10	

aimed for a non-limiting water supply by watering twice daily using an automated 11	

irrigation system, and a non-limiting nutrient supply by feeding twice a week with 50% 12	

nitrate-type Long Ashton solution
30

.  13	

Individual plants were harvested approximately weekly for five weeks. 14	

Harvested plants were washed, and fresh weight and total leaf area determined 15	

(WinDIAS Image Analysis System, Delta-T Devices, Cambridge, UK). Plant material 16	

was dried at 70 !C to a constant mass, and leaf, stem (including leaf sheath and culm), 17	

and root fractions weighed independently. 18	

Full details of the experiment are provided in Supplementary Methods. 19	

 20	

Growth analysis. All statistical analyses used the R language and environment (R 21	

Foundation for Statistical Computing, Vienna, Austria, 2013). Total plant dry mass over 22	

time was used to model species-specific growth curves. For all traits, we calculated both 23	

an average value per species, and a predicted value at two common sizes; the 20% and 24	

60% percentiles for total plant dry weight across all species and all harvests. Each trait at 25	
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the 20% and 60% percentiles was estimated using linear regression against total plant 1	

dry weight. 2	

To ensure that our estimates of growth rate were robust, we fitted a wide range of 3	

growth models. In all cases, we modelled ln(mass) as a function of time, and included 4	

terms for experiment and block as fixed effects. Details of the models, fitting methods, 5	

derivation of growth rates, and comparisons between the models, are provided in the 6	

Supplementary Methods. RGR values are reported from the 4-parameter logistic model. 7	

 8	

Components of growth. RGR can be broken down into three components, NAR, SLA 9	

and LMR. We looked at the relationships between the components, RGR and the C4 10	

pathway at several different levels: 1) whether the growth component values differ 11	

significantly between photosynthetic types; 2) how much each component contributes to 12	

the variance in RGR, (see ref. 15); and 3) whether the variance in the growth 13	

components is due to the C4 pathway or species-specific differences, using a new 14	

variance decomposition method (see Supplementary Methods).   15	

Specific leaf area (SLA) can be further decomposed as: 16	

 17	

  !"# !
!"#$!!"#!

!"#$!!"##

!
!

!"#$!!ℎ!"#$%&&!!!!"#$!!"#$%&'
.  18	

 19	

However, accurate direct measurements of leaf density and thickness are difficult under 20	

the constraints of a large experiment. Leaf dry matter content, was therefore determined 21	

as an easily obtained proxy for leaf density
25

. With this information, estimates of leaf 22	

thickness can be derived by assuming invariance in the density of fresh leaves among 23	

species
25

.  24	

 25	
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Habitat characterisation. Published information about the habitats occupied by each 1	

species was collected and categorized into wetness and shadiness categories designed to 2	

distinguish specialists of wetlands, shallow and free-draining soils, or forest shade 3	

environments from other species. We also collated published information about annual / 4	

perennial life history, maximum plant height in the field, whether the species was sod-5	

forming (had rhizomes and/or stolons) or not, and its domestication status. Broad 6	

climatic zones (i.e. tropical vs temperate, arid vs wet/humid) were distinguished using 7	

mean annual precipitation (MAP) and mean annual temperature (MAT) across the 8	

geographical range of each species. Full details are provided in the Supplementary 9	

Methods. 10	

 11	

Comparative analysis. A phylogeny was reconstructed using new sequences combined 12	

with data retrieved from the NCBI database (see Supplementary Methods and 13	

Supplementary Data 1). For the comparative analysis, we used gls in the nlme package, 14	

applying the maximum likelihood method to calculate the phylogenetic signal, Pagel’s 15	

lambda (λ). We fitted the explanatory variables based on a priori expectations of which 16	

factors might influence plant species growth. In this analysis we accounted for life 17	

history (annual or perennial), domestication status (wild or cultivar), MAT and MAP 18	

across the species distribution, habitat wetness (xeric, dry, wet, very wet, waterlogged), 19	

habitat shadiness, (open, closed, broad), plant height in the field, and growth form (sod-20	

forming or not sod-forming). Comparative analyses across all growth models ensured 21	

that the key results were robust to statistical approach (see Supplementary Table 2). 22	

We did not reduce or simplify the models, principally because all variables were 23	

expected to have a significant influence on growth. We present our main comparative 24	

model without interactions, but did test two-way interactions individually for all 25	
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variables, and used a 95% confidence test in the ANOVA table to reject or accept 1	

interactions. We then looked at whether the interaction was biologically meaningful. 2	

 3	

[Methods 805 words] 4	

 5	
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Supplementary Information 

Supplementary Methods 

Seed sterilization and germination 

Seeds were supplied by seed banks (Kew Millennium Seed Bank, USDA, IPK, CIAT and the 

Australian Plant Genetic Resource Information Service), commercial seed suppliers (B&T 

World Seeds, Herbiseed, Silverhill, Prairie Moon Nursery), or collected from the wild. Some 

species were bulked from original stock to ensure there was sufficient seed for experimental 

purposes.  

The pericarps of all seeds were removed, and the seeds stored in a dry environment at 

5
o
C until the experiment. Prior to germination, twenty seeds of each species were mixed for 

three minutes in a saturated calcium hypochlorite solution to sterilize them. The seeds were 

then washed in distilled water over a Buchner funnel and plated onto filter paper wetted with 

distilled water in petri dishes. 

Species-specific germination conditions were collated from the Seed Information 

Database  (SID) of Kew Royal Botanic Gardens (http://data.kew.org/sid/germ.html), and the 

literature (64% of species). If species-specific germination conditions could not be found 

(36% of the species), C3 species were germinated at 20
o
C and C4 species at 25

o
C. This was to 

avoid germination failure due to a non-ideal temperature biasing the species sample.  

 

Experimental design 

Our study used a “common garden” experimental design, in which all species were grown 

and compared under the same environmental conditions. Because we wished to compare 

more species than we could fit into the growth chamber at one time, we split the experiment 

into two halves, run sequentially. There was no bias in the distribution of species between 

halves of the experiment. To statistically control for differences between these two halves of 
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the experiment, the analysis includes “replicate” as a factor in the analysis of the growth data. 

This statistical control was facilitated by including twenty species in both halves of the 

experiment. 

The experiment was simply too large for it to be practical to rotate the plants regularly. 

Instead, we dealt with the inevitable heterogeneity of the growth environment using a 

randomized block design, and included a block effect in the statistical analysis. This design 

ensured that environmental heterogeneity did not introduce a systematic bias into the 

experiment. Upon germination, seedlings were therefore allocated a random location in the 

experimental chamber, and given a random harvest date 1, 2, 3, 4 or 5 weeks after 

transplantation. Coupling this approach with a curve-fitting method for estimating growth 

rates ensured that any effects of environmental heterogeneity (or, for example, the differential 

effects of transplant shock among individuals) on growth rate were minimized. The exact 

harvesting date was adjusted for some plants to maintain a similar range of sizes for RGR 

analysis (i.e. the harvest date for plants that were comparatively small at the designated 

harvest was often delayed, and brought forward for plants that were comparatively large). 

This approach maximised the overlap in sampled sizes among species. 

 

Growth environment 

We used a combination of large tungsten and metal halide lamps in the growth chamber for 

this experiment, beginning with new lamps to ensure maximum performance, and burning 

them in immediately before starting the experiment. Previous measurements have shown that 

output does drop off during the burn-in period but that, afterwards, lamp output is relatively 

stable on a timescale of months. After the lamp burn-in, we measured photosynthetic photon 

flux density (PPFD) at plant canopy height across the whole growth area using a handheld 

sensor (LI-COR 190-R quantum sensor, LI-COR Environmental, Lincoln, Nebraska, USA). 
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During the photoperiod of the experiment, the PPFD in the growth chamber was increased in 

three equal steps over a 4-hour period, held at a maximum measured value of 1,600 µmol m
-2

 

s
-1

 for 6 h, and then stepped down again over another 4-hour period.  

Heat load is managed in the growth cabinet by enclosing lamps within an air-

conditioned compartment, with a Perspex window into the chamber. IR radiation emitted 

from the lamps is strongly absorbed by Perspex, and the Perspex itself is cooled using the air-

conditioning to minimize sensible heat flux into the chamber. During the experiment, the 

majority of plant leaf canopies were 80-90cm below the Perspex window, allowing air to 

circulate freely. 

Sand is normally used for growth analysis to enable easy root washing. However, 

several tons of wet sand would have been required for our experiment, which could not be 

supported by the growth cabinet shelves. We chose coarse vermiculite as an alternative 

growth medium because it is significantly less dense than sand, and pilot experiments had 

shown that it enabled both rapid root washing and a high recovery of fine roots. We found 

through this pilot experimentation that vermiculite flakes could be easily crushed between the 

fingers to liberate fine roots, and we washed all roots over a 2 µm mesh, so that the vast 

majority were recovered, even if they were broken during washing. A 2 cm layer of sand was 

laid over the vermiculite in the pots, as pilot experiments showed that this increased the 

likelihood of seedling establishment.  

 

Growth analysis – models and fitting 

To ensure that our estimates of growth rate were robust, we fitted a wide range of growth 

models, discarding species where we had biomass data for fewer than five individuals. In all 

cases, we modelled ln(mass) as a function of time, and included terms for experiment and 
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block as fixed effects. In the model description below we suppress the experiment and block 

effects to simplify presentation. 

 

1) Linear growth model: ln ! ! !! !"! 

We fitted this model in a phylogenetic framework using the lmekin function in the coxme 

package. The fitted model was  

 

lmekin(logm ~ phylo.name + time + phylo.name:time + 

(1|phylo.name) , data = data.f , varlist = list(vmat,  

lambdamat)) 

 

This fits a linear model with fixed effects for the species-specific intercepts and slopes. The 

intercept is modelled as a random effect varying between species with two variance 

components. The first (vmat) is a phylogenetic variance-covariance matrix, while the second 

(lambdamat) is an identity matrix that captures variation between species unrelated to 

phylogeny. The estimated species-level random effects were both very small (variance < 5e-

7) compared to the residual error (0.83) and so the model predictions were very similar to a 

standard linear model fitted with lm (r2
 for the model slopes 0.9997). It is not possible to fit 

random slope models in lmekin. 

 

2) Quadratic growth models: ln ! ! !! !"! !!
! 

We fitted these models in a mixed model framework using the lmer function from the lme4 

package. These models do not allow the inclusion of phylogenetic effects, but random slope 

models can be fitted. We fitted a range of models and selected plausible models using AIC 

and BIC. The best model selected using BIC was 
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logm ~ time + I(time^2) + (1|phylo.name) + (1+time|phylo.name) 

 

which has fixed effects for time and time-squared, and correlated, species-specific random 

effects for the intercept and time slope. AIC identified a more complex model of the form 

 

logm ~ time + I(time^2) + (1|phylo.name) + (1+time|phylo.name) 

+ (1+I(time^2)|phylo.name) 

 

which is similar to the previous model but has a species-specific time-squared random effect 

that is correlated with the intercept. The predicted average RGR’s (see below) were very 

similar (r
2
=0.996) suggesting that the precise details of the fitted models were unimportant, 

and so we used the simpler model. 

 

3) MCMC quadratic growth models: ln ! ! !! !"! !!
! 

We fitted these models using the MCMCglmm function from the MCMCglmm package, using 

100,000 iterations and a thinning interval of 100. This allows very complex models to be 

fitted. The model we used was 

 

logm ~ time  + I(time^2), random = ~idh(1 + time + 

I(time^2)) : phylo.name + idh(1) : phylo.name.ide , 

ginverse=list(phylo.name=Ainv) 

 

which has independent, phylogenetic random effects for the intercept, time and time-squared 

terms and an additional random effect describing variation between species independent of 

phylogeny in the intercept. 
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4) Four-parameter logistic: ln ! ! !!
!!!

!!!"#!!!! !!!! !
 

We fitted these models using nlme from the nlme package. The asymptotic size, B, varied 

between experiments, while the parameters !! and ! varied by block. All four parameters 

were fitted as independent, species-specific random effects. 

 

!

Growth analysis – calculation of growth rates 

For the linear model, where ln(mass) is regressed against time, we have a fitted model of the 

form 

ln ! ! !! !! 

and so RGR, which is 
!"

!"#
, is simply b. For the quadratic model we have 

ln ! ! !! !"! !!
! 

and so RGR is !! !!". As this is a function of time, we need to either select a time to 

compare species, say the end of the experiment, or calculate the average RGR over the course 

of the experiment. We used the latter approach. Average RGR is given by 

 

!"! !
!

!
!"! ! !" !

!

!

!

!

!"

!"#
!" !

!

!

!

!

ln!!!!!! ! ln!!! ! !! 

 

where T is the duration of the experiment. Substituting the values for M from the quadratic 

model we find !"! ! !! !". Note that, if we had used RGR at the end of the experiment, 

we would have used !"! ! !! !!", which is very closely related to average RGR. For the 

four-parameter logistic model we have 
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ln ! ! !!
!! !

!! exp!!!! !! !! !
 

 

where A is the minimum mass, B the maximum, !! the time when a plant is midway between 

A and B, and k a growth parameter. For this model, the size-specific RGR is given by 

 

!!!! ln !
!
!!!! ln !

!
!

!!! !!
 

 

where !
!
 is the mass at which RGR is calculated

1
.  

 

Growth analysis – comparison between models 

We calculated RGR for the 4-parameter logistic model at both the 20
th

 and 60
th

 percentiles of 

the size distribution. These RGR estimates were compared with a classical linear regression 

model including the effects of phylogeny (model 1, above), a quadratic mixed effects model 

ignoring the effects of phylogeny (model 2, above), and a quadratic Bayesian mixed effects 

model including the effects of phylogeny (model 3, above). In all cases, regardless of how 

RGR was estimated, there was a strong positive relationship between the RGR measures 

(Supplementary Fig. 5; p<0.0001, r
2
>0.5 in all cases).  

 

Variation in the components of growth 

We developed a method to partition the effect of C4 photosynthesis on variation in the 

components of growth, as follows. First, the variance contribution to RGR from variation in 

nar is given by 
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!"#$ !"! !
!"# !"# !!"# !"#!!"# !!"# !"#!!"#

!"# !"!
                                   1 

                             

where Var is the variance and Cov the covariance
1
; note that lower case terms indicate 

logarithmic transformation (e.g. !!"# ! log !"# ). We now take this variance partitioning 

further by separating the variance and covariance terms in equation 1 into variation due to 

species effects unrelated to photosynthetic pathway, and variation due to photosynthetic 

pathway. First we construct a linear model of the form: 

 

!"# ! !
!
! !

!"#
!!! ! !

!"#
 

!

Where !
!
 is the intercept, !

!"#
 the effect of photosynthetic pathway on nar, !!! an indicator 

variable with values 0=C3, 1=C4, and !
!"#

 is the error, which we will use as our estimate of 

how species vary independently of changes in nar related to photosynthetic pathway. Thus, 

the variance in nar is: 

!

!"# !"# ! !
!"#

!
!"# !!! ! !"#!!

!"#
!!

!

We can interpret this as the variance as a result of variation in photosynthetic pathway 

(!
!"#

!
!"# !!! ), plus the variation between species independent of photosynthetic pathway 

(!"#!!
!"#
!!. Note the !"# !!!! !!"#

! ! for least squares estimators. The covariance terms 

can also be partitioned in this way, so for !"# !"#! !"# !we have 

!

!"# !"#! !"# ! ! !
!"#
!!!! ! !!!!! !

!"#
!

!"#
!!!! ! !!!!! !!"#  
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since ! ! ! !. Expanding the terms within the square brackets, gives us four terms. 

!

!"# !"#! !"# ! !
!"#

!
!"#

!"# !!! ! !
!"#

!"# !!!! !!"# !!

!
!"#

!"# !!!! !!"#
! !"#!!

!"#
! !!"#!!

!

The first three terms describe the variation linked to variation in photosynthetic pathway, 

whereas the fourth term describes the covariance between the species differences in nar and 

sla independent of changes in photosynthetic pathway. We can therefore partition the 

variance and covariance terms in equation 1 into components related to changes in 

photosynthetic pathway, and to species differences that are independent of the change in the 

trait linked to photosynthetic pathway. In order to assess which components of growth (SLA, 

NAR, LMR) were the most important for contribution to RGR, we looked at component 

values at a range of plant sizes, to account for differences that are due to allometric scaling, 

and present the 20% and 60% percentile plant sizes to represent small and large plants.  

 

Habitat characterisation 

Information about the habitats occupied by each species was collected from online and 

published floras and herbaria, and categorized. The habitat categories were shadiness (open, 

partly shaded, shaded), soil texture (clay, loam, silt, sand, rocky), pH (acidic, neutral, basic), 

altitude (0-500, 501-1000, 1001-1500, 1501-2000, 2001-2500, 2501-3000, 3001-3500, 3501-

4000, 4001-4500, 4501-5000), salinity (glycophytic, salt-tolerant), and soil wetness (dry/arid, 

damp/moist/humid, wet/marshy, waterlogged/flooded).  

For example, for the habitat description “Forest margins and rocky mountain 

grasslands 1000–2700m. Clay or sand on shallow soil of forest margins or open grasslands, 

mainly in dark places and around boulders, grassland and forest”, the species was 
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categorized as growing in ‘open’ or ‘part shade’ (shadiness category), ‘clay’ and ‘sandy’ soils 

(soil type category), at ‘1001-1500’, ‘1501-2000’ and ‘2001-2500m’ altitude (altitude 

category). For this example, there was no information for pH, salinity and moisture to include 

information in these categories. If there was no mention of a category in the habitat 

description, then NA was given for all category levels. However, if a category was described, 

then we assumed that the species did not occur in habitats that were not identified in the 

description. 

We found that only the wetness and shadiness categories were populated with 

sufficient information across species and with enough variation among levels to include in 

the final comparative analyses. For these analyses, the different combinations of levels in 

habitat categories were further summarised (Supplementary Table 5). 

We collated information about growth habit, (caespitose, rambling/creeping, matt-

forming) from the literature and GrassBase
2
. However, there was insufficient variation in 

growth habit for the comparative analysis, with the vast majority of species being caespitose. 

We also collected data from the same sources on maximum culm height at flowering, and 

whether species were rhizomatous, stoloniferous or both. If information about 

rhizomes/stolons was absent, we assumed that the species had neither. The same sources also 

detailed whether the species was an annual or perennial, or whether it had been observed with 

both life histories. We simplified this information to annual or perennial, recoding to annual 

all instances where species could be either annual or perennial. 

Where information about improvement status was provided by the seed distributor, 

this was summarised directly into ‘wild’ or ‘cultivar’ levels in the ‘domestication status’ 

category. The cultivar level included landraces and elite crops. Where seed improvement 

information was ‘uncertain’, the species was placed in the ‘wild’ category level. 
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For realised climatic niches, we used raster climate data files available at Worldclim
3
 

and species’ occurrence information available at the Global Biodiversity Information Facility 

(GBIF) to extract information about species presence at the country level (present/absent) and 

current climate information for the country (mean annual temperature, MAT, and mean 

annual precipitation, MAP). We averaged values over countries where individual species 

occurred, weighted by country size, to obtain a single value for MAT and MAP for the 

species distribution. This was completed in the R statistical software
4
, using an area-based re-

projection of the global map. 

 

Phylogenetic reconstruction 

For all species included in this study, PHLAWD
5
 was used to retrieve up to seven different 

markers: the nuclear ITS and chloroplast markers trnKmatK, ndhF, psbA, rbcL, rpL16 and 

trnLF. Synonyms were identified using Grassbase
2
, and in cases in which multiple sequences 

were available, only the longest sequence was retained. At least one of the seven markers was 

available for all but 52 of the included species. For these remaining 52 species, DNA was 

isolated from dried plant material using the DNeasy Plant Mini Kit (Qiagen Inc., Texas, 

USA), following the instructions provided. These gDNAs were used as PCR templates to 

amplify fragments of trnKmatK, ndhF, and ITS, following the protocols and using the 

primers previously publishe
6,7

. The newly generated sequences were added to those retrieved 

from NCBI database. Each marker was individually aligned using Muscle
8
, and the alignment 

was manually refined. The seven datasets were then merged, producing one concatenated 

marker per species. The final dataset consisted of 444 species and 9674 aligned bp. 

The final dataset was used to obtain a time-calibrated phylogenetic tree through 

Bayesian inference as implemented in BEAST
9
. The general time reversible substitution 

model with a gamma shape parameter and a proportion of invariants (GTR+G+I) was used. A 
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log-normal relaxed clock was used, with prior divergence times modelled by a Yule process.  

The tree was rooted by forcing the monophyly of each of the BEP and PACMAD sister 

clades (no species outside of these clades was included in the dataset). Their split was forced 

to follow a normal distribution, with a mean of 51.2 and a standard deviation of 6.0, 

following Christin et al.
10

. Three separate analyses were run for more than 37,000,000 

generations, sampling a tree every 5,000 generations. The adequacy of the burn-in period (set 

to 20,000,000 generations) and convergence of the runs were verified using Tracer
11

. All the 

trees sampled post-burn-in were pooled, and medians of node ages were plotted on the 

maximum-credibility tree, which was used for comparative analyses. However, we repeated 

the analyses on a set of >100 of the posterior trees, and the results are almost identical 

(typically within a couple of decimal places) and the statistical significance of the 

experimental factors is unaltered in every case. 
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Supplementary Discussion 

Contributions to growth rate variation 

At small plant sizes, the contribution by NAR was negative overall because of its negative 

co-variance with SLA, so that a unit increase in NAR also decreased SLA, which overall 

resulted in a decrease in RGR. Over all species, NAR comprised -28% of the variation in 

RGR at small plant sizes (20% percentile). However, as plant size increased, so did the 

contribution of NAR to RGR variation growth (Supplementary Fig. 2). Overall, NAR was 

more important for growth in the C3 than C4 species, but this difference became less apparent 

at larger plant sizes (Supplementary Fig. 2), At large plant sizes, 83% of the variance in NAR 

was due to species-specific effects, while only 17% was due to the C4 pathway.  

Over all species, SLA comprised 126% of the variation in RGR at small sizes. Our 

experiment was completed at a high irradiance, and so the finding that SLA was important 

for fast growth could not be explained by poor light levels, which has been suggested 

previously
12

. At small plant sizes, the variation in SLA linked to photosynthetic pathway (i.e. 

the change in SLA that occurred on average from C3 to C4) was substantial, with 39% of 

variation due to the C4 pathway, and 61% due to species-specific effects (Supplementary 

Table 2). We can also look at the contribution of SLA to RGR variation across clades and 

photosynthetic pathway types (Supplementary Fig. 3). This showed that SLA was more 

important for C4 species than for C3 species in the PACMAD or BEP clades. Particularly at 

small plant sizes, up to the median size, SLA made a larger contribution to RGR in the C4 

PACMAD than the C3 species. 

 At the 20% size percentile, C4 species had a 12% reduction in LMR compared with 

C3 species, from 0.42 in the C3 species to 0.37 in the C4 species (df=1,380, t=3.46, λ=0.16, 

p<0.001) and LMR comprised 2% of the variation in RGR. At the 60
th

 size percentile there 

was also a significant reduction in LMR, from 0.43 in the C3 species to 0.34 in the C4 species 



! 14 

(df=1,380, t=4.05, λ=0.44, p<0.001) and LMR determined -0.06% of the variation in RGR. 

Therefore, although there were differences in LMR between species with different 

photosynthetic pathways, LMR was not a significant driver of the variation in RGR. Instead, 

SLA and NAR contributed to RGR more significantly at small and large plant sizes, 

respectively. 
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Supplementary Fig. 1 | Comparison of fitted growth rates across species in relation to 

size. The growth model used was the 4-parameter logistic fit, with each line representing a 

species. The green circles indicate the maximum growth rate for each species, and the blue 

vertical line shows the 20
th

 percentile of the plant size distribution across all harvests. C4 

species on average had higher maximal growth rates, and reached larger final sizes. 
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Supplementary Fig. 2 | Contribution of the interspecific variation in NAR to the 

variation in RGR. Percentage variation is shown for C3 and C4 PACMAD species and C3 

BEP species across the range of plant sizes. 

  

 

 

 

 

 

 

  

-200

-100

0

100

0 25 50 75 100

Percentile plant size

N
A

R
 %

 c
o

n
tr

ib
u

ti
o

n
 t
o

 R
G

R

variable

C4.PACMAD
C3.BEP
C3.PACMAD



! 17 

Supplementary Fig. 3 | Contribution of the interspecific variation in SLA to the 

variation in RGR. Percentage variation is shown for C3 and C4 PACMAD species and C3 

BEP species across the range of plant sizes. 
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Supplementary Fig. 4 | Root mass ratio at a common size. Root mass ratio (RMR) is the 

root dry mass as a fraction of total dry mass, and shown at the 20
th

 percentile of the size 

distribution across all harvests. Comparisons between sister C3 and C4 lineages are 

highlighted by the linked bars, and the overall difference between C3 and C4 species 

calculated in a phylogenetic analysis is shown at the bottom of each panel. Means and 

standard errors for are depicted for C4 lineages in red and C3 lineages in black. 
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Supplementary Fig. 5 | Comparison of alternative approaches to modelling RGR. 

Relationships between the different RGR measures (below the main diagonal, all g g
-1

 d
-1

), 

histograms of RGR calculated using each method (diagonal), and the R
2
 for relationships 

between RGR values calculated by alternative methods. 
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Supplementary Table 1 | Species grown in the comparative experiment.  Species are 

listed alongside the source of seed for each, the lineage they belong to (corresponding to Figs. 

2, 3 and Supplementary Fig. 4), and the life history (annual / perennial), domestication status 

(W = wild, C = cultivar), growth form (s = sod-forming, n = not sod-forming), habitat 

preferences (see Supplementary Table 5), plant height in the field (culm height, cm), and 

climatic niche data (MAT, °C; MAP, mm), which were used as explanatory variables in the 

comparative analysis. 

 

 

Table is available as Supplementary Table 1.csv  
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Supplementary Table 2 | Comparison of ANOVA results across different RGR models. 

In each case we tested the effects on RGR of climate (precipitation and temperature across 

the species range), domestication status, habitat (wetness and shadiness from floral 

descriptions), plant size at reproduction in the field (culm height), growth form, life history 

and photosynthetic type, whilst accounting for phylogeny (DF = degrees of freedom, s.error = 

standard error). Pagel’s lambda indicates the extent to which the residual variation in RGR 

depends on phylogeny, according to a Brownian model of trait evolution. It varies between 0 

and 1, with values of 0 implying no phylogenetic dependence, and values of 1 indicating 

perfect phylogenetic dependence. As sample size varied between species we allowed the 

error variance to be a power function of sample size (using the varPower function from the 

nlme library). 

 

		 		
Relative	growth	rate	type	

		

		 		
4	parameter	logistic	

20
th
	percentile	

4	parameter	

logistic	60
th
	

percentile	

Linear	growth	

model	

		

Quadratic	growth	

model	(lmer)	

MCMC	quadratic	

growth	model	

		 DF	 F-value	 P-value	 F-value	 P-value	 F-value	 P-value	 F-value	 P-value	
F-

value	
P-value	

Intercept	 1	
5467.86	

	
<.0001	 294.84	 <.0001	 716.38	 <.0001	

1427.7

1	
<.0001	

615.0

7	
<.0001	

Precipitation	 1	
0.16	

	
0.69	 0.01	 0.94	 3.55	 0.06	 2.64	 0.11	 0.04	 0.84	

Temperature	 1	 7.22	 0.01	 12.36	 <0.001	 4.11	 0.04	 4.11	 0.04	 0.30	 0.58	

Domestication	

status	
1	 5.22	 0.02	 3.85	 0.05	 0.01	 0.95	 0.36	 0.55	 2.39	 0.12	

Habitat	wetness	 6	 2.16	 0.05	 2.82	 0.01	 2.67	 0.02	 2.32	 0.03	 0.63	 0.71	

Habitat	

shadiness	
4	 1.17	 0.32	 3.33	 0.01	 0.73	 0.57	 0.73	 0.57	 0.76	 0.55	

Culm	height	 1	 5.18	 0.02	 2.91	 0.09	 0.37	 0.54	 0.07	 0.79	 0.38	 0.54	

Growth	form	 1	 11.71	 <.001	 0.40	 0.53	 2.22	 0.14	 1.91	 0.17	 1.88	 0.17	

Life	history	 1	 57.45	 <.0001	 58.05	 <.0001	 27.27	 <.0001	 24.47	 <.0001	 29.15	 <.0001	

Photosynthetic	

type	
1	 37.24	 <.0001	 26.27	 <.0001	 27.51	 <.0001	 19.44	 <.0001	 10.69	 <.01	

Residual	s.error	 	 0.93	 		 2.12	 	 1.72	 		 0.26	 	 0.16	 	

Residual	DF	 	 350	 		 312	 		 350	 		 350	 		 350	 	

DF	 	 368	 		 330	 		 368	 		 368	 		 368	 	

Pagel’s	lambda	 		 0.48	 		 0.32	 		 0.29	 		 0.33	 		 0.90	 	

 



! 22 

Supplementary Table 3 | Contributions to the interspecific variation in RGR. 

Contributions are shown from the three components of growth (SLA, NAR and LMR) at the 

20
th

 and 60
th

 percentiles of the plant size distribution across all harvests. The contribution to 

variation in SLA, NAR, and LMR due to the C4 pathway, and due to species-specific effects 

is also shown. Note that, due to covariance among SLA, NAR and LMR, overall 

contributions can exceed 1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size   SLA NAR LMR 

20
th

 percentile Overall variance contribution to RGR 1.25 -0.28 0.02 

  Variance among species 0.77 -0.08 0.07 

  Effect of C4 photosynthesis 0.49 -0.20 -0.05 

  C4 effect (C4 effect/overall variance) 0.39 0.70 -2.38 

60
th

 percentile Overall variance contribution to RGR 0.24 0.82 -0.06 

  Variance among species 0.14 0.68 -0.02 

  Effect of C4 photosynthesis 0.10 0.14 -0.04 

  C4 effect (C4 effect/overall variance) 0.41 0.17 0.72 
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Supplementary Table 4 | Contributions to the interspecific variation in SLA. 

Contributions are shown from the two main components of SLA (leaf thickness and leaf 

density) across all harvests. The contribution to variation in leaf thickness and leaf density 

due to the C4 pathway, and due to species-specific effects is also shown. Note that, due to 

covariance among leaf thickness and leaf density, overall contributions can exceed 1.0. 

 
  Leaf thickness Leaf density 

Overall variance contribution to SLA 0.30 0.70 

Variance among species 0.28 0.52 

Effect of C4 photosynthesis 0.03 0.17 

C4 effect (C4 effect/overall variance) 0.09 0.25 
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Supplementary Table 5 | Habitat coding scheme. Details of how habitat data was 

summarised for the a) wetness and b) shadiness categories for use in the comparative 

analyses of RGR. 

 

a)  

  Wetness category combination 

Final category 

level Arid/dry Damp Wet Waterlogged 

arid Y N N N 

dry Y Y N N 

damp N Y N N 

broad N N N N 

broad Y Y Y N 

broad Y Y Y Y 

wet N Y Y N 

wet N N Y N 

very wet N N Y Y 

very wet N Y Y Y 

very wet N Y N Y 

waterlogged N N N Y 

 

b) 

  Shadiness category combination 

 Final category 

level 

Open Part shaded Shady 

Obligate open Y N N 

Not shady Y Y N 

Broad Y Y Y 

Broad Y N Y 

Broad N N N 

Obligate shade N N Y 
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Supplementary Data 1 | Phylogenies for the species used in the experiment 

The phylogenies are derived from a BEAST analysis. Two files are included in NEXUS 

format: the consensus tree (.tre) and a set of trees drawn from the posterior distribution 

(.trees). 
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