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Nonlinear Current-Limiting Control for Grid-tied Inverters

Qing-Chang Zhong and George C. Konstantopoulos

Abstract— A current-limiting controller with nonlinear dy-
namics is proposed in this paper for single-phase grid-tied
inverters. The inverter is connected to the grid through an
LCL filter and it is proven that the proposed controller
can achieve accurate real and reactive power regulation. By
suitably selecting the controller parameters, it is shown by
using the nonlinear input-to-state stability theory that the
inverter current remains below a given value at all times. This
is achieved without external limiters, additional switches or
monitoring devices and the controller remains a continuous-
time system guaranteeing the boundedness of the system states.
Guidelines for selecting the controller parameters are also given
to provide a complete controller design procedure. Simulation
results of a single-phase grid-tied inverter are presented to
verify the desired power regulation of the proposed controller
and its current-limiting capability.

I. INTRODUCTION

The large-scale integration of renewable energy sources

to the power network during the last decades has started

to affect the stable operation of the grid. This has created

essential requirements for the grid-connected units to main-

tain the stability of the network. Since an inverter is usually

required to integrate the renewable energy sources to the grid,

several controllers have been proposed in the literature for

grid-tied inverters to achieve accurate real and reactive power

regulation [1], [2], [3]. Although in most of the times, unity

power factor is obtained, modern power networks require a

flexibility in controlling the reactive power of the inverter as

well [1], [2], [4], [5].

Nevertheless, the stability properties of most of the ex-

isting controllers for grid-tied inverters have not been ade-

quately exploited. The main reason is the increased complex-

ity of the closed-loop system due to the nonlinear dynamics

resulting from the calculation of the real and the reactive

power. Most of the existing approaches use small-signal

modeling of the system and linearization methods [6], [7],

[8], while recently, nonlinear analysis has been conducted

in order to strengthen the stability theory [9], [10], [11].

However, several assumptions are usually considered, such

as a purely inductive network or constant load and line

impedances, while the inner voltage and current control loops

are often neglected [12].
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Since in most of the cases, the grid is assumed to be

stiff, i.e., with relatively constant voltage and frequency, the

stability of the grid-tied inverter is directly related to the

injected current, which should remain below a given value at

all times. Although external limiters and saturation units can

be added into the traditional control approaches to achieve

the current-limiting property, these can lead to undesired

oscillations and instability, due to the lack of a rigorous

stability proof [13], [14]. Advanced nonlinear controllers,

such as passivity-based or feedback linearization methods,

can guarantee the asymptotic performance and the current-

limitation, but their dependence on the system parameters

and their complicated structure make them difficult to be

implemented in practice [9], [15], [16], [17], [18], [19]. As

a result, the proof of stability for grid-tied inverters operating

with an inherent current-limiting property and independently

from the system parameters, considering the nonlinear dy-

namic model of the system, represents a challenging task

and is investigated in the current paper.

A nonlinear control strategy for single-phase grid-tied

inverters is proposed in this paper to guarantee closed-loop

system stability in the sense of boundedness and a given limit

for the inverter current using the nonlinear dynamic model

description. The inverter is assumed to be connected to the

grid through an LCL filter, where the grid is assumed stiff

or at least with bounded voltage and frequency close to their

rated values. It is shown that the proposed controller can

guarantee accurate real and reactive power regulation to the

reference values. Particularly, a dynamic virtual resistance,

which changes according to a nonlinear expression, and

a phase shifting are designed and implemented based on

the plant dynamics. Using nonlinear input-to-state stability

theory, it is analytically proven that using a suitable controller

parameter selection, a given limit for the inverter current can

be guaranteed at all times, independently from the reference

values of the real and the reactive power. This also leads to

the proof of stability in the sense of boundedness for the

inverter current, the grid current and the output capacitor

voltage. In this way, the main tasks are achieved with an ad-

ditional mathematical analysis that limits the inverter current

below a given value, thus protecting the inverter and the filter

at all times. The significant difference between the proposed

controller and the existing virtual impedance methods is that

the dynamic form of the controller is embedded into the

virtual resistance and no additional voltage signals are added

in the control design for the real power regulation that further

complicate the closed-loop system analysis. Additionally,

no external limiters or monitoring systems are required for

limiting the inverter current, with the current-limiting being
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Fig. 1. Grid-tied inverter with LCL filter

an inherent property of the proposed controller, as it is

proven for the nonlinear closed-loop system. To complete

the design procedure, a guidance for selecting the controller

parameters is also presented. Extensive simulation results

are provided to verify the current-limiting property of the

proposed controller as well as its performance for several

changes of the reference values.

The rest of the paper is organized as follows. In Section II,

the dynamic model of the grid-tied inverter is presented and

the main problem addressed in the present paper is formu-

lated. In Section III, the nonlinear current-limiting controller

is proposed and analyzed. The current-limiting property is

proven and a framework for selecting the controller param-

eters is also presented. In Section IV, simulation results

are provided for a grid-tied inverter under the proposed

controller, while in Section V, some conclusions are drawn.

II. DYNAMIC MODELING AND PROBLEM FORMULATION

The system under consideration is a single-phase inverter

connected to the grid via an LCL filter as shown in Fig. 1.

The LCL filter consists of the inductances L and Lg with

small parasitic resistances in series r and rg , respectively, and

a capacitor C with a large parasitic resistance Rc in parallel.

The inverter output voltage and current are denoted as v and

i, respectively, vc is the capacitor voltage and vg and ig are

the grid voltage and current, respectively. Here, the grid is

considered stiff and as a result vg =
√
2Vg sinωgt, where

Vg is the root-mean-square (RMS) grid voltage and ωg is

the grid angular frequency, although these can vary slightly

from their rated values.

The dynamic model of the system is given by the following

equations:

L
di

dt
= −ri+ v − vc

C
dvc

dt
= i− vc

Rc

− ig (1)

Lg

dig

dt
= vc − rgig − vg,

which is obviously linear with state vector x =
[

i vc ig
]T

and control input the inverter voltage v,

while vg represents an uncontrolled external input.

For grid-tied inverters, the main task it to design a con-

troller that achieves accurate real and reactive power regu-

lation to some reference values Pset and Qset, respectively.

The measured real and the reactive powers P and Q are

usually obtained at the capacitor node as the average values

of the instantaneous power expressions over a period T ,

which for a single-phase inverter become:

P =
1

T

ˆ t+T

t

vc(τ)i(τ)dτ, (2)

Q =
1

T

ˆ t+T

t

vcq(τ)i(τ)dτ, (3)

where vcq is the the capacitor voltage delayed by π
2 rad. It is

obvious that the power expressions are nonlinear due to the

multiplication of the system states, resulting in a nonlinear

closed-loop system that is difficult to analyze in terms of

stability. This is the main reason why most of the existing

methods investigate the linearized model (small-signal) [6],

[7], [8]. Therefore, for a solid theory, stability analysis should

be conducted on the nonlinear system. The most challenging

issue in grid-tied inverter stability is the limitation of the

injected current below a given value. This is crucial for the

stable and reliable operation of the system, since it should

be proven at all times, i.e., during transients or changes of

the system parameters, to avoid damage of the inverter and

further instabilities at the power network.

The purpose of the proposed paper is to develop a

nonlinear control scheme that acts independently from the

system parameters, achieves the desired power regulation and

guarantees a given limit for the inverter current based on the

nonlinear dynamic model of the closed-loop system.

III. THE PROPOSED CURRENT-LIMITING CONTROLLER

A. Characteristics of the controller

In order to achieve the required performance with an

inherent current-limiting function, the following controller

is proposed

v = vc + (1− wq)(vg cos δ + vgq sin δ − wi), (4)

where vgq =
√
2Vg cosωgt and the variables w, wq and δ

represent the controller states with dynamics:

ẇ = −cw (Pset − P )w2
q (5)

ẇq =
cw(w−wm)wq

∆w2
m

(Pset−P )−kw

(

(w−wm)
2

∆w2
m

+w2
q−1

)

wq

(6)

δ̇ = −cδ (Qset −Q) , (7)

with cw, cδ , wm, ∆wm and kw being positive constants. The

initial conditions of w, wq and δ are defined as w0 = wm,

wq0 = 1 and δ0 = 0, respectively. Note that vgq can

be obtained using a traditional PLL. The PLL dynamics

are assumed much faster than the plant and the controller

dynamics, which is a common assumption in the analysis of

power converters [7], [12].

For system (5)-(6), by considering the Lyapunov function

candidate

W =
(w − wm)

2

∆w2
m

+ w2
q , (8)
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its time derivative yields

Ẇ = −2kw

(

(w − wm)
2

∆w2
m

+ w2
q − 1

)

w2
q . (9)

According to the initial conditions w0 and wq0, it results in

Ẇ = 0, ∀t ≥ 0,

which means that

W (t) = W (0) = 1, ∀t ≥ 0.

This implies that both w and wq start and stay on the ellipse

W0 =

{

w,wq ∈ R :
(w − wm)

2

∆w2
m

+ w2
q = 1

}

,

at all times as shown in Fig. 2. By choosing wm > ∆wm >

0, the ellipse is defined on the right-half plane resulting that

w ∈ [wmin, wmax] = [wm −∆wm, wm +∆wm] > 0 for

all t ≥ 0. Now, using the transformation

w = wm +∆wm sinφ

wq = cosφ,

it gives

φ̇ =
−cw (Pset − P )wq

∆wm

, (10)

which means that the states w and wq will travel on the

ellipse W0 with angular velocity φ̇. This indicates that

when P = Pset, then φ̇ = 0 and both w and wq can

converge to some constant values we and wqe, respectively,

corresponding to the desired equilibrium point.

It should be underlined that by starting from point (wm, 1)
on the w − wq plane, the controller states w and wq will

be restricted only on the upper semi-ellipse of W0. This is

due to the fact that the angular velocity φ̇ depends on wq

from (10) and if the states try to reach the horizontal axis,

then wq → 0 and φ̇ → 0 independently from the difference

Pset − P . This will make the controller states slow down

and remain on the upper semi-ellipse of W0, avoiding a limit

cycle behavior resulting from the controller dynamics, which

would lead to a continuous oscillation around W0. Therefore,

it is reasonable to state that wq ∈ [0, 1] for all t ≥ 0.

Additionally, the proposed controller introduces an inte-

gral structure in (7) to achieve the desired reactive power

regulation. Particularly, δ corresponds to the desired phase

shifting at the inverter voltage as it is better explained in the

analysis that follows.

B. Stability of the closed-loop system

Since vg =
√
2Vg sinωgt, then taking into account the

trigonometric identities the proposed controller (4) becomes

v = vc + (1− wq)(
√
2Vg sin(ωgt+ δ)− wi), (11)

which shows that the controller state δ introduces a necessary

phase shifting to the inverter voltage. By applying the

proposed controller (11) to the original plant dynamics (1),

the inverter current equation results in

L
di

dt
= − (r + (1− wq)w) i+ (1− wq)

√
2Vg sin(ωgt+ δ).

(12)

From the previous controller analysis, it holds true that w ∈
[wmin, wmax] > 0 and wq ∈ [0, 1] for all t ≥ 0. Dynamic

equation (12) dictates that the proposed controller introduces

a dynamic virtual resistance at the output of the inverter

given by the term (1 − wq)w, which changes according to

the nonlinear expressions (5)-(6).

For system (12), consider the Lyapunov function candidate

V =
1

2
Li2. (13)

Its time derivative results in

V̇ = − (r + (1− wq)w) i
2 + (1− wq)

√
2Vgi sin(ωgt+ δ)

≤−(r+(1−wq)wmin) i
2+(1−wq)

√
2Vg|i||sin(ωgt+δ)| .

This shows that V̇ < 0 when |i| > (1−wq)
√
2Vg|sin(ωgt+δ)|

r+(1−wq)wmin
,

proving that (12) is input-to-state stable (ISS) [20]. Since

(1 − wq)
√
2Vg sin(ωgt + δ) is bounded, then the inverter

current i is bounded for all t ≥ 0. According to the ISS

property, it holds true that

|i| ≤ (1− wq)
√
2Vg

r + (1− wq)wmin

, ∀t ≥ 0,

if initially i(0) satisfies the previous inequality. By choosing

wmin =
Vg

Imax

(14)

then

|i| <
(1− wq)

r Imax

Vg
+ (1− wq)

√
2Imax

<
√
2Imax,

since (1−wq) ≥ 0 and r Imax

Vg
> 0. The previous inequality

holds for any t ≥ 0 and for any constant positive Imax, and

as a result

I < Imax, ∀t ≥ 0,

where I is the RMS value of the inverter current, proving

that the proposed controller introduces an inherent current-

limiting property independently from required power regula-

tion, the nonlinear expressions of P, Q and the dynamics of

δ. This is a crucial property since the inverter is protected at

all times by limiting the output current, even during transients

or if a large reference value Pset is applied.

In order to investigate the stability in the sense of bound-

edness of the rest of the plant states, the dynamics of the



capacitor voltage and grid current become from (1) in the

following matrix form:

[

dvc
dt
dig
dt

]

=

[

− 1
RcC

− 1
C

1
Lg

− rg
Lg

]

[

vc
ig

]

+

[

i
C

− vg
Lg

]

, (15)

which can be seen as a linear time-invariant system of the

form

ẋ = Ax+ u

with state x =
[

vc ig
]T

and input u =
[

i
C

− vg
Lg

]T

.

By choosing

P =

[

C 0
0 Lg

]

> 0

it is proven that

PA+ATP =

[

− 2
Rc

0

0 −2rg

]

< 0

which proves that A is Hurwitz and (15) is a bounded-input

bounded-state system. Since vg =
√
2Vg sinωgt is bounded

and i is bounded from the ISS and the current-limiting

properties, then both the capacitor voltage vc and the grid

current ig are proven to remain bounded at all times.

C. Parameters design

As explained in the previous subsection, the term (1 −
wq)w represents a dynamic virtual resistance at the output

of the inverter. Since the ISS analysis and the current-

limiting property dictate that wmin is selected from (14)

corresponding to maximum current Imax, then wmax will

correspond to a minimum current Imin as

wmax =
Vg

Imin

. (16)

Note that even when the inverter is not connected to the grid,

a small current flows through the LC filter and then Imin

can be chosen as relatively small corresponding to this small

current. This will lead to the calculation of wm and ∆wm

as

wm =
Vg

2

(

1

Imin

+
1

Imax

)

(17)

∆wm =
Vg

2

(

1

Imin

− 1

Imax

)

, (18)

from the definition of the ellipse W0.

Parameter kw is an arbitrary positive constant since it

is multiplied with the term
(w−wm)2

∆w2
m

+ w2
q − 1 in (6),

which is zero on the ellipse W0. In fact, the role of the

kw is to increase the robustness of the wq dynamics in an

actual implementation due to calculation errors or external

disturbances.

Parameters cw and cδ affect the dynamic performance of

the controller. Particularly, cw is found in the angular velocity

(10) of the controller states w and wq . Since w and wq start

from point (wm, 1), travel on the ellipse W0 and they can

reach the point (wmin, 0) at the limit of the current after a

settling time ts, then consider a worst case scenario where

the controller states travel on the arc of W0 with central

TABLE I

SYSTEM AND CONTROLLER PARAMETERS

Parameters Values Parameters Values

L, Lg 2.2 mH ωg 2π × 50 rad/s

r, rg 0.5 Ω Imax 4 A

C 10 µF Imin 0.18 A

Vg 110 V kw 1000

Sn 500 VA ts 0.02 s

angle π
2 rad and with a maximum angular velocity π

2ts
rad/s.

This is a worst case scenario because the angular velocity

will decrease as soon as P approaches Pset according to

(10). In this framework, starting from zero real power P and

setting the maximum real power Pset = Sn, where Sn is the

rated power of the inverter, then by taking into account that

wq ≤ 1 (wq = 1 at the worst case), it yields from (10) that

π

2ts
=

cwSn

∆wm

which gives

cw =
π∆wm

2tsSn

. (19)

Similarly, parameter cδ affects the dynamics of δ from (7).

As proven from (11), the angle δ is required for the shifting

of the phase of the inverter voltage to achieve the required

reactive power regulation. By neglecting the small phase

shifting caused by the inductor L, and assuming a worst

case scenario where Q starts from zero and reaches Sn after

a settling time ts, then this will correspond to a change of

∆δ = π
2 . This operation can approximately give δ̇ ≈ ∆δ

ts
,

and then from (7) it is

π

2ts
= cδSn

which gives

cδ =
π

2tsSn

. (20)

It should be noted that both (19) and (20) represent a

guidance for calculating cw and cδ , respectively, and have

been obtained for a worst case scenario. In practice larger

values can be chosen or equivalently smaller ts can be

used. This means that the values can be increased until a

satisfactory response is achieved.

IV. SIMULATION RESULTS

For the verification of the proposed controller, a grid-

tied single-phase inverter with an LCL filter is simulated

using SimPower systems toolbox of Matlab/Simulink. The

system and controller parameters are shown in Table I.

A switching frequency of 15 kHz is used for the pulse-

width-modulation of the inverter and the sinusoidal tracking

algorithm PLL is applied to obtain the required vgq for the

controller design [1]. The controller parameters cw and cδ
are directly calculated from (19) and (20), respectively.
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Fig. 3. Simulation results of the single-phase grid-tied inverter with the
proposed current-limiting controller

The system response is shown in Fig. 3. Initially the

inverter is not connected to the grid and the inverter voltage

v is set to vg with a small negative reactive power being

present due to the capacitance of the LCL filter (Fig. 3(a)).

At the time instant t = 0.1 s, the inverter is connected to

the grid and the controller is enabled with Pset = 50W and

Qset = 0Var resulting in a fast regulation of the real and the

reactive power, as observed in Fig. 3(a). The time responses

of the RMS values of the inverter current and the capacitor

voltage are shown in Fig. 3(b) and (c), respectively. The

controller state δ is shown in Fig. 3(d) which is regulated

at a small positive constant in order to apply the necessary

shifting for the inverter voltage angle to cancel the effect of

the L inductor and achieve the required unity power factor.

At t = 0.4 s, the reference real power becomes Pset = 200W

and the inverter is regulated at the desired value after a

short transient. At t = 0.6 s, the reference power increases

to Pset = 600W that violates the technical limits of the

inverter in order to verify the current-limiting property of

the inverter. As it is illustrated in Fig. 3(a), the real power

is regulated to a lower value because as it can be seen from

3(b), the inverter current tries to violate its maximum value.

Therefore, the current-limiting property of the inverter is

clearly depicted and the unity power factor is maintained, as

it is also clear from the steady-state response of the capacitor

voltage and the inverter current in Fig. 3(e). At t = 0.8 s, Pset

changes back to 200W and the system returns to its previous

values. To verify the ability of the inverter to regulate the

reactive power, at t = 1.2 s the reactive power reference is

set to Qset = 100Var and the reactive power is quickly

regulated to its desired value. This is also shown from the

steady-state response in Fig. 3(f). All of these suitably prove

the capability of the proposed controller achieve the main

tasks with an inherent current limitation. Finally, the analysis

presented in Section III is verified in Fig. 4, where the

controller states w and wq converge to the required steady-

state values in Fig. 4(a) and 4(b), respectively, and it is

observed that they operate exclusively on the desired upper

semi-ellipse of W0 (Fig. 4(c)).

V. CONCLUSIONS

A nonlinear controller with a current-limiting property was

proposed for single-phase grid-tied inverters with an LCL

filter. The proposed controller can achieve the desired real

and reactive power regulation with a guaranteed closed-loop

stability in the sense of boundedness. Based on the nonlinear

dynamics of the system and using input-to-state stability

theory, a given limit for the inverter current is always proven

independently from the power reference values. A guidance

for selecting all the controller parameters was also presented

to obtain the complete controller implementation procedure.

The desired performance of the proposed current-limiting

controller and the theoretical analysis were verified through

extensive simulations.
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