
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Annals of
Mathematics and Artificial Intelligence.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10049

Published paper
Hofner, P., Struth, G., Sutcliffe, G. (2009) Automated verification of refinement
laws, Annals of Mathematics and Artificial Intelligence, 55 (1-2), pp. 35-62
http://dx.doi.org/10.1007/s10472-009-9151-8

http://eprints.whiterose.ac.uk/10049�
http://dx.doi.org/10.1007/s10472-009-9151-8�

AMAI manuscript No.

(will be inserted by the editor)

Automated Verification of Refinement Laws

Peter Höfner · Georg Struth · Geoff Sutcliffe

Received: date / Accepted: date

Abstract Demonic refinement algebras are variants of Kleene algebras. Introduced

by von Wright as a light-weight variant of the refinement calculus, their intended se-

mantics are positively disjunctive predicate transformers, and their calculus is entirely

within first-order equational logic. So, for the first time, off-the-shelf automated the-

orem proving (ATP) becomes available for refinement proofs. We used ATP to verify

a toolkit of basic refinement laws. Based on this toolkit, we then verified two classical

complex refinement laws for action systems by ATP: a data refinement law and Back’s

atomicity refinement law. We also present a refinement law for infinite loops that has

been discovered through automated analysis. Our proof experiments not only demon-

strate that refinement can effectively be automated, they also compare eleven different

ATP systems and suggest that program verification with variants of Kleene algebras

yields interesting theorem proving benchmarks. Finally, we apply hypothesis learning

techniques that seem indispensable for automating more complex proofs.

Keywords Refinement calculus · Kleene algebras · Automated deduction · Action

systems

1 Introduction

The combination of variants of Kleene algebras with off-the-shelf automated theorem

proving (ATP) systems has the potential to augment light-weight algebraic formal

methods with heavy-weight automation. The methods are light-weight because they

focus on specific analysis tasks, and the automation is heavy-weight because ATP

P. Höfner
Institute of Computer Science, University of Augsburg, Germany
E-mail: hoefner@informatik.uni-augsburg.de

G. Struth
Department of Computer Science, University of Sheffield, UK
E-mail: G.Struth@dcs.shef.ac.uk

G. Sutcliffe
Department of Computer Science, University of Miami, US
E-mail: geoff@cs.miami.edu

2

is essentially a push-button technology that requires little user interaction. Recent

work already investigated the automation of computational logics [14], of relational

reasoning [17], of rewriting and termination analysis [32,33], and of hybrid system

analysis [13]. It has also been shown that ATP can be very helpful in developing

consistent irredundant specifications and axiomatisations of algebraic theories [11,10].

This paper investigates the automated verification of refinement laws. In contrast

to the trace- or relation-based models that were so far automatically and abstractly

analysed through Kleene algebras, the refinement calculus of Back and von Wright [3]

uses a predicate transformer semantics that requires yet another algebra: Demonic

refinement algebras. They were introduced in two seminal papers by von Wright [42,

43] and have been extensively studied since.

Our main results are as follows. First, we develop a formally verified toolkit of ba-

sic refinement laws within demonic refinement algebra. It contains laws, for instance,

for deconstructing and reconstructing concurrency, for simulation and for loop refine-

ment. Second, we then use this toolkit for automatically verifying two complex laws for

data refinement and atomicity refinement of action systems. Third, we present a new

refinement law for infinite loops and two novel termination theorems that have been

discovered through ATP experiments.

For verifying the toolkit of basic refinement laws we evaluated eleven of the most

successful ATP systems [35] through the standard TPTP input syntax [38] and gener-

ally following the established policy for the CADE ATP System Competition [37,25].

Our experiments reveal significant differences in performance. While the three top ATP

systems are able to prove all the basic laws, the other systems can prove only less com-

plex statements. The overall best ATP system is McCune’s Prover9 [22], validating the

less informed choice made for previous experiments [15,32]. We therefore used Prover9

for the more advanced experiments, but the results show that there are several other

ATP systems that are well suited to these tasks, and they may be preferred by some

users due to differences in their performances and input/output languages. We use the

Prover9 syntax for presenting input files within the paper, because it makes algebraic

expressions more humanly readable (it can automatically be translated to and from

TPTP syntax). Finally, we used the model generator Mace4 [22] in our analysis for

finding counterexamples and for hypothesis learning.

The overall outcome of our experiments is positive: the development and analysis of

complex refinement laws with off-the-shelf ATP technology is nowadays possible. This

is in contrast to the prevailing paradigm that special purpose ATP systems are needed

for theorem proving with complex algebraic structures. Most basic refinement laws

could be proved from the demonic refinement algebra axioms in a few seconds. Some

machine proofs even allowed us to simplify previous manual proofs or to generalise

known theorems. Only the atomicity refinement theorem required the introduction of

an intermediate lemma. Strictly speaking, therefore, we obtained an automated proof,

but a proof search that uses solely the axioms of demonic refinement algebras did not

succeed. But even von Wright’s manual proof in demonic refinement algebras is almost

two pages long; the proof search involved and the complexity of the hypotheses used in

the automated proof is substantial. And our automated analysis revealed some errors

in his proof.

The results of this paper seem interesting for various reasons: In the context of

refinement, they introduce ATP as a new technology that further underpins the use-

fulness of algebraic approaches and provides a promising alternative to existing for-

malisations built on model checking or interactive theorem proving. In the context of

3

automated deduction, they provide useful benchmarks for ATP systems and open up a

new application domain in program verification. In the context of formal methods, our

work paves the way for a new integration of computational algebras with automated

deduction which could make those methods more automated and more user friendly.

For the sake of readability we usually do not display the input/output files and

machine proofs. They can all be found at a website [16]. Selected theorems and a

number of challenge problems from this paper will be part of the TPTP library from

2009. A brief introduction to the refinement calculus is included to make the paper

more accessible for the ATP community.

2 Demonic Refinement Algebras

The idea of stepwise refining specifications to programs is certainly intriguing: Provide

software developers with a calculus of meaningful refinement laws and they will deliver

code that is dependable, modular and optimised. Since the pioneering work of Dijkstra,

Hoare and Back, refinement has matured into an established research area that forms

a cornerstone of popular formal software development methods such as Alloy, B, VDM

or Z. The development of refinement calculi over the decades can be characterised as an

algebraic turn that led to considerable simplifications and abstractions. An important

step was Back and von Wright’s lattice-based approach that abstractly characterises

the two fundamental models of refinement: binary relations and predicate transform-

ers [3]. This approach is, however, essentially higher-order; a serious obstacle against

automation. More recently, in two seminal papers [42,43], von Wright reconstructed a

substantial part of the refinement calculus in a variant of Kleene algebra. These de-

monic refinement algebras are entirely within first-order equational logic which, for the

first time, paves the way to automated deduction. But this intriguing potential has so

far not been explored.

The refinement calculi considered in this paper deal with imperative programs

that may or may not be executable. The traditional way of reasoning about such

a program is to assign preconditions and postconditions and to formulate a notion

of (total) program correctness; a program satisfying the precondition will satisfy the

postcondition after its execution. Roughly, the relation of stepwise refinement is then

a correctness-preserving transformation between programs; the refined program can

always safely be substituted in any context without observably different behaviour.

Typical examples of such refinements are loop-transformations, program optimisations

and data refinements that relate abstract data types such as sets with concrete data

types such as arrays, lists or heaps. Typical effects of refinements are elimination of

nondeterminism and weakening of preconditions.

In the context of program correctness, the weakest precondition for a given pro-

gram and a given postcondition is very useful, since it models the most general setting

under which a program can establish a desired result. Weakest preconditions can be

understood as mappings from postconditions to preconditions, hence from predicates

to predicates, that are parametrised by programs. These mappings are therefore called

predicate transformers. An algebraic predicate transformer calculus reflecting the im-

perative programming constructs can then be given. The refinement relation turns

into an inclusion relation between predicates. The most important constructs are the

sequential composition of programs, the choice between programs (needed in specifica-

tions as well as for modelling conditionals), and the iteration of a program (needed for

4

while-loops). Choices can be resolved in two fundamentally different ways: in an angelic

setting, only one branch of a program is required to satisfy the postcondition, whereas

in a demonic setting, all branches must fulfil this requirement. Hence demonic choices

assume that the worst possible alternative is taken and this view is most compatible

with refinement: it must be ensured that all possible program executions respect the

specification.

In Back and von Wright’s textbook [3], a higher-order algebra of demonic predicate

transformers has been developed. It has later been reconstructed in the first-order

framework of demonic refinement algebras by von Wright [42,43]. These publications

serve as an excellent source of further information.

Demonic refinement algebras are variants of Kleene algebras [20], which themselves

are based on idempotent semirings. We will follow these steps for their introduction.

An idempotent semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0) is a commu-

tative monoid with idempotent addition, (S, ·, 1) is a monoid, multiplication distributes

over addition from the left and right and 0 is a left and right zero of multiplication.

These axioms, except the right zero axiom, are presented as input to ATP systems in

Section 3. As usual in algebra, we stipulate that multiplication binds more strongly

than addition, and we omit the multiplication symbol. In the context of refinement,

elements of S denote actions of a program (in a relational semantics), multiplication

denotes sequential composition, addition denotes angelic nondeterministic choice, 0

denotes the destructive action, and 1 the ineffective action.

The relation ≤ defined by x ≤ y ⇔ x+y = y for all elements x, y of an idempotent

semiring is a partial order. It is (up to isomorphism) the only order with least element

0 and for which addition and multiplication are isotone in both arguments. Therefore,

every idempotent semiring is also a semilattice (S,≤) with addition as join and, for all

x, y, z ∈ S,

x + y ≤ z ⇔ x ≤ z ∧ y ≤ z. (1)

This law allows a case analysis of sums on left-hand sides of inequalities. There is no

similar law for right-hand sides. In the context of refinement, ≥ corresponds to the

refinement ordering.

To model recursive behaviour, an operation of finite iteration can be added. A

Kleene algebra is a structure (K, ∗) such that K is an idempotent semiring and star ∗

is a unary operation axiomatised by the star unfold and star induction axioms

1 + xx
∗
≤ x

∗
, z + xy ≤ y ⇒ x

∗
z ≤ y,

1 + x
∗
x ≤ x

∗
, z + yx ≤ y ⇒ zx

∗
≤ y,

for all x, y, z ∈ K. This axiomatises finite iterations within first-order equational logic

as least prefixed points (which are also least fixed points of the expressions µy.xy + z

and µy.yx + z).

By the first star unfold axiom, an iteration x∗ is either ineffective, whence 1, or

it continues after one single x-action. By the first star induction law, x∗ is the least

element with that property. This form of iteration proceeds from left to right through

a sequence of actions. The second star unfold and star induction law correspond to

right-to-left iteration. The star is also isotone with respect to the ordering and the star

unfold axioms can be strengthened to equations.

In order to capture the (positively disjunctive) predicate transformer semantics of

Back and von Wright’s refinement calculus [3], some adaptations must be made. First,

the right zero axiom x0 = 0 must be dropped because it seems unreasonable to assume

5

that an action 0 could succeed an infinite action x. Second, a strong iteration operation

that encompasses finite and infinite iteration must be added. This is appropriate for

modelling a loop possessed by a demon, which may be finite or infinite. A discussion

of the relevance of the particular axioms, their semantics, and their relationship to

the refinement calculus, can be found in von Wright’s articles [42,43]. The resulting

structures are particularly suitable for modelling action system refinement in situations

where the user has no control over loop termination [4].

Formally, a demonic refinement algebra is a structure (K,∞) such that K is a

Kleene algebra without the right zero axiom, and strong iteration ∞ is a unary opera-

tion axiomatised by the strong unfold and the strong coinduction axioms

x
∞ = 1 + xx

∞
, y ≤ z + xy ⇒ y ≤ x

∞
z,

and linked with the star by the isolation axiom

x
∞ = x

∗ + x
∞0,

for all x, y, z ∈ K. The converse strong unfold law, 1 + x∞x = x∞, follows from these

axioms. Strong iteration is isotone with respect to the ordering. The axioms of demonic

refinement algebras are explicitly listed in Section 3.

The isolation axiom excludes relational models. In these models, x0 is always zero,

so x∞ = x∗ and therefore meaningless. This is important for our considerations in

Section 9.

Unfortunately, different notation is used in different communities. The algebraic

community in the tradition of Salomaa, Conway and Kozen uses the notation of this

paper, whereas the refinement community in the tradition of Back and von Wright uses

⊤ instead of 0, ⊓ instead of +, ; instead of ·, ω instead of ∞ and ⊒ instead of ≤. In

particular, ⊑ is the refinement order.

In the case of Kleene algebras it is well known that the equational theory is de-

cidable [20] whereas the universal Horn theory is undecidable. In the case of demonic

refinement algebras, no such results are presently known.

3 Automating Demonic Refinement Algebras

Mechanisation of refinement calculi has a long tradition. This has either been achieved

through interactive theorem provers or through model checking. But these approaches

are either limited in expressiveness or in automation. Automated deduction could pro-

vide an interesting alternative that helps closing the gaps between these approaches.

We evaluated eleven different ATP systems for finding proofs of theorems in de-

monic refinement algebras: E 0.999 [29], Equinox 1.3 [5], Fampire 1.31, Geo 2007f [8],

iProver 0.2 [19], leanCoP 2.0 [24], Metis 2.0 [18], Otter 3.3 [21], Prover9 0607 [22],

SPASS 3.0 [45], and Vampire 9.0 [28]. Initial tasks attempted with all the systems

allowed us to select the most powerful system, which is Prover9, for the more difficult

verification tasks.

The systems accept input converted from the standard TPTP syntax [38] for first-

order equational logic. The input files contain axioms, for instance the demonic refine-

ment algebra axioms, and a conjecture to be proved. The ATP systems try, by various

1 Fampire 1.3. is Josef Urban’s combination of the Vampire 8.1 prover [28] using the SPASS’
FLOTTER clausifier [44].

6

means, to prove the conjecture from the axioms. ATP systems are, in principle, semi-

decision procedures for first-order equational logic: if a conjecture is provable from the

axioms then an ATP system can establish this through finite search (though perhaps

beyond realistic resources); otherwise the ATP system may run forever. In practice

many ATP system sacrifice some completeness in order to obtain better overall perfor-

mance. When successful, an ATP system may present a proof, but some systems return

only an assurance that a proof exists. The ATP systems use sophisticated heuristics

and strategies for controlling the huge search spaces that may arise. Some systems

allow strategies to be prescribed by the user, either as command line arguments or in

the input file. This may have a crucial impact on success. However, we prefer to take

a black-box approach that relies on the ATP systems’ self-configuration “auto mode”

capabilities, to obtain robust results that are more significant for formal software en-

gineering practice. Also, this is common practice in the ATP community for empirical

evaluations.

We use the following inequational encoding of demonic refinement algebras in

Prover9 syntax.

% operator precedences

op(500, infix, "+"). % addition
op(490, infix, ";"). % multiplication
op(480, postfix, "*"). % finite iteration

op(480, postfix, "’"). % strong iteration

formulas(sos). % idempotent semiring axioms
x+y = y+x. % additive monoid
x+(y+z) = (x+y)+z.

x+0 = x.
x+x = x. % idempotency of addition

x;(y;z) = (x;y);z. % multiplicative monoid
x;1 = x.

1;x = x.
x;(y+z) = x;y+x;z. % distributivity laws
(x+y);z = x;z+y;z.

0;x = 0. % left zero law
x <= y <-> x+y = y. % definition of order

end_of_list.

formulas(sos). % inequational iteration axioms of DRA

1+x;x* = x*. % Kleene star
1+x*;x = x*.

x;y+z <= y -> x*;z <= y.
y;x+z <= y -> z;x* <= y.

x’ = 1+x;x’. % strong iteration
y <= x;y+z -> y <= x’;z.
x’ = x*+x’;0.

end_of_list.

In the first part of the input, operator precedences are declared. Here, star and strong

iteration bind more strongly than multiplication, which itself binds more strongly than

addition. The second part of the input contains the idempotent semiring axioms that

are used in demonic refinement algebras, that is, without the right zero axiom. The

third part of the input contains an inequational encoding of the iteration axioms. Both

sets of axioms are declared as sets of support (sos) for Prover9 – Prover9 accepts

multiple sets of support, all of which are treated together as hypotheses for the proof.

Finally, Prover9 requires that the goal to be proved is added in a special environment,

for instance,

formulas(goals).
x*;x* = x*.

end_of_list.

7

In demonic refinement algebras, inequalities and equations can be defined inter-

changeably. Every equation x = y can be replaced by x ≤ y and y ≤ x; every inequal-

ity x ≤ y can be replaced by x + y = y. Therefore, different encodings of demonic

refinement algebra axioms are possible. Previous experiments with more than 500 the-

orems in Kleene algebras (e.g. [14,17]) suggest that an equational encoding is usually

sufficient for finding ATP proofs of simple theorems. However, more complex theorems

often succeed only with the inequational encoding. An equational encoding uses the

same idempotent semiring axioms, except the definition of order, but replaces some of

the iteration axioms as follows.

formulas(sos). % equational iteration axioms for DRA

1+x;x* = x*. % Kleene star
1+x*;x = x*.
(x;y+z)+y = y -> x*;z+y = y.

(y;x+z)+y = y -> z;x*+y = y.
x’ = 1+x;x’. % strong iteration

y+(x;y+z) = x;y+z -> y+x’;z = x’;z.
x’ = x*+x’;0.

end_of_list.

In practice, in order to obtain ATP proofs of the more difficult refinement laws

described in this paper, further lemmas must sometimes be added to the axioms. Useful

additions could be reflexivity and transitivity of the order, isotonicity of all operations

or the case analysis law (1). We have developed a set of 31 lemmas that are useful for

refinement. In the context of formal methods, all additional lemmas must be previously

proved from the axioms. To do this, the eleven ATP systems were all given the 31

lemmas to prove. We used computers with a 2.8 GHz Intel Pentium 4 CPU, with 1GB

memory, running a Linux 2.6 operating system. We set a CPU time limit of 300 s,

which is known to be sufficient for the ATP systems to prove almost all the theorems

they would be able to prove even with a significantly higher limit [39]. The results of

this experiment are shown in Table 1; a number indicates that a proof is found in that

time; a “–” indicates that the system reaches the time limit or gives up before. The

ATP system E proved all 31 lemmas, thus establishing their validity. The last lemma,

proved only by E, also appears as the basic refinement law Eq16b in Section 4.

4 A Basic Refinement Toolkit

This section reports on our development of a toolkit of meaningful basic refinement

laws within demonic refinement algebras. Since they automatically hold in Back and

von Wright’s refinement calculus, they are available for a wide range of applications.

These laws provide the appropriate level of abstraction for proving more complex re-

finement laws, and for developing and analysing concrete refinements of programs and

software systems. Practitioners of refinement will immediately recognise some of them

as standard refinement laws. They can often replace the more low-level and less specific

induction or coinduction axioms of demonic refinement algebras.

We have previously used ATP to develop and verify a toolkit of laws for several

variants of Kleene algebras with the right zero axiom. Many of these laws are also

valid in demonic refinement algebras. The Prover9 output files, for instance, present

all hypotheses needed for individual proofs; so this can readily be checked. Table 1

contains some of the laws for demonic refinement algebra that have been automatically

verified. For instance, x ≤ 1∞ says that each demonic refinement algebra has a greatest

element, namely 1∞. Additional laws can be found at our website [16].

8 T
a
b
le

1
C

o
m

p
a
ri

so
n

o
f
A
T

P
S
y
st

em
s

o
n

B
a
si

c
R

efi
n
em

en
t

L
aw

s

System E Famp. Prover9 Vamp. Otter SPASS Geo Eq’x iPro. l’CoP Metis
0 + x = x 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
x∞ = 1 + x∞x 3.8 24.4 – 206.7 – 7.5 – – – – –
x ≤ y ⇒ x + z ≤ y + z 0.0 0.2 0.0 0.1 0.2 – 7.3 – – – –
x ≤ y ⇒ z + x ≤ z + y 0.0 0.2 0.0 0.1 0.2 – 99.4 – – – –
x ≤ y ⇒ xz ≤ yz 0.1 0.2 0.0 0.4 0.5 6.8 – 39.8 20.2 6.5 61.2
x ≤ y ⇒ zx ≤ zy 0.1 0.2 0.0 0.4 0.4 7.0 50.7 1.1 8.9 6.5 –
x ≤ y ⇒ x∗ ≤ y∗ 40.7 6.2 50.5 50.7 3.3 10.5 – – – – –
x ≤ y ⇒ x∞ ≤ y∞ 5.4 39.2 202.0 27.3 – – – – – – –
x + y ≤ z ⇔ x ≤ z ∧ y ≤ z 0.0 0.2 53.4 0.1 18.5 – – – – – –
x ≤ x 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 5.6
x ≤ y ∧ y ≤ z ⇒ x ≤ z 0.0 0.1 0.0 0.1 0.1 0.0 15.6 6.6 – 166.4 68.2
x = y ⇔ x ≤ y ∧ y ≤ x 0.0 0.1 0.1 0.8 0.1 14.2 0.1 0.0 20.9 0.6 7.2
1 ≤ x∗ 0.0 0.1 0.0 0.9 0.1 0.0 1.5 – – – 20.2
x ≤ x∗ 0.0 0.3 0.1 86.1 1.0 0.2 37.4 – – – –
x∗∗ = x∗ 1.6 0.3 199.9 85.8 5.0 12.1 – – – – –
x∗x∗ = x∗ 0.2 0.5 57.9 0.8 5.3 12.4 – – – – –
xx∗ ≤ x∗ 0.0 0.1 0.0 0.6 0.1 0.0 – – – – –
xy ≤ y ⇒ x∗y ≤ y 25.5 0.1 0.0 1.2 0.1 0.0 – 0.4 0.7 8.2 –
yx ≤ y ⇒ yx∗ ≤ y 0.2 0.1 0.0 0.6 0.1 0.0 – 0.1 0.7 6.4 –
0∗ = 1 0.0 0.1 0.0 0.8 0.1 0.0 0.1 0.0 1.0 0.2 0.0
1∗ = 1 0.0 0.1 1.2 0.8 0.8 0.1 0.2 0.2 0.5 – –
x ≤ 1∞ 0.1 0.1 0.2 1.0 0.1 0.0 1.6 – 176.6 – –
1∞x = 1∞ 1.0 0.1 0.5 1.2 0.2 0.1 0.8 0.6 – – –
x∞∞ = 1∞ 0.3 0.1 2.0 0.8 0.5 1.0 13.8 – – – –
x∗∞ = 1∞ 0.4 0.4 1.9 1.0 1.6 0.9 14.6 – – – –
0∞ = 1 0.0 0.1 0.0 0.8 0.1 0.0 0.0 0.0 0.8 0.4 0.0
x∞x∞ = x∞ 19.9 24.1 268.9 – 4.7 14.1 – – – – –
1 ≤ x∞ 0.0 0.1 0.0 0.6 0.1 0.0 3.2 – – – 11.0
x∞∗ = x∞ 20.0 24.1 269.1 146.4 – – – – – – –
x∗x∞ = x∞ 0.3 0.5 57.8 80.4 3.7 12.3 – – – – –
x∞y∞ ≤ (x + y)∞ 63.6 – – – – – – – – – –
Proved 31 30 29 29 27 25 17 12 11 10 9

9

The main focus of this work is the verification of complex refinement laws for

concurrent systems, in particular action systems. In this context, the expressions (x +

y)∗ or (x + y)∞ denote the repeated concurrent execution of two actions x and y.

Concurrency refinement can often be analysed in three phases:

1. the deconstruction of concurrency into interleaving;

2. the transformation and refinement of interleaving;

3. the reconstruction of concurrency.

We have used automated deduction to verify a toolkit of basic refinement laws that

supports refinement at all three phases. More precisely, all these laws are theorems of

demonic refinement algebras. Most of these laws have already been proved manually

by von Wright [42]. Though often short and concise, manual proofs can be surprisingly

difficult and require some familiarity with Kleene algebras. The laws are as follows.

– Sliding laws slide loops over sequences:

x(yx)∗ = (xy)∗x, (2)

x(yx)∞ = (xy)∞x, (3)

(x∗
y)∞ = y

∗(x∗
y)∞. (4)

– Denesting laws deconstruct and reconstruct concurrency:

(x + y)∗ = x
∗(yx

∗)∗, (5)

(x + y)∞ = x
∞(yx

∞)∞, (6)

(x + y)∞ = (x∗
y)∞x

∞
, (7)

(x + y)∗ = y
∗
x(x + y)∗ + y

∗
, (8)

(x + y)∞ = y
∗
x(x + y)∞ + y

∞
. (9)

– Simulation laws are fundamental for data refinement:

yx ≤ xz ⇒ y
∗
x ≤ xz

∗
, (10)

xy ≤ zx ⇒ xy
∗
≤ z

∗
x, (11)

xy ≤ zx ⇒ xy
∞

≤ z
∞

x, (12)

yx ≤ xy ⇒ y
∗
x
∗
≤ x

∗
y
∗
, (13)

yx ≤ xy ⇒ y
∞

x
∞

≤ x
∞

y
∞

. (14)

A dual law of (12), yx ≤ xz ⇒ y∞x ≤ xz∞, does not hold in demonic refinement

algebra. Mace4 presents a counterexample with 3 elements.

– Semicommutation laws combine denesting with simulation:

yx ≤ xy ⇒ (x + y)∗ ≤ x
∗
y
∗
, (15)

yx ≤ xy ⇒ (x + y)∞ ≤ x
∞

y
∞

. (16)

Since x∗y∗ ≤ (x + y)∗ and x∞y∞ ≤ (x + y)∞ (this has also been automatically

verified), the right-hand sides can even be strengthened to equalities.

– Blocking laws express that if y is always blocked by x, then x before an iteration

of y reduces to x:

xy = 0 ⇒ xy
∗ = x, (17)

xy = 0 ⇒ xy
∞ = x. (18)

10

The eleven ATP systems mentioned in Section 3 were used to search for proofs

of these laws. As a general rule of thumb, human reasoning in Kleene algebras and

demonic refinement algebras is usually inequational. We therefore split the 17 laws into

inequalities where possible, but also kept the equational variants, which are particularly

hard for the ATP systems. In sum, this yields 41 expressions as proof goals. We tried to

prove them using only the demonic refinement algebra axioms as hypotheses. We used

the same machines as in Section 3, again with a 300 s CPU time limit. The results are

presented in Table 2. Part “a” of an equation is the case s ≤ t, part “b” is t ≤ s, part

“c” is the equation s = t. Implications containing an equation are split in a similar

way, i.e., u ⇒ s = t is split to an implication u ⇒ s ≤ t, and an inequality t ≤ s

without an antecedent.

The different ATP systems show dramatically different behaviours. On these more

difficult proof tasks, the best three systems are clearly Prover9, Fampire, and Vampire.

These three systems also perform well on the basic lemmas in Section 3, confirming

their suitability for these ATP tasks. Prover9 and Fampire each prove some laws that

no other system can handle, and in combination they prove 23 of the 41 laws. Most

of the laws they cannot prove are equations, and these laws are largely covered by the

corresponding pair of inequational proofs. Most of the remaining systems are able to

prove only some simple refinement laws. In combination, Prover9 and Fampire appear

to have all the ATP power available for proving these types of theorems, and we selected

Prover9 for the more complex refinement laws in the remaining sections of this paper. It

is interesting that E, which can prove all of the basic lemmas in Section 3, is less capable

on these more difficult experiments. The results generally suggest that theorem proving

in variants of Kleene algebras presents an interesting challenge for ATP systems, and

is already feasible for some ATP systems.

To prove the remaining unproved laws, we used Prover9 with a 3000 s time limit,

in some cases removed unnecessary axioms from the input, and in some cases used a

hypothesis learning approach.

This approach is based on the following fact about first-order logic: A goal cannot

be proved from a set of axioms and lemmas if and only if there is some model in which

all axioms and lemmas are true and the goal is false. For hypothesis learning we use

the finite model generator Mace4 [22] for model search. We start with a small set of

axioms, lemmas, and the negated conjecture, and run Mace4. If a model is found then

we add more axioms or lemmas. This continues until no model is found, at which point

an ATP system (Prover9 in this case) is used to search for a proof. If the ATP system is

unsuccessful we repeat the procedure to find another selection of axioms and lemmas.

When a proof is found, the selection of axioms and lemmas, along with the conjecture,

may be passed to the SRASS system [36] to extract a minimal but sufficient set of

axioms and lemmas for a proof. In this paper we apply a manual form of hypothesis

learning. An automation of these techniques is possible, but left for future work.

Using various combinations of the increased time limit, removal of axioms, and

hypothesis learning, we were able to prove all the remaining laws. The results and

methods used for each law are shown in Table 3. An equational law was considered to

be proved if the pair of corresponding inequalities was proved., e.g., Prover9 could prove

Eq02a and Eq02b, which together imply Eq2c (Equation (2)). For these (and all further)

proof experiments with Prover9 we used a computer with a 3.0 GHz Intel Pentium 4

CPU, with 2GB memory and hyper-threading, running a Linux 2.6 operating system.

The first column of Table 3 names the law to be proved, and the second column

is the CPU time taken for the successful proof. The third column indicates if some

11

Table 2 Comparison of ATP Systems on Basic Refinement Laws

System Prover9 Famp. Vamp. E Metis Otter SPASS Geo Eq’x l’CoP iPro.
Eq02a 0.0 – 117.4 – – – – – – – –
Eq02b 3.6 – – – – – – – – – –
Eq02c – – – – – – – – – – –
Eq03a 0.0 – 117.4 – – – – – – – –
Eq03b – – – – – – – – – – –
Eq03c – – – – – – – – – – –
Eq04a 0.0 0.2 0.0 0.0 24.5 0.8 0.2 – – – –
Eq04b 245.9 40.4 – – – – – – – – –
Eq04c – 206.6 – – – – – – – – –
Eq05a – 19.9 117.6 – – – – – – – –
Eq05b 0.1 – 117.4 – – – – – – – –
Eq05c – – – – – – – – – – –
Eq06a – – – – – – – – – – –
Eq06b – 19.6 117.6 – – – – – – – –
Eq06c – – – – – – – – – – –
Eq07a 1.8 – – – – – – – – – –
Eq07b – – – – – – – – – – –
Eq07c – – – – – – – – – – –
Eq08a 214.7 – – – – – – – – – –
Eq08b 0.0 18.3 117.4 – – – – – – – –
Eq08c – – – – – – – – – – –
Eq09a 1.8 115.7 – – – – – – – – –
Eq09b – 20.4 – – – – – – – – –
Eq09c – – – – – – – – – – –
Eq10 44.2 88.7 – – – – – – – – –
Eq11 4.8 102.9 – – – – – – – – –
Eq12 – – – – – – – – – – –
Eq13 – – – – – – – – – – –
Eq14 – – – – – – – – – – –
Eq15a – – – – – – – – – – –
Eq15b 177.3 183.9 43.1 110.5 – – – – – – –
Eq15c – – – – – – – – – – –
Eq16a – – – – – – – – – – –
Eq16b – – – 62.8 – – – – – – –
Eq16c – – – – – – – – – – –
Eq17a 0.0 0.1 0.0 0.0 39.4 0.3 0.0 6.2 0.1 201.9 2.2
Eq17b 0.0 0.2 0.1 0.0 66.0 0.7 0.2 7.7 – – –
Eq17c 0.1 0.1 0.1 0.0 0.4 0.3 0.3 257.3 1.4 233.1 –
Eq18a 0.2 0.1 0.1 0.3 86.0 0.7 0.3 55.3 11.4 – –
Eq18b 0.0 0.2 0.1 0.0 57.2 1.2 0.3 23.5 – – –
Eq18c 0.2 0.1 0.1 0.3 0.4 0.8 0.3 54.7 11.3 – –
Proved 19 17 14 9 7 7 7 6 4 2 1

unnecessary axioms were removed from the input: “+” stands for some removal and “–”

indicates no removal. The remaining columns indicate if lemmas were added. The fourth

column indicates if the case analysis law (1) was added. The fifth column indicates if

some isotonicity laws were added. The last column indicates if some previously proved

laws were added. We distinguish these cases since the case analysis law and isotonicities

are basic properties that are needed quite often and could, in principle, always be added

to enhance proof search. Adding these laws alone, Prover9 can verify three additional

refinement laws, as Table 3 shows. Again we refer to our website for details on the

machine proofs.

12

Table 3 Requirements for the remaining proofs using Prover9

t[s] axioms. cases iso. laws
Eq03b 76.2 + – – +
Eq05a 14.3 – + – –
Eq06a 0.0 – + – +
Eq06b 46.1 + + – +
Eq07b 0.0 + – – +
Eq09c 7.6 + + + –
Eq12 866.6 – – – –
Eq13 0.0 – – – +
Eq14 17.9 – – – +
Eq15a 376.9 + + + –
Eq16a 216.2 + – + –
Eq16b 38.5 – + + –

5 Denesting in Detail

Table 2 shows that no ATP system was able to prove Eq6b directly from the axioms.

Here, for the sake of simplicity, we discuss an ATP proof of a symmetric denesting law,

namely

(x + y)∞ ≤ (x∞
y)∞x

∞
,

from which the non-trivial part of Equation (6) follows in one step by applying Equa-

tion (3).

We use this example to present a typical machine proof and to discuss its translation

into an equational textbook-style proof. The proof could be found by Prover9 without

any restrictions, that is, from the axiom set

formulas(sos).
x+y = y+x & x+(y+z) = (x+y)+z & x+0 = x & x+x = x.

x;(y;z) = (x;y);z & x;1 = x & 1;x = x.
x;(y+z) = x;y+x;z & (x+y);z = x;z+y;z.

0;x = 0 & x<=y <-> x+y = y.

1+x;x* = x* & 1+x*;x = x*.
(x;y+z <= y -> x*;z <= y) & (y;x+z <= y -> z;x* <= y).
x’ = 1+x;x’ & (y <= x;y+z -> y <= x’;z).

x’ = x*+x’;0.
end_of_list.

Prover9 immediately found the following proof.

1 x + y = y + x & x + (y + z) = (x + y) + z & x + 0 = x & x + x = x

label(non_clause) [assumption]
2 x ; (y ; z) = (x ; y) ; z & x ; 1 = x & 1 ; x = x

label(non_clause) [assumption]
3 x ; (y + z) = x ; y + x ; z & (x + y) ; z = x ; z + y ; z

label(non_clause) [assumption]
4 0 ; x = 0 & x <= y <-> x + y = y # label(non_clause) [assumption]
5 x’ = 1 + x ; x’ & (y <= x ; y + z -> y <= x’ ; z) # label(non_clause) [assumption]

6 (x + y)’ <= (x’ ; y)’ ; x’ # label(non_clause) # label(goal) [goal]
7 x + y = y + x [clausify 1]

8 (x + y) + z = x + (y + z) [clausify 1]
9 x + x = x [clausify 1]
10 (x ; y) ; z = x ; (y ; z) [clausify 2]

11 x ; 1 = x [clausify 2]
12 x ; (y + z) = x ; y + x ; z [clausify 3]

13 x ; y + x ; z = x ; (y + z) [copy 12, flip]
14 (x + y) ; z = x ; z + y ; z [clausify 3]

15 x ; y + z ; y = (x + z) ; y [copy 14,flip]

13

16 x <= y | x + y != y [clausify 4]

17 x’ = 1 + x ; x’ [clausify 5]
18 1 + x ; x’ = x’ [copy 17,flip]

19 -(x <= y ; x + z) | x <= y’ ; z [clausify 5]
20 -((c1 + c2)’ <= (c1’ ; c2)’ ; c1’) [deny 6]

21 x + (y + z) = y + (x + z) [para 7 8, rewrite 8]
22 x ; (1 + y) = x + x ; y [para 11 13, flip]
23 x <= x [hyper 16 9]

24 -((c1 + c2)’ <= c1’ ; (1 + c2 ; (c1 + c2)’)) [ur 19 20, rewrite 10 7 22]
25 -((c1 + c2)’ <= (c1 + c2)’) [ur 19 24, rewrite 21 15 18]

26 $F [resolve 25 23]

Of course, this proof represents only a tiny part of the proof search, which consisted

of about 250 inferences.

The machine proof, based on ordered resolution and paramodulation, is not in-

tended to be readable for humans, but can easily be retranslated into a textbook-style

equational proof. The essential part of the machine proof starts at line 24. First, to

prove the goal, it suffices by strong coinduction to show that

(x + y)∞ ≤ x
∞

y(x + y)∞ + x
∞ = x

∞(1 + y(x + y)∞).

This step corresponds to line 24 of the machine proof, using the instance of the dis-

tributivity law in line 22.

Second, applying strong coinduction again, it suffices to show that

(x + y)∞ ≤ x(x + y)∞ + y(x + y)∞ + 1.

This corresponds to the main step leading to line 25. The additional rewriting steps

performed use the expressions at line 21, 15 and 18, that is, associativity, distributivity

and strong unfold, to transform the right-hand side of this equation via

x(x + y)∞ + y(x + y)∞ + 1 = (x + y)(x + y)∞ + 1 = (x + y)∞

into the right-hand side at line 25. This finishes the equational proof, whereas in the

resolution proof, line 25 contradicts reflexivity of ≤ and yields the empty clause by

resolution. Interestingly, the equational reconstruction of the machine proof is simpler

and shorter than a previous manual proof [42].

6 Data Refinement

Data refinement is the correctness-preserving replacement of abstract data types like

sets in specifications by concrete ones, for instance arrays, lists or heaps, in implemen-

tations. Data types are observable through the effects of their operations on states, they

can also be initialised and finalised with respect to a global state space. An abstract

data type is refined by a concrete one if all sequences of operations on the abstract

data type (including initialisation and finalisation) can safely be replaced by a cor-

responding sequence on the concrete data type. This criterion can be made local by

introducing abstraction relations between inputs and outputs of the operations at the

abstract level and those at the concrete level. Further information can be found in the

books by Back and von Wright [3] and by de Roever and Engelhardt [9].

Back and von Wright have presented several laws for data refinement of action sys-

tems in the predicate transformer setting of their refinement calculus [3]. One of these

laws has already been translated into demonic refinement algebras by von Wright. Here,

14

we present an automated proof of this law. We now leave the level of axiomatic demonic

refinement algebras and predominantly work at the more abstract level of basic refine-

ment laws. Hypothesis learning becomes essential for guiding the ATP system. This

analysis of the data refinement law illustrates the applicability of our refinement toolkit,

and, based on previous work on diagrammatic reasoning with Kleene algebras [31,12],

it also shows that the usual refinement diagrams can in principle be recovered from the

ATP output.

The data refinement law can be written as follows.

Theorem 6.1 In any demonic refinement algebra, let b∞ = b∗, za′ ≤ az, zb ≤ z,

s′ ≤ sz and ze′ ≤ e. Then

s
′(a′ + b)∞e

′
≤ sa

∞
e.

The first hypothesis says that b cannot loop infinitely (we call this behaviour weak

termination in Section 9). The second hypothesis says that a is data refined by a′ with

respect to upward simulation z. By the third hypothesis, 1 is data refined by b. The

fourth and fifth condition expresses the standard data refinement of initialisations and

finalisations.

Manual hypothesis learning can greatly be simplified by some knowledge about

data refinement. It can be expected that some forms of denesting and semicommutation

will suffice for deconstructing and reconstructing concurrency. For the transformation

of interleaving, simulation laws seem highly relevant, whereas the laws of the additive

monoid seem rather irrelevant and could be discarded. The effect of the star and strong

iteration axioms might be captured by simulation laws, so that these axioms could be

discarded, too. Based on trial and error, it turns out that the following set of demonic

refinement algebra axioms and additional refinement laws suffices for a proof. From

the original set of axioms, we use only the multiplicative associativity axiom and a

simple version of one of the star induction laws. As in Section 5, we use reflexivity and

transitivity. We also use isotonicity of multiplication, finite and strong iteration, and

we add the Equations (6) and (12).

formulas(sos).

x;(y;z) = (x;y);z. % commutativity
x;y<=x -> x;y*<=x. % simple induction

x <= x. % reflexivity
x<=y & y<=z -> x<=z. % transitivity.

x<=y -> x;z<=y;z. % isotonicity
x<=y -> z;x<=z;y.
x<=y -> x*<=y*.

x<=y -> x’<=y’).
(x+y)’ = y’;(x;y’)’. % Equation (6)

z;y<=x;z -> z;y’<=x’;z. % Equation (12)
end_of_list.

From this set of support, Prover9 found a 36-step proof that could again be retranslated

into an equational proof. Initialisation and finalisation can be separated from the loop

refinement. They imply that it suffices to show that sz(a′ + b)∞e′ ≤ sa∞ze′ and

therefore, by isotonicity,

z(a′ + b)∞ ≤ a
∞

z.

The left-hand side of this expression can be denested and, using the assumptions b∞ =

b∗, zb ≤ z and the simulation law, be simplified to

z(a′ + b)∞ = zb
∞(a′b∞)∞ = zb

∗(a′b∗)∞ ≤ z(a′b∗)∞.

15

But z(a′b∗)∞ ≤ a∞z follows from the strong simulation law and za′b∗ ≤ azb∗ ≤ az.

This algebraic reasoning can easily be translated into diagrams, as used in term

rewriting (cf. [40]) and refinement (cf. [3]). The usefulness of Kleene algebras for dia-

grammatic reasoning has been demonstrated in [12]. In particular, glueing of diagrams

along edges corresponds to isotonicity reasoning. Therefore, the following diagrams de-

scribe the transition from the succedent of the data refinement theorem to the analysis

of the infinite loop.� � �� � �s0 (a0 + b)1 e0s a1 e � � �� � �s0 (a0 + b)1 e0s a1 ez z� �� �(a0 + b)1
a1z z

The next sequence of diagrams describes essentially the reasoning in the above sequence

of equations. � �� ��b� (a0b�)1
a1z z � �� ��b� (a0b�)1

a1z zz
The last two diagrams describe the calculation from the simulation assumption to the

loop via the strong simulation law (12).� �� �(a0b�)1
a1z z � �� � �a0 b�az z z

The correspondence between algebra and diagrams could be made more precise by

putting the refinement laws into diagrammatic form. Demonic refinement algebras

would then yield an algebraic semantics for these diagrams and ATP would automate

this semantics. A further elaboration of this correspondence seems very promising for

proof visualisation.

7 Atomicity Refinement

In 1989 Back proved a rather complex atomicity refinement theorem for action systems

by reasoning over sequences of program states in infinitary logic [2]. This proof spreads

16

over several pages. It has been replayed later at the level of predicate transformers

and in demonic refinement algebras [42,43], where it still fills almost two pages. Our

automated analysis reveals some errors in this proof and allows us to eliminate some

unnecessary hypotheses. The following theorem presents a cleaned-up version of Back’s

atomicity refinement theorem in demonic refinement algebras.

Theorem 7.1 In any demonic refinement algebra, let s ≤ sq, a ≤ qa, qb = 0, rb ≤ br,

(a + r + b)l ≤ l(a + r + b), rq ≤ qr, ql ≤ lq, r∗ = r∞ and q ≤ 1. Then

s(a + r + b + l)∞q ≤ s(ab
∞

q + r + l)∞.

A discussion and explanation of this law can be found in Back’s original article [2]. For

ATP, a semantic understanding is irrelevant. Given the length of von Wright’s proof

in demonic refinement algebra it is no surprise that ATP systems do not succeed in

one full sweep. However, an automated proof with Prover9 up to the reconstruction of

concurrency is possible. We therefore split Theorem 7.1 into two steps.

Lemma 7.1 In any demonic refinement algebra,

(i) s(a + r + b + l)∞q ≤ sl∞qr∞q(ab∞qr∞)∞ follows from the hypotheses of Theo-

rem 7.1 except q ≤ 1;

(ii) if q ≤ 1. then sl∞qr∞q(ab∞qr∞)∞ ≤ s(ab∞q + r + l)∞.

Obviously, the hypothesis q ≤ 1 is particularly dangerous in proof search, since 1 can be

added everywhere in sequences and then weakened to q. As before, the proofs heavily

rely on hypothesis learning. The following hypotheses can be used for both proofs.

formulas(sos).
x+(y+z) = (x+y)+z & x+y = y+x.
x;1 = x & 1;x = x & x;(y;z) = (x;y);z & 0;x = 0.

x <= x & (x<=y & y<=z -> x<=z).
(x<=y -> x;z<=y;z) & (x<=y -> z;x<=z;y) & (x<=y -> x’<=y’).

end_of_list.

formulas(sos).
(x’;y’) <= (y+x)’. % trivial part of semicommutation (page 5)
x;(y;x)’ = (x;y)’;x. % Equation (3)

(x+y)’ = x’;(y;x’)’. % Equation (6)
y;x<=x;z -> y*;x<=x;z*. % Equation (10)

x;y<=z;x -> x;y’<=z’;x. % Equation (12)
y;x<=x;y -> (x+y)’=x’;y’. % Equation (16) (strengthened)
x;y=0 -> x;y’=x. % Equation (18)

end_of_list.

The goal for Lemma 7.1(i) is

formulas(goals).

all a all b all l all q all r all s(
a<=q;a & r;b<=b;r & (a+(r+b));l<=l;(a+(r+b)) & r;q<=q;r

& r*=r’ & q;l<=l;q & q;b=0 & s<=s;q
->

s;(((a+(r+b))+l)’;q) <= (s;(l’;q));((r’;q);((a;b’);(q;r’))’)).
end_of_list.

We also keep the full set of assumption in the proof of Lemma 7.1(ii), although this is

not strictly necessary.

formulas(goals).
all a all b all l all q all r all s(

a<=q;a & r;b<=b;r & (a+(r+b));l<=l;(a+(r+b)) & r;q<=q;r
& r*=r’ & q;l<=l;q & q;b=0 & s<=s;q & q<=1

->
(s;(l’;q));((r’;q);((a;b’);(q;r’))’) <= s;(((a;b’);q+r)+l)’).

end_of_list.

17

A machine proof of Lemma 7.1(i) required about 1100 s and 75 steps.

Although this resolution and superposition proof is not particularly readable for

humans, it inspires the following equational proof that gives an impression of the

complexity of reasoning involved.

s(a + b + r + l)q = sl
∞(a + b + r)∞q

= sl
∞(b + r)∞a(b + r)∞)∞q

= sl
∞

b
∞

r
∞(ab

∞
r
∞)∞q

≤ sl
∞

b
∞

r
∞(qab

∞
r
∞)∞q

= sl
∞

b
∞

r
∞

q(ab
∞

r
∞

q)∞

≤ sql
∞

b
∞

r
∞

q(ab
∞

r
∞

q)∞

≤ sl
∞

qb
∞

r
∞

q(ab
∞

r
∞

q)∞

≤ sl
∞

qr
∞

q(ab
∞

r
∞

q)∞

= sl
∞

qr
∞

q(ab
∞

r
∗
q)∞

≤ sl
∞

qr
∞

q(ab
∞

qr
∗)∞

= sl
∞

qr
∞

q(ab
∞

qr
∞)∞.

The first step uses the semicommutation law (16). The second step uses the denesting

law (6). The third step uses again the semicommutation law (16) . The fourth step

uses the assumption a ≤ qa. The fifth step uses the sliding law (3). The sixth step uses

the assumption s ≤ sq. The seventh step uses the simulation law (12). The eighth step

uses the disabledness law (18) and the assumption qb = 0. The ninth step uses the

assumption r∞ = r∗. The tenth step uses the star simulation law (10). The eleventh

step uses again r∞ = r∗.

Given the length of the equational proof, the success of ATP seems rather im-

pressive. In general we find that machine proofs and their equational reconstructions

in textbook style differ by a length factor between 5 and 10. A main reason is that

term rearrangements due to associativity or commutativity are usually not displayed

in hand-written proofs.

The automated proof of Lemma 7.1(ii) is much simpler than that of (i). It required

a few milliseconds, has 30 steps and can be found at our web site. Its translation into

an equational proof is not particularly interesting. The combination of the two parts of

Lemma 7.1 has not been achieved, since the introduction of the additional assumption

q ≤ 1, which is needed in the second proof, leads to an explosion of the search space.

It might be possible to obtain a fully automated proof with a chaining-based prover,

which provides a more effective treatment of inequational reasoning. This, however, is

not available in state-of-the-art ATP systems. Therefore a fully automated proof search

for Back’s atomicity refinement law (Theorem 7.1) can be seen as a challenge for ATP

systems. Again, the proofs can be translated into diagrams, but we do not further

pursue this direction.

8 Atomicity Refinement Light

Our attempts to prove the atomicity refinement theorem led us to consider simplified

variants. Setting r = l = 0, an automated proof can be obtained in a few seconds.

Setting only l = 0, Theorem 7.1 simplifies as follows.

18

Proposition 8.1 Let s = sq, a = qa, qb = 0, (a + b)l ≤ l(a + b), ql ≤ lq and q ≤ 1.

Then

s(a + b + l)∞q = s(ab
∞

q + l)∞.

A fully automated proof of this statement is now possible. The input file, based on

hypothesis learning, is

formulas(sos).

x;1 = x & 1;x = x & x;(y;z) = (x;y);z.
x <= x & (x<=y & y<=z -> x<=z).

end_of_list.

formulas(sos).

y<=1 -> (x;y);z<= x;z. % one with context
z;(x’;y’)<=z;(y+x)’. % trivial part of semicommutation with context

x;(y;x)’=(x;y)’;x. % Equation (3)
(x+y)’= y’;(x;y’)’. % Equation (6)
x;y<=z;x -> (v;(x;y’));w<=(v;(z’;x));w. % Equation (12) with context

y;x <= x;y -> (y+x)’=x’;y’. % Equation (16)
x;y = 0 -> x;y’=x. % Equation (18)

end_of_list.

To shorten the proof search, contexts are hard-coded into the rules to avoid the free

generation of unnecessary contexts by the isotonicity laws. The proof goal is

formulas(goals).
all s all a all b all l all q

(s=s;q & a=q;a & q;b = 0 & (a+b);l<=l;(a+b) & q;l <= l;q & q<=1
->

s;(((a+b)+l)’;q)<=s;((a;b’);q+l)’).
end_of_list.

The proof took 187 s and has 46 steps. Since the machine proof is again not particularly

readable, we will only present its equational translation and refer the interested reader

to our web site.

s(a + b + l)∞q = sl
∞(a + b)∞q

= sl
∞

b
∞(ab

∞)∞q

= sl
∞

b
∞(qab

∞)∞q

= sl
∞

b
∞

q(ab
∞

q)∞

= sql
∞

b
∞

q(ab
∞

q)∞

≤ sl
∞

qb
∞

q(ab
∞

q)∞

= sl
∞

qq(ab
∞

q)∞

≤ sl
∞(ab

∞
q)∞

= s(ab
∞

q + l)∞.

The first step applies the semicommutation law (16). The second step uses the denesting

law (6). The third step uses the assumption a = qa. The fourth step uses the sliding law

(3). The fifth step uses the assumption sq = s. The sixth step uses the simulation law

(12). The seventh step uses the assumption qb = 0 and the disabledness law (18). The

eight step uses the assumption q ≤ 1. The last step uses isotonicity and x∞x∞ = x∞.

The assumptions a = qa and sq = s could again, as in the case of Theorem 7.1, be

weakened to s ≤ sq and a ≤ qa.

19

9 A New Loop Refinement Law

Using different variants of Kleene algebras, Bachmair and Dershowitz’s classical termi-

nation theorem, which can be expressed and proved in variants of Kleene algebras [31],

has recently been automated [32]. This theorem states that termination of the union

of two rewrite system can be separated into termination of the individual systems if

one rewrite system quasicommutes over the other. The proof in Kleene algebra is justi-

fied since the termination theorem appeals solely to relational aspects of rewriting and

because relations under union, relational product and the reflexive-transitive-closure

operation together with the empty relation and the unit relation form a Kleene alge-

bra. As in the case of Back’s atomicity refinement theorem, Bachmair and Dershowitz’s

original proof was based on an intricate semi-formal analysis of infinite chains of rewrite

steps and a later formal proof [26] involves an infinitary variant of Ramsey’s theorem.

So the abstract algebraic proofs present a considerable abstraction and simplification

and it is no surprise that they solved a well-known challenge in the area [6].

In this section we generalise the previous proofs for demonic refinement algebras

from quasicommutation to a notion of weak quasicommutation and therefore obtain and

automatically prove stronger statements. Since we are working in demonic refinement

algebras, for reasons discussed in Section 2, this generalisation does not extend to

relational models, whence not to rewriting. Nevertheless, the results are immediately

relevant as refinement laws in Back and von Wright’s refinement calculus.

Generalising Bachmair and Dershowitz’s relational notion, we say that an element

x of a demonic refinement algebra quasicommutes over an element y if

yx ≤ x(x + y)∗. (19)

For demonic refinement algebras, the following weaker concept is even more interesting.

An element x weakly quasicommutes over an element y if

yx ≤ x(x + y)∞. (20)

The following fact is an immediate consequence of the isolation axiom; Prover9 needed

about 150 s for a proof.

Lemma 9.1 Let x and y be elements of some demonic refinement algebra. Then x

quasicommutes over y if x weakly quasicommutes over y.

Mace4 showed that a similar relationship does not hold in other variants of Kleene

algebras, including those providing the relational semantics that underly Bachmair

and Dershowitz’s termination theorem.

Termination, as appropriate for rewrite systems, can be expressed in omega alge-

bras and divergence modules by adding an operation for strictly infinite iteration, but

termination can of course be expressed in demonic refinement algebras as well, and

even in two different ways. We say that

– x weakly terminates if x∞ = x∗,

– x strongly terminates if x∞0 = 0.

Lemma 9.2 If an element of a demonic refinement algebra strongly terminates, then

it weakly terminates, but not conversely.

20

Table 4 Demonic refinement algebra with 3 elements

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 2
2 2 2 2

∗

0 1
1 1
2 2

∞

0 1
1 2
2 2

Implication of weak termination by strong termination could be shown in almost no

time by Prover9. Mace4 presented a demonic refinement algebra with three elements

that refutes the implication of strong termination by weak termination; it is shown in

Table 4.

Strong and weak termination yield two variants of the termination theorem that

are relevant to the refinement calculus. We first consider that for strong termination.

Theorem 9.1 Let x and y be elements of some demonic refinement algebra and let

x weakly quasicommute over y. Then x + y strongly terminates if and only if x and y

strongly terminate.

An automated proof from the full set of demonic refinement algebra axioms with

Prover9 took about 1000 s for the right-to-left direction and 37 s for its converse, which

is a trivial application of isotonicity. The machine proof of the non-trivial right-to-left

direction is surprisingly short. For presenting a corresponding equational proof, the

following fact about weak quasicommutation is very useful:

yx ≤ x(x + y)∞ ⇔ y
∗
x ≤ x(x + y)∞. (21)

The right-to-left direction trivially follows from y ≤ y∗. For the converse direction, it

suffices by star induction to show that x+yx(x+y)∞ ≤ x(x+y)∞. The first summand

of the left-hand side is smaller than the right-hand side, since 1 ≤ (x + y)∞. For the

second summand, yx(x+y)∞ ≤ x(x+y)∞(x+y)∞ = x(x+y)∞ by quasicommutation.

Prover9 needed almost no time for a proof.

With this preparation, the proof of Theorem 9.1 is then a one-liner.

(x+y)∞ = y
∞+y

∗
x(x+y)∞ ≤ y

∞+x(x+y)∞(x+y)∞ = y
∞+x(x+y)∞ = x

∞
y
∞

.

The first step uses (9). The second step uses (21). The third step uses x∞x∞ = x∞.

The fourth step uses strong coinduction. Now strong termination of x and y implies

(x + y)∞0 = x∞y∞0 = x∞0 = 0, which finishes the proof.

The first part of the equational proof of Theorem 9.1, before termination comes

into play, is interesting in its own right. So we turn it into a theorem.

Theorem 9.2 Let x and y be elements of some demonic refinement algebra and let x

weakly quasicommute over y. Then

(x + y)∞ = x
∞

y
∞

.

Prover9 needed about 600 s from the full axiom set without any additional hypotheses.

Theorem 9.2 is a new refinement theorem for (potentially) infinite loops. It says

that in the presence of weak quasicommutation, loops in which actions x and y are

nondeterministically executed can be separated into loops of x followed by loops of

y. The assumption of weak quasicommutation is quite general. It subsumes not only

21

quasicommutation, but also conditions of the form yx = xy, which express indepen-

dence of actions x and y, and conditions of the form yx ≤ xy, yx ≤ xy∗, yx ≤ xy∞,

yx ≤ xx∗y∗ or yx ≤ xx∞y∞, which express preference of x over y.

Theorem 9.2 immediately implies a variant of Theorem 9.1 for weak termination.

Corollary 9.1 Let x and y be elements of some demonic refinement algebra and let x

weakly quasicommute over y. Then x+y weakly terminates if x and y weakly terminate.

Prover9 needed 4000 s to prove this corollary from Theorem 9.2. A manual proof is as

follows. Let x∞ = x∗ and y∞ = y∗. Then, by Theorem 9.2,

(x + y)∞ ≤ x
∞

y
∞ = x

∗
y
∗
≤ (x + y)∗(x + y)∗ ≤ (x + y)∗,

whereas (x + y)∗ ≤ (x + y)∞ follows from isolation.

The converse of Corollary 9.1 does not hold. Mace4 presented again the counterex-

ample from Table 4. Therefore the theorem for weak termination is indeed weaker than

that for strong termination.

Since, by Lemma 9.2, weak quasicommutation implies quasicommutation, all state-

ments proved in this section hold a forteriori for quasicommutation. These less general

statements and statements related to standard Kleene algebras with an operation for

strictly infinite iteration have previously been automated [32]. Work based on an in-

fluential paper of Podelski and Rybalchenko [26] shows that such termination and

refinement theorems have immediate relevance for the termination analysis of concrete

programs. The development and verification of such laws is therefore more than an

abstract mathematical exercise.

10 Conclusion

We have shown that a substantial part of the calculus of demonic refinement algebras

can be mechanised in ATP systems, that a useful toolkit of basic refinement laws can be

developed and be automatically verified in this setting, and that some refinement laws

of considerable complexity can automatically be developed and verified. In particular,

this verification led to the simplification of some known proofs, to the discovery of new

refinement laws and to the discovery of some errors in previous theorems and proofs

(in the relational setting, an error in a soundness proof for data refinement in the

book of de Roever and Engelhardt has also been discovered with the use of ATP and

counterexample search [17]). This suggests that large parts of Back and von Wright’s

original refinement calculus can also effectively be automated and that automated

deduction provides an innovative technology for program refinement. We expect that

these result scale to the analysis and refinement of probabilistic programs and protocols

that can be based on similar algebraic formalisms [23].

A second contribution consists in the evaluation and comparison of eleven state-

of-the-art ATP systems on the algebraic refinement proofs in the context of Kleene

algebras. Beyond the overall success, our experiments reveal significant differences in

their performance. While some ATP systems were able to prove a substantial number

of theorems within reasonable time limits, most of the systems could only prove some

simple theorems. One might therefore conclude that automated theorem proving with

Kleene algebras presents an interesting challenge for ATP systems. Because of the

immediate relevance of these proofs for formal methods and automated termination

22

analysis, one might further argue that the combination of Kleene algebras and sim-

ilar algebraic structures with off-the-shelf ATP systems presents a novel verification

challenge with considerable potential for formal software development.

A further significant contribution of this paper consists of the research questions

that arise from these results.

From the refinement point of view, certainly the most interesting question is how far

the present automation results for refinement laws scale to the refinement of concrete

algorithms and protocols. To this end, extensive case studies must be undertaken and it

might be helpful to integrate the automated approach into interactive theorem proving.

From the ATP point of view, the integration of order-based reasoning [1,30] might

drastically improve the performance on verification tasks that are strongly based on

inequational reasoning, for instance with isotonicity. The example of refinement shows

that automated reasoning with inequalities is perhaps more difficult, but surely not less

interesting than its equational counterpart. Also, an integration of concrete data struc-

tures and data types, such as numbers, lists, arrays, queues and their handling through

standard interfaces would be very useful. This supports research in the SMT style of

automated reasoning [27]. Moreover, ATP systems should be complemented by tools

that automatically select the necessary axioms and useful lemmas, since that seems

indispensable for more advanced proof tasks. Tools such as SRASS and MaLARea [41]

are steps in this direction. Finally, further experiments seem necessary to identify a

standard “working set” of hypotheses about demonic refinement algebras that is most

useful and powerful in practice.

An obvious question concerns the relevance and trustworthiness of machine proofs

that occur in our approach. The first question is rather philosophical: Should unread-

able machine proofs replace human proofs? The second question seems more pragmatic:

Should we trust the results provided by ATP systems that are certainly complex and

therefore error-prone? The answer to the first question depends on the context. For

program verification, when the existence of a proof is more important than its content,

machine proofs are usually acceptable. As to the second question, current research [7]

addresses the post-verification of ATP output by interactive proof checkers, which are

much simpler than ATP systems such that their soundness can easily be checked by

humans. Semantic verification of proofs by trusted ATP systems provides a similar

assurance of correctness [34]. Due to the fine granularity of machine proofs, this post

verification can be entirely automatic.

Acknowledgements We are very grateful to Tony Hoare for his comments and encourage-
ment.

References

1. L. Bachmair and H. Ganzinger. Ordered chaining calculi for first-order theories of transitive
relations. J. ACM, 45(6):1007–1049, 1998.

2. R.-J. Back. A method for refining atomicity in parallel algorithms. In E. Odijk, M. Rem,
and J.-C. Syr, editors, Parallel Architectures and Languages Europe, volume 366 of Lecture
Notes in Computer Science, pages 199–216. Springer, 1989.

3. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Graduate
Texts in Computer Science. Springer, 1998.

4. R.-J. Back and J. von Wright. Reasoning algebraically about loops. Acta Informatica,
36(4):295–334, 1999.

23

5. K. Claessen. Equinox, A New Theorem Prover for Full First-Order Logic with Equality.
2005.

6. E. Cohen. Omega algebra: The good, the bad, and the ugly. In R. Backhouse, D. Kozen,
and B. Möller, editors, Applications of Kleene Algebra, Report of the Dagstuhl Seminar
01081, page 5, 2001.

7. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of automated
termination proofs. In B. Konev and F. Wolter, editors, Frontiers of Combining Systems,
6th International Symposium, volume 4720 of Lecture Notes in Artificial Intelligence,
pages 148–162. Springer, 2007.

8. H. de Nivelle and J. Meng. Geometric Resolution: A Proof Procedure Based on Finite
Model Search. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes in Artificial
Intelligence, pages 303–317. Springer, 2006.

9. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge University Press, 2001.

10. J. Desharnais and G. Struth. Domain axioms for a family of near-semirings. In J. Meserguer
and G. Roşu, editors, Algebraic Methodology and Software Technology (AMAST 2008),
volume 5140 of Lecture Notes in Computer Science, pages 330–345. Springer, 2008.

11. J. Desharnais and G. Struth. Modal semirings revisited. In P. Audebaud and C. Paulin-
Mohrig, editors, Mathematics of Program Construction (MPC 2008), volume 5133 of Lec-
ture Notes in Computer Science, pages 360–387. Springer, 2008.

12. M. Ebert and G. Struth. Diagram chase in relational system development. Electronic
Notes in Theoretical Computer Science, 127:87–105, 2005.

13. P. Höfner. Automated reasoning for hybrid systems — Two case studies. In R. Bergham-
mer, B. Möller, and G. Struth, editors, Relations and Kleene Algebra in Computer Science,
volume 4988 of Lecture Notes in Computer Science, pages 191–205. Springer, 2008.

14. P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In F. Pfenning, editor,
Automated Deduction (CADE 21), volume 4603 of Lecture Notes in Artificial Intelligence,
pages 279–294. Springer, 2007.

15. P. Höfner and G. Struth. Can refinement be automated? Electronic Notes in Theoretical
Computer Science, 201:197–222, 2007.

16. P. Höfner and G. Struth. Algebraic reasoning with Prover9 (proof database).
<http://www.dcs.shef.ac.uk/∼georg/ka>, 10 September 2008.

17. P. Höfner and G. Struth. On automating the calculus of relations. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Automated Deduction (IJCAR 2008), volume
5196 of Lecture Notes in Computer Science, pages 50–66. Springer, 2008.

18. J. Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In M. Archer,
B. Di Vito, and C. Munoz, editors, Proceedings of the 1st International Workshop on
Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-
2003-212448 in NASA Technical Reports, pages 56–68, 2003.

19. K. Korovin. Implementing an Instantiation-based Theorem Prover for First-order Logic.
In C. Benzmüller, B. Fischer, and G. Sutcliffe, editors, Proceedings of the 6th International
Workshop on the Implementation of Logics, number 212 in CEUR Workshop Proceedings,
pages 63–63, 2006.

20. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Information and Computation, 110(2):366–390, 1994.

21. W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Ar-
gonne National Laboratory, Argonne, USA, 2003.

22. W.W. McCune. Prover9 and Mace4. <http://www.cs.unm.edu/∼mccune/prover9>, 10
September 2008.

23. A. K. McIver, C. Gonzalia, E. Cohen, and C. C. Morgan. Using probabilistic Kleene
algebra pKA for protocol verification. J. Logic and Algebraic Programming, 76(1):90–111,
2008.

24. J. Otten and W. Bibel. leanCoP: Lean Connection-Based Theorem Proving. Journal of
Symbolic Computation, 36(1-2):139–161, 2003.

25. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Communi-
cations, 15(2-3):79–90, 2002.

26. A. Podelski and A. Rybalchenko. Transition invariants. In LICS ’04: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, pages 32–41. IEEE
Computer Society, 2004.

24

27. S. Ranise and C. Tinelli. Satisfiability Modulo Theories. Trends and Controversies - IEEE
Intelligent Systems Magazine, 21(6):71–81, 2006.

28. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Commu-
nications, 15(2-3):91–110, 2002.

29. S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111–126, 2002.
30. G. Struth. Deriving focused calculi for transitive relations. In A. Middeldorp, editor,

Rewriting Techniques and Applications, 12th International Conference, volume 2051 of
Lecture Notes in Computer Science, pages 291–305. Springer, 2001.

31. G. Struth. Abstract abstract reduction. Journal of Logic and Algebraic Programming,
66(2):239–270, 2006.

32. G. Struth. Reasoning automatically about termination and refinement. In S. Ranise,
editor, 6th International Workshop on First-Order Theorem Proving, Technical Report
ULCS-07-018, Department of Computer Science, pages 36–51. University of Liverpool,
2007.

33. G. Struth. Modal tools for separation and refinement. Electronic Notes in Theoretical
Computer Science, 214C:81–101, 2008.

34. G. Sutcliffe. Semantic Derivation Verification. International Journal on Artificial Intelli-
gence Tools, 15(6):1053–1070, 2006.

35. G. Sutcliffe. The CADE-21 Automated Theorem Proving Competition. AI Communica-
tions, 21(1):71–82, 2008.

36. G. Sutcliffe and Y. Puzis. SRASS - A Semantic Relevance Axiom Selection System. In
F. Pfenning, editor, Proceedings of the 21st International Conference on Automated De-
duction, volume 4603 of Lecture Notes in Artificial Intelligence, pages 295–310. Springer,
2007.

37. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.
38. G. Sutcliffe and C.B. Suttner. The TPTP problem library: CNF Release v1.2.1. Journal

of Automated Reasoning, 21(2):177–203, 1998.
39. G. Sutcliffe and C.B. Suttner. Evaluating General Purpose Automated Theorem Proving

Systems. Artificial Intelligence, 131(1-2):39–54, 2001.
40. Terese, editor. Term Rewriting Systems. Cambridge University Press, 2003.
41. J. Urban. MaLARea: a Metasystem for Automated Reasoning in Large Theories. In

J. Urban, G. Sutcliffe, and S. Schulz, editors, Proceedings of the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories, pages 45–58, 2007.

42. J. von Wright. From Kleene algebra to refinement algebra. In E. A. Boiten and B. Möller,
editors, Mathematics of Program Construction, volume 2386 of Lecture Notes in Computer
Science, pages 233–262. Springer, 2002.

43. J. von Wright. Towards a refinement algebra. Science of Computer Programming, 51(1-
2):23–45, 2004.

44. C. Weidenbach, B. Gaede, and G. Rock. SPASS and FLOTTER. In M. McRobbie and
J.K. Slaney, editors, Proceedings of the 13th International Conference on Automated De-
duction, volume 1104 of Lecture Notes in Artificial Intelligence, pages 141–145. Springer,
1996.

45. C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. SPASS Version
3.0. In F. Pfenning, editor, Proceedings of the 21st International Conference on Auto-
mated Deduction, volume 4603 of Lecture Notes in Artificial Intelligence, pages 514–520.
Springer, 2007.

	1.pdf
	Struth_Automated

