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Falling towards Forgetfulness: Synaptic Decay Prevents
Spontaneous Recovery of Memory
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Abstract

Long after a new language has been learned and forgotten, relearning a few words seems to trigger the recall of other
words. This ‘‘free-lunch learning’’ (FLL) effect has been demonstrated both in humans and in neural network models.
Specifically, previous work proved that linear networks that learn a set of associations, then partially forget them all, and
finally relearn some of the associations, show improved performance on the remaining (i.e., nonrelearned) associations.
Here, we prove that relearning forgotten associations decreases performance on nonrelearned associations; an effect we call
negative free-lunch learning. The difference between free-lunch learning and the negative free-lunch learning presented
here is due to the particular method used to induce forgetting. Specifically, if forgetting is induced by isotropic drifting of
weight vectors (i.e., by adding isotropic noise), then free-lunch learning is observed. However, as proved here, if forgetting is
induced by weight values that simply decay or fall towards zero, then negative free-lunch learning is observed. From a
biological perspective, and assuming that nervous systems are analogous to the networks used here, this suggests that
evolution may have selected physiological mechanisms that involve forgetting using a form of synaptic drift rather than
synaptic decay, because synaptic drift, but not synaptic decay, yields free-lunch learning.
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Introduction

The idea that structural changes underpin the formation of new

memories can be traced to the 19th century [1]. More recently,

Hebb proposed that ‘‘When an axon of cell A is near enough to

excite B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both

cells such that A’s efficiency, as one of the cells firing B, is

increased’’ [2]. It is now widely accepted that learning involves

some form of Hebbian adaptation, and a growing body of

evidence suggests that Hebbian adaptation is associated with the

long-term potentiation (LTP) observed in neuronal systems [3].

LTP is an increase in synaptic efficacy which occurs in the

presence of pre-synaptic and post-synaptic activity, and can be

specific to a single synapse. One consequence of Hebbian

adaptation is that information regarding a specific association is

distributed amongst many synaptic connections, and therefore

gives rise to a distributed representation of each association.

In [4], participants learned the layout of letters on a

‘‘scrambled’’ keyboard. After a period of forgetting, participants

relearned a subset of letter positions. Crucially, this improved

performance on the remaining (i.e., nonrelearned) letter positions.

However, whereas relearning some associations shows evidence of

FLL in some studies [4–6], this is not found in not all studies [7].

This discrepancy may be because the many studies performed to

investigate this general phenomenon use a wide variety of different

materials and procedures, with some measuring recall and others

measuring recognition performance, for example. However,

within the realms of psychology, one relevant effect is known as

part-set cueing inhibition.

Part-set cueing inhibition [8] occurs when a subject is exposed

to part of a set of previously learned items, which is found to

reduce recall of nonrelearned items. However, [9] showed that a

learned row of words was better recalled if the cues consisted of a

subset of words placed in their learned positions than if cue words

were placed in other positions. In this case, part-set cueing seems

to improve performance, but only if each ‘‘part’’ appears in the

spatial position in which it was originally learned. This position-

specificity is consistent with the FLL effect reported using the

‘‘scrambled keyboard’’ procedure in [4] but has no obvious

concomitant in network models (e.g., [4,10,11]).

If the brain stores information as distributed representations,

then each neuron contributes to the storage of many associations.

Therefore, relearning some old and partially forgotten associa-

tions should affect the integrity of other associations learned at

about the same time. As noted above, previous work has shown

that relearning some forgotten associations does not disrupt other

associations, but partially restores them. This FLL effect has also

been demonstrated in neural network models ([10,12]), where it

can accelerate evolution of adaptive behaviors [13]. Crucially, in

[12], the proof that relearning some associations partially restores

other associations assumes that forgetting is caused by the

addition of isotropic noise to connection weights, which could

result from the cumulative effect of small random changes in

connection weights. In contrast, here we prove that if forgetting

is induced by shrinking weights towards zero, so that weights
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‘‘fall’’ towards the origin, then relearning some associations

disrupts other associations.

The protocol used to examine FLL here is the same as that used

in [4] and [12] and is as follows (see Figure 1). First, learn a set of

n1+n2 associations A=A1<A2 consisting of two subsets A1 and A2 of

n1 and n2 associations, respectively. After all learned associations A

have been partially forgotten, measure performance error on

subset A1. Finally, relearn only subset A2 and then remeasure

performance on subset A1. FLL occurs if relearning subset A2
improves performance on A1.

In order to preclude a common misunderstanding, we

emphasize that, for a network with n connection weights, it is

assumed that n$n1+n2 ; that is, the number of connection weights

on each output unit is not less than the number n1+n2 of learned

associations. Using the class of linear network models described

below, up to n associations can be learned perfectly (see [12]).

The proofs below refer to a network with one output unit.

However, these proofs apply to networks with multiple output

units, because the n connections to each output unit can be

considered as a distinct network, in which case our results can be

applied to the network associated with each output unit.

Definition of Performance Error
Each association consists of an input vector x and a

corresponding target value d. For a network with weight vector

w, the response to an input vector x is y=w?x. We define the

performance error for input vectors x1,…,xk and desired outputs

d1,…,dk to be

E x1, . . . ,xk;w,d1, . . . ,dkð Þ~
Xk

i~1

yi{dið Þ2, ð1Þ

where yi=w?xi is the output response to the input vector xi. By

putting X= (x1,…,xk)
T, d= (d1,…,dk)

T and

E X;w,dð Þ~E x1, . . . ,xk;w,d1, . . . ,dkð Þ

we can write Equation 1 succinctly as

E X;w,dð Þ~ Xw{dk k2 ð2Þ

The two subsets A1 and A2 consist of n1 and n2 associations,

respectively. Let w0 be the network weight vector after A1 and A2
are learned. When A1 and A2 are forgotten, the network weight

vector changes to w1, say, and the performance error on A1
becomes Epre=E(X;w1,d). Finally, relearning A2 yields a new

weight vector, w2, say, and the performance error on A1 is

Epost=E(X;w2,d). Free-lunch learning has occurred if perfor-

mance error on A1 is less after relearning A2 than it was before

relearning A2 (i.e., if Epost,Epre).

Given weight vectors w1 and w2, a matrix X of input vectors,

and a vector d of desired outputs, define

d w1,w2;X,dð Þ~Epre{Epost ð3Þ

which we shall also refer to simply as d.

In previous work [12], we assumed that the ‘‘forgetting vector’’

v (defined as v=w12w0) has an isotropic distribution. Here we

shall assume instead that the post-forgetting weight vector w1 is

given by

w1~rw0 ð4Þ

for some (possibly random) scalar r, so that

v~ r{1ð Þw0 ð5Þ

and therefore

w1~w0{ 1{rð Þw0 ð6Þ

The interpretation of Equation 6 is that forgetting consists of

making the optimal weight vector w0 ‘‘fall’’ towards the origin by a

falling factor 12r.

F
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t
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im
e

Test A1

Relearn A2

Test A1

Learn

A1+A2

Epre

Epost

Figure 1. Free-lunch learning protocol. Two subsets of associa-
tions A1 and A2 are learned. After partial forgetting (see text),
performance error Epre on subset A1 is measured. Subset A2 is then
relearned to pre-forgetting levels of performance, and performance
error Epost on subset A1 is re-measured. If Epost,Epre then FLL has
occurred, and the amount of FLL is d= Epre2Epost. Redrawn from [12].
doi:10.1371/journal.pcbi.1000143.g001

Author Summary

If you learn a skill, then partially forget it, does relearning
part of that skill induce recovery of other parts of the skill?
More generally, if you learn a set of associations, then
partially forget them, does relearning a subset induce
recovery of the remaining associations? In previous work,
in which participants learned the layout of a scrambled
computer keyboard, the answer to this question appeared
to be ‘‘yes.’’ More recently, we modeled this ‘‘free-lunch
learning’’ effect using artificial neural networks, in which
the synaptic strength between each pair of model neurons
is a connection weight. We proved that if forgetting is
induced by allowing each weight value to drift randomly,
then free-lunch learning is almost inevitable. However, if,
after learning a set of associations, forgetting is induced by
allowing each connection weight to decay or fall toward
zero, then relearning a subset of associations decreases
performance on the remaining associations. This suggests
that evolution may have selected physiological mecha-
nisms that involve forgetting using a form of synaptic drift
rather than synaptic decay, because synaptic drift yields
free-lunch learning, whereas decay does not.

Falling towards Forgetfulness
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Results

We provide theoretical results, and compare these with results

obtained using computer simulations. In essence, our theoretical

and simulation results indicate that falling weights induce negative

FLL, which decreases with the square of the falling factor 12r.

Theoretical Results
Our two main theorems are summarised here, and proofs are

provided in the Methods section. These theorems apply to a

network with n weights which learns n1+n2 associations A=A1<A2,

and then after partial forgetting, relearns the n2 associations in A2.

We prove that if n1+n2#n (so that, in general, the associations A1
and A2 are consistent) and the joint distribution of (X1,d1) is

isotropic (where X1 and d1 are the matrix of inputs and the vector

of desired outputs for subset A1 of associations) then the expected

value of d is negative (recall that d is defined in Equation 3). We

then prove that the probability P(d,0) that d is negative

approaches unity as n1 approaches ‘.

Theorem 1
For every non-zero value of r, the expected value of d given r is

negative. More precisely,

E d rj½ �!{ 1{rð Þ2
n1

n
, ð7Þ

with equality only in trivial cases, and where the constant of

proportionality is guaranteed to be positive. Thus, the expected

amount of FLL is negative (or zero).

From a physiological perspective, the case r,1 is obviously of

interest because it represents synaptic weight decay. However,

from a mathematical perspective, Theorem 1 applies to every

value of r, and so it also holds for r.1. In other words, any

movement of the weight vector w along the the line connecting w0

to the origin yields an expectation of negative FLL, in accordance

with Theorem 1.

Theorem 2
Under mild conditions on the distributions of the input/output

pairs (X1,d1) and (X2,d2),

P d w1,w2;X1,d1ð Þ§0ð Þƒ
n

n21

4E ~xxk k2
h i

E xk k2
h i E d1k k2

h i
E d2k k{2
h i

z
n1 2 n{1ð Þz3nc nð Þ½ �

n nz2ð Þ

0
@

1
A,

ð8Þ

where x and ~xx are any columns of XT
1 and X

T
2 , respectively, and

c nð Þ~
var xk k2

� �

E xk k2
h i2 :

Theorem 2 implies that, if (i) the number (n1) of associations in A1
is a fixed non-zero proportion ( n1/n ) of the number n of connection

weights, (ii) E[Id1I
2]E[Id2I

22] is bounded as n R ‘, and (iii) c(n)

R 0 as nR ‘ then P(d.0)R 0 as nR ‘, i.e., the amount of FLL is

negative, with a probability which tends to 1 as n R ‘.

For example, if we assume that (i) each input vector

x= (x1,…,xn) is chosen from an isotropic Gaussian distribution

and (ii) the variance of xi is s
2
x then c(n) = 2/n, E xk k2

h i
~E ~xxk k2

h i
,

and E[Id1I
2]E[Id2

I
22] = n1/(n221). This ensures that P(d.0)

R 0 as n R ‘.

Simulation Results
Simulation was carried out on a network with n input units and

one output unit. The set A of associations consisted of k input

vectors (x1,…,xk) and k corresponding desired scalar output values

(d1,…,dk). Each input vector comprised n elements x= (x1,…,xn).

The values of xi and di were chosen from a Gaussian distribution

with unit variance (i.e., s2x~s2d~1). A network’s output yi is a

weighted sum of input values yi~w:xi~
P

k
j~1wjxij , where xij is

the jth component of the ith input vector xi, and each weight wj is

the connection between the jth input unit and the output unit.

Given that the network error for a given set of k associa-

tions is E w,Að Þ~
P

k
i~1 di{yið Þ2, the derivative +E wð Þ~

2
P

k
i~1 di{yið Þxi of E with respect to w yields the delta learning

rule wnew~wold{g+E woldð Þ, where g is the learning rate, which is

adjusted according to the number of weights.

However, in order to save time, we used an equivalent learning

method. Learning of the k= n associations in A=A1<A2 was

performed by solving a set of n simultaneous equations using a

standard method, after which the weight vector w0 was obtained;

this provided perfect performance on all n associations. Partial

forgetting was induced by making weights ‘‘fall’’ towards the origin

w1= rw0, after which performance error was Epre. Relearning the

n2= n/2 associations in A2 was implemented with k= n2 as above,

after which performance error was Epost.

In each simulation, each value in each input vector xi, and each

target value di was chosen from the same isotropic gaussian

distribution with unit variance. There were 100 input units, and

one output unit. The subsets A1 and A2 each consisted of 50

associations. The value of d=Epre2Epost was obtained in each of

100 simulations, using a different random seed for each

simulation. In Figure 2, the mean of 100 values of d is shown

for various values of the falling factor 12r.

The Geometry of Forgetting
We present a brief account of the geometry which underpins the

results reported here, for a network with two input units and one

output unit, as shown in Figure 3A. This network learns two

associations A1= (X1,d1) and A2= (X2,d2).

Figure 3B provides a geometric example of how relearning A2
increases the error on A1. After learning A1 and A2, w=w0. The

effects of forgetting and relearning can be seen by ignoring the 6

superscripts and subscripts for now. After partial forgetting,

w=w1, and performance error Epre= p2. Relearning A2 yields

w2, the orthogonal projection of w1 on to L2, and performance

error is Epost= q2. FLL occurs if d=Epre2Epost.0, or equivalently

if p22q2.0 (see [12], Appendices A–C for proofs). Forgetting here

consists of reducing w0 by a factor r,1, so that w1= rw0.

The plus and minus signs in Figure 3B refer to two versions Az

1

and A{

1 of association A1, in which X1 is the same and the target d1
has the same magnitude, but opposite signs: Az

1 ~ X1,zd1ð Þ and
A{

1 ~ X1,{d1ð Þ.
We now find the expected change in error induced by

relearning a given association A2. After learning Az

1 ,A2

� �

followed by forgetting, the change in error on Az

1 after relearning

A2 is d
z
~d w

z

1 ,wz

2 ;X1,zd1
� �

. After learning A{

1 ,A2

� �
followed

by forgetting, the change in error on A{

1 after relearning A2 is

d{~d w
{

1 ,w{

2 ;X1,{d1
� �

. Using similar triangles in Figure 3B,

pz~ 1{rð Þd1, qz~ 1{rð Þ d1{eð Þ ð9Þ

Falling towards Forgetfulness
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p{~ 1{rð Þd1, q{~ 1{rð Þ d1zeð Þ ð10Þ

Therefore, the total change in error on Az

1 and A{

1 induced by

relearning A2 (on different occasions) is

dzzd{~ p2
z
{q2

z

� �
z p2

{
{q2

{

� �
ð11Þ

~{2 1{rð Þ2e2 ð12Þ

v0 ð13Þ

Irrespective of the precise value of the target output value d1 in A1,
if the distribution of d1 is isotropic then +d1 is as probable as2d1. If

the total change in error for two instances (Az

1 and A{

1 ) of A1 is

22(12r)2e2 then the expected change (conditional on e ) is

E[d|e] =2(12r)2e2. Therefore, if forgetting is induced by falling

weight values, then the expected change in error E[d],0.

Discussion

We have proved and demonstrated that, in one of the simplest

forms of neural network model, relearning part of a previously

learned set of associations reduces performance on the remaining

non-relearned associations. This result is in stark contrast to our

previous results, which proved that relearning induced partial

recovery of non-relearned items [12]. The only difference between

these two studies is the way in which forgetting was induced.

An obvious physiological concomitant of Hebbian learning is

long-term potentiation (LTP), which seems to underpin learned

behaviors [14]. LTP can last for hours, days or even months, and

usually follows an exponential decay [3]. However, some forms of

LTP do not seem to decay [15], and have been shown to be stable for

up to one year [16]. Such stability is remarkable, but from a

statistical point of view, would almost certainly be accompanied by

random fluctuations which would have a cumulative effect over time;

and indeed, fluctuations are apparent in the stable LTP reported in

[16]. Crucially, it is not known if the forgetting of learned behaviors

is caused by decaying efficacy at many synapses, or by the

cumulative effect of random fluctuations in stable LTP-induced

synaptic efficacies. Here, decaying efficacy is analogous to weight

values that fall toward zero in network models, whereas the

cumulative effect of random fluctuations is analogous to the addition

of random noise, or drifting, of weight values in network models.

Given a choice between forgetting via synaptic weights that fall

towards zero and weights that drift isotropically, has evolution

chosen drifting or falling? If all other things were equal then

forgetting via synaptic drift would seem to be the obvious choice.

This is because drifting ensures that relearning a subset of

associations improves performance on other associations, whereas

falling decreases performance. However, other things are rarely

equal. The expected magnitude of weights increases with drifting but

decreases with falling. (Consider a hypersphere centered on the

origin, with radius Iw0I . Simple geometry shows that more than

half of all directions emanating fromw0 yield a new weight vectorw1

which lies outside the hypersphere, and therefore E[Iw1I].

E[Iw0I] (assuming, for example, that all vectors w12w0 have the

same length).) This decrease in weight magnitudes effectively reduces

neuronal firing rates, which reduces metabolic costs relative to costs

incurred by synaptic drift. Synaptic drift therefore confers mnemonic

benefits, but these benefits come at a metabolic price. Thus the

increased fitness gained from the mnemonic benefits of synaptic drift

must be offset against their metabolic costs. In essence, even free-

lunch learning comes at a price.

Methods

We proceed by deriving expressions for Epre, Epost, and for

d=Epre2Epost. We prove that if n1+n2#n then the expected value

of d is negative. We then prove that the probability P(d,0) that d

is negative approaches unity as n1 approaches ‘.

Performance Errors
Given a c6n matrix X and a c -dimensional vector d, let LX,d be

the affine subspace

LX,d~ w : X
T
Xw~X

T
d

� �

of Rn. If X and d are consistent (i.e., there is a w such that Xw=d)

then

LX,d~ w : Xw~df g

Given weight vectorsw1 and w2, a matrix X of input vectors, and a

vector d of desired outputs, define

d w1,w2;X,dð Þ~Epre{Epost

where Epre=E(X;w1,d) and Epost=E(X;w2,d). Let ~ww be any element

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

F
L
L
 
 
E
[

δ
/
n
1
|
r
]

Falling factor 1−r

Figure 2. Free-lunch learning decreases as the network’s
weight vector falls toward the origin. A network with 100 input
units and one output unit learns two subsets A1 and B2, each of which
consists of 50 associations. After learning A1 and A2, the network has a
weight vector w=w0, but after partial forgetting, the weight vector is
w=w1. If forgetting consists of subtracting a proportion 12r ofw0 such
that w1=w02(12r)w0 then the weight vector ‘‘falls’’ towards the
origin; the factor 12r is called the falling factor. After forgetting,
performance error on A1 is Epre, an error which changes to Epost after
relearning A2, where this change is d= Epre2Epost. Given that there are
A1 associations in A1, the expected free-lunch learning per association in
A1 is therefore E[d/n1|r]. Solid curve: the expected FLL, E[d/n1|r], where
this expectation is taken over 100 computer simulations. Dashed curve:
theoretical prediction of E[d/n1|r] (see Equation 7), using a constant of
proportionality equal to unity, so that the predicted free-lunch learning
is Epredict[d/n1|r] =2(12r)2. As predicted, free-lunch learning E[d/n1|r]
becomes more negative as the falling factor 12r increases.
doi:10.1371/journal.pcbi.1000143.g002

Falling towards Forgetfulness
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of LX,d. Then

d w1,w2;X,dð Þ~ Xw1{dk k2{ Xw2{dk k2

~ Xw1k k2{ Xw2k k2{2 w1{w2ð ÞTXT
d

~ w1{w2ð ÞTXT
X w1zw2ð Þ{2 w1{w2ð ÞTXT

Xeww

~ w1{w2ð ÞTXT
X w1zw2{2ewwð Þ:

ð14Þ

If Xi has rank ni then transposing the QR decomposition of XT
i

(or, equivalently, using Gram–Schmidt orthonormalisation of the

rows of Xi) gives

Xi~TiZi

for unique ni6ni and ni6n matrices Ti and Zi with Ti lower

triangular with positive diagonal elements, and ZiZ
T
i ~Ini . Simple

calculation shows that, for any weight vector w, In{ZiZ
T
i

� �
w and

ZiZ
T
i w are orthogonal. Since w~ In{ZiZ

T
i

� �
wzZiZ

T
i w, it

follows that the matrix Z
T
i Zi represents the operator that projects

orthogonally onto the image of ZT
i Zi. Because

Z
T
i ZiX

T
i Xi~X

T
i Xi, ð15Þ

the image of XT
i Xi is contained in that of ZT

i Zi. As both these

images have dimension ni, they must be equal, and so Z
T
i Zi

represents the operator which projects orthogonally onto the

image of XT
i Xi.

Now suppose that X and d are consistent, where

X~
X1

X2

� �
d~

d1

d2

� �
:

Then, after the network has learned A1 and A2, the weight

vector w0 satisfies

X1w0~d1 and X2w0~d2 ð16Þ

(If, as below, n1+n2#n, X2 and d2 are consistent, and (X1,d1) has a

continuous distribution then Equation 16 holds with probability 1.)

Falling
We now assume that forgetting is induced by weight values

‘‘falling’’ towards the origin at zero, i.e., forgetting consists of

shrinking the weight vector w0 by a (possibly random) factor r

towards the ‘‘dead state’’ 0. Thus the post-forgetting weight vector

w1 is given by

w1~rw0 ð17Þ

and so the ‘‘forgetting vector’’ v=w12w0 is

v~ r{1ð Þw0 ð18Þ

The form of forgetting given by Equation 17 is very different

from that investigated in [12], where v has an isotropic distribution

and is independent of (X1,d1) and (X2,d2).

Figure 3. Geometric example of how relearning A2 increases the error on A1. (A) A network with two input units and one output unit, with
connection weights va and vb defines a weight vector w= (va,vb). The network learns two associations A1 and A2. For example, A1 is the mapping
from input vector x1= (x11,x12) to desired output value d1, and learning A1 consists of adjustingw until the network output y1=w?x1 equals d1. (B) For
a given association A2= (X2,d2), the corresponding constraint line in the space defined by (va,vb) is L2. Irrespective of the precise value of the target
output value d1 in association A1, if d1 is distributed isotropically then +d1 is as probable as 2d1. When averaged over +d1 and 2d1, the change d in
error on A1 induced by relearning A2 can be shown to be 2(12r)2e2, where w1

6= rw0
6. Since this is less than zero, the expected change E[d|r],0.

(Figure 3A redrawn from [12]).
doi:10.1371/journal.pcbi.1000143.g003
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Let w2 be the orthogonal projection of w1 onto L2. Then

w2~w0z In{Z
T
2 Z2

� �
w1{w0ð Þ:

Manipulation gives

w1{w2~Z
T
2 Z2v, ð19Þ

and so

w1zw2{2w0~ 2In{Z
T
2 Z2

� �
v: ð20Þ

Then Equations 14, 16, and 18–20 yield

d w1,w2;X1,d1ð Þ

~v
T
Z

T
2 Z2X

T
1 X1 2In{Z

T
2 Z2

� �
v

~ 1{rð Þ2 T
{1
2 d2

� �T
Z2X

T
1 2d1{X1Z

T
2 T

{1
2 d2

� �

~ 1{rð Þ2 2 T
{1
2 d2

� �T
Z2X

T
1 d1{ T

{1
2 d2

� �T
Z2X

T
1 X1Z

T
2 T

{1
2 d2

n o

ð21Þ

The Case of Isotropic Random (X1,d1)
In this section we assume that the distribution of (X1,d1) is

isotropic, i.e., that (UX1V,Ud1) has the same distribution as

(X1,d1) for all orthogonal n16n1 matrices U and all orthogonal n6n

matrices V. Then taking the conditional expectation of Equa-

tion 21 for given X2, d2, and r gives the following theorem.

Theorem 1
If

1. n1+n2#n,

2. X2 and d2 are consistent,

3. the distribution of (X1,d1) is continuous and isotropic,

4. X1, d1, and (X2,d2,r) are independent.

then

E d w1,w2;X1,d1ð ÞjX2,d2,r½ �~{ 1{rð Þ2
n1

n
E xk k2
h i

T
{1
2 d2

		 		2,ð22Þ

where x is any column of XT
1 .

Corollary 1
If 1.-3. of Theorem 1 hold then

E d w1,w2;X1,d1ð ÞjX2,d2,r½ �ƒ0 ð23Þ

with equality if and only if either r=1 or d2=0.

Corollary 1 says that (apart from trivial exceptions) the expected

amount of FLL is negative.

To obtain Theorem 2, it is useful to have some moments of

isotropic distributions. Let x be isotropically distributed on R
n.

Then Equations 9.6.1 and 9.6.2 of Mardia and Jupp (2000),

together with some algebraic manipulation, yield

E x
T
Ax


 �
~

E xk k2
h i

tr Að Þ

n
ð24Þ

var x
T
Ax

� �
~

E xk k4
h i

ntr A
2

� �
zntr AA

T
� �

{2tr Að Þ2
n o

n2 nz2ð Þ

z

var xk k2
� �

tr Að Þ2

n2
,

ð25Þ

as in Equations A.14 and A.15 of [12].

The other tool used in proving Theorem 2 is the formula

var Y jXð Þ~E var Y jX ,Zð ÞjZ½ �zvar E Y jX ,Z½ �jZð Þ ð26Þ

for any random variables X,Y,Z for which these quantities exist.

Equation 26 is an application to the conditional distribution of

Y|Z of the standard conditional variance formula that is given in

Equation 2b.3.6 on page 97 of [17].

Taking the expectation and variance of Equation 21 as only d1

varies and using Equation 24 gives

E d w1,w2;X1,d1ð ÞjX1,X2,d2,r½ �

~{ 1{rð Þ2 Z
T
2 T

{1
2 d2

� �T
X

T
1 X1 Z

T
2 T

{1
2 d2

� �
,

ð27Þ

var d w1,w2;X1,d1ð ÞjX1,X2,d2,rð Þ

~4 1{rð Þ4
E d1k k2
h i

n1
Z

T
2 T

{1
2 d2

� �T
X

T
1 X1 Z

T
2 T

{1
2 d2

� �
:

ð28Þ

Taking the expectation of Equation 28 as only X1 varies and

using Equation 24 gives

E var d w1,w2;X1,d1ð ÞjX1,X2,d2,rð ÞjX2,d2,r½ �

~4 1{rð Þ4
E d1k k2
h i

E xk k2
h i

n
T
{1
2 d2

		 		2
:

ð29Þ

We now suppose that

the columns x1, . . . ,xn1 of X
T
1 are distributed

independently:
ð30Þ

Then taking the variance of Equation 27 as only X1 varies and

using Equation 25 gives

var E d w1, w2; X1, d1ð ÞjX1, X2, d2, r½ � X2, d2, rjð Þ

~n1 1{rð Þ4
T
{1
2 d2

		 		4

n2
E xk k4
h i 2 n{1ð Þ

nz2
zvar xk k2

� �� 
:

ð31Þ

Adding Equations 29 and 30 and using Equation 26 yields

var d w1,w2;X1,d1ð ÞjX2,d2,rð Þ

~ 1{rð Þ4
T
{1
2 d2

		 		2

n
| 4E d1k k2

h i
E xk k2
h i

z
n1

n
T
{1
2 d2

		 		2
�

E xk k4
h i 2 n{1ð Þ

nz2
zvar xk k2

� �� �
:

ð32Þ
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To obtain an upper bound on the conditional probability of

FLL (i.e., on P(d$0|X2,d2,r)), we use Chebyshev’s inequality,

which states that, for any random variable Y and any positive value

of t

P Y{E Y½ �j j§tð Þƒ
var Yð Þ

t2
:

Applying Chebyshev’s inequality to the conditional distribution

of d(w1,w2,X1,d1) given (X2,d2,r), taking t=E[d(w1,w2;X1,d1)

|X2,d2,r], and noting that (by Equation 23) t#0, we obtain

P d w1,w2;X1,d1ð Þ§0 X2,d2,rjð Þƒ

var d w1,w2;X1,d1ð Þ X2,d2,rjð Þ

E d w1,w2;X1,d1ð Þ X2,d2,rj½ �2
:

ð33Þ

Substituting Equations 22 and 32 into Equation 33 gives

P d w1,w2;X1,d1ð Þ§0 X2,d2,rjð Þ

ƒ
n

n21

4E d1k k2
h i

T
{1
2 d2

		 		2E xk k2
h iz n1 2 n{1ð Þz3nc nð Þ½ �

n nz2ð Þ

0
@

1
A,

ð34Þ

where

c nð Þ~
var xk k2

� �

E xk k2
h i2 :

For any positive-definite symmetric matrix A and vector x,

diagonalization of A, together with the fact that x+1/x$2 for

positive x, yields

x
T
Ax

� �
x
T
A

{1
x

� �
§ xk k4 ð35Þ

Combining Equations 34 and 35 with the fact that

T2T
T
2 ~X2X

T
2 gives

P d w1,w2;X1,d1ð Þ§0 X2,d2,rjð Þ

ƒ
n

n21

4E d1k k2
h i

d
T
2 X2X

T
2 d2

d2k k4E xk k2
h i z

n1 2 n{1ð Þz3nc nð Þ½ �

n nz2ð Þ

0
@

1
A,

ð36Þ

Taking the expectation of Equation 36 over X2 yields

P d w1,w2;X1,d1ð Þ§0 d2,rjð Þ

ƒ
n

n21

4E d1k k2
h i

E ~xxk k2
h i

d2k k2E xk k2
h i z

n1 2 n{1ð Þz3nc nð Þ½ �

n nz2ð Þ

0
@

1
A,

ð37Þ

where x and ~xx are any columns of XT
1 and X

T
2 , respectively.

Taking the expectation of Equation 37 over d2 and r yields the

following theorem.

Theorem 2
If (a) conditions 1.-4. of Theorem 1 hold, (b) the columns

x1, . . . ,xn1 of XT
1 are distributed independently, (c) X2, d2, and r

are independent, (d) the distribution of (X2,d2) is isotropic, and (e)

E[Id2I
22] is finite then

P d w1,w2;X1,d1ð Þ§0ð Þƒ
n

n21

4E ~xxk k2
h i

E xk k2
h i E d1k k2

h i
E d2k k{2
h i

z
n1 2 n{1ð Þz3nc nð Þ½ �

n nz2ð Þ

0
@

1
A,

ð38Þ

where x and ~xx are any columns of XT
1 and X

T
2 , respectively, and

c nð Þ~
var xk k2

� �

E xk k2
h i2 :

Corollary 2
If the conditions of Theorem 2 hold and

x*N 0,s2xIn
� �

, d1*N 0,s2xIn1
� �

,

~xx*N 0,s2xIn
� �

, d2*N 0,s2xIn2
� �

,

where x and ~xx are any columns of XT
1 and X

T
2 , respectively, then

P d w1,w2;X1,d1ð Þ§0ð Þƒ
2 2nzn2{2ð Þ

n1 n2{2ð Þ
:

Thus

P d w1,w2;X1,d1ð Þw0ð Þ?0, n??

provided that n1/n and n2/n are bounded away from zero.
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