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Abstract
The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and
temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of
the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the
primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises
metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby
contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFD) produce particularly deleterious
effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is
restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to
assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example,
can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science
and may ultimately help reduce the burden of chronic diseases.
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Life is exposed to relatively predictable daily changes in the
environment, the most conspicuous of which is the daily light/
dark (LD) cycle. Endogenous circadian (approximately 24 h)
timing systems have evolved in organisms in response to daily
cycles of abiotic (such as temperature cycles) and biotic factors
(such as food availability cycles) to generate circadian rhythms
in behaviour and physiology to anticipate and adapt to these
fluctuations and temporally compartmentalise incompatible
biological processes, such as anabolism and catabolism(1). The
circadian system therefore primes organisms to feed at specific
times, and restricting food access to times at which feeding is
typically low in model organisms produces many deleterious
health consequences. Fruit flies fed at the ‘wrong’ time, for
example, produce fewer eggs(2), and mice fed during the light
period only – the rest period for these nocturnal rodents – are
prone to diabetes, the metabolic syndrome, obesity, and even
impaired cognitive function(3–6).
The circadian system comprises networks of molecular

clocks throughout body tissues. Although circadian rhythms are
autonomous, self-sustaining and temperature compensated, the
circadian system has remarkable plasticity, and feeding can
modify circadian rhythms from the molecular to behavioural

level(7,8). Indeed, peripheral tissue clocks such as the liver clock
are particularly sensitive to the composition and timing of food
consumed. Disorganisation of the circadian system and loss of
timing relationships between circadian rhythms in particular are
thought to contribute to the development of certain chronic
diseases(5). Hence, appropriate nutrition, where energy intake
is aligned with energy expenditure and clear feeding/
fasting cycles are synchronised with clock-regulated metabolic
changes, helps maintain robust behavioural and physiological
circadian rhythms and health(9).

Relatively recent environmental changes have predisposed
many individuals to circadian system disruption. The advent of
artificial lighting, jetlag induced by high-speed trans-meridian
travel, shift work and around-the-clock access to energy-dense
food are but a few factors that may conspire to disorganise the
circadian system, and thereby adversely affect the health of
people in modern societies(7,10,11).

The purposes of this review were therefore to introduce the
circadian system, highlight its influences on physiological
responses to feeding, show how feeding in turn influences the
circadian system and to provide implications for nutritionists
and directions for future research.

Abbreviations: CLOCK, circadian locomotor output cycles kaput; FAA, food anticipatory activity; HFD, high-fat diet; SCN, suprachiasmatic nuclei;
SIRT, SIRTUIN; TRF, time-of-day-restricted feeding.
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The hierarchical circadian system

Central and peripheral clocks

The paired suprachiasmatic nuclei (SCN) in the anterior hypo-
thalamus orchestrate circadian rhythms throughout body tissues
using autonomic, behavioural and humoral mechanisms(12,13).
SCN cells contain cell-autonomous molecular clocks based
on negative feedback loops that generate approximately 24-h
rhythms in ‘clock’ gene transcription(14) (Fig. 1). As transcription
factors, clock genes temporally segregate incompatible
cellular processes by regulating the transcription of myriad
clock-controlled genes, many of which are enriched for
metabolic functions, and the same molecular clocks present
in the SCN regulate rhythmic cellular processes in tissues
throughout the body(15). That over half of protein-coding
genes in mice have been shown to exhibit circadian
transcription in certain conditions(16), and large proportions of
proteins and metabolites follow suit(17,18), exemplifies the
importance of clock control in metabolism. Post-transcriptional
clock protein regulation confers another level of tissue-
specific metabolic control(19–22). Recently discovered non-
transcriptional rhythms in peroxiredoxins, redox-sensitive
proteins, are ubiquitous among organisms of all kingdoms,
but how these are integrated with clock gene feedback loops
is little understood(23).
In the absence of time cues, the human circadian system

has a period of approximately 24·2 h(24) and must therefore
be re-set (entrained) daily to the 24-h day. The SCN are

primarily entrained by light via a monosynaptic pathway
from intrinsically photosensitive retinal ganglion cells in the
inner retinae to the SCN(25). In turn, a multisynaptic pathway
from the SCN to the pineal gland is a major route by which
photoperiodic information is disseminated(26). During darkness,
the pineal gland synthesises melatonin, a hormone that
increases sleep propensity and acts on its widely expressed
receptors to provide photoperiodic information, and
contributes to synchronisation of circadian rhythms in other
tissues(27). Dim light melatonin onset (DLMO) can therefore be
used as a proxy for the onset of the biological night in humans,
with melatonin offset in the morning corresponding to the start
of the biological day.

In addition to melatonin, the SCN help maintain appropriate
phase relationships among peripheral clocks by regulation of
other humoral factors – for example, the SCN produce their
own secretions to support synchronisation of clocks in other
tissues(28–30). Further SCN secretions also contribute to the
rhythmic release of hormones such as glucocorticoids by other
tissues(31), and glucocorticoids are particularly important
entraining agents for many peripheral clocks. The demonstra-
tion that glucocorticoid receptor activation restores
approximately 60% of rhythmic gene transcripts in the mouse
liver exemplifies this(32). Another mechanism by which the SCN
synchronise clocks throughout tissues is by regulating the
circadian body temperature rhythm, as molecular clocks can be
entrained by circadian temperature fluctuations by way of the
heat shock pathway(33).
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Fig. 1. The mammalian circadian clock. The molecular clock consists of ‘clock’ genes that form negative-feedback loops. The transcription factors circadian locomotor
output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) heterodimerise and activate clock-controlled genes
(CCG). On activation by CLOCK-BMAL1, cryptochrome (CRY) 1–2 and period (PER) 1–3 proteins accumulate in the cytosol, multimerise and translocate into the
nucleus and form inhibitory complexes, repressing CLOCK-BMAL1 and terminating CRY1–2 and PER1–3 transcription during the rest phase. As the rest phase
progresses, PER-CRY complexes are degraded by F-box/LRR-repeat protein 3 (FBXL3), casein kinase 1 (CK1) ε and CK1δ. Inhibition of CLOCK-BMAL1 activity
ends, completing the negative feedback loop. Auxiliary feedback loops are antiphasic to the core loop and regulate BMAL1 transcription. The nuclear receptors
reverse-erythroblastosis (REV-ERB) α and β repress BMAL1 transcription, whereas RAR-related orphan receptor (ROR) α activates BMAL1 transcription. Auxiliary
feedback loops add robustness, among other roles.
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The circadian system readies for feeding during
the active phase

As it does with physical activity, the circadian system readies
the body for daytime feeding. Human gastric emptying and
gastrointestinal motility rates peak in the morning(34,35), and
studies in rodents have shown that clock regulation of bile acids
and nutrient transporters optimises digestion during the active
phase(36,37). Furthermore, daily rhythms in the gut microbiota
of mice and humans fulfil time-of-day-specific functions,
enhancing energy metabolism during the active phase
and favouring detoxification during the rest phase(38). The
microbiota and circadian system have a complex bidirectional
relationship, as disruption of the molecular clock disorganises
rhythmic changes in the gut microbiota(39), and germ-free
mice have altered clock gene expression(40). Related to such
changes, there are circadian rhythms in blood concentrations of
many nutrients, such as glucose and lipids(41). An important
implication of circadian regulation of the gastrointestinal system
is the importance of considering timing of nutritional tests, as
exemplified by the recent demonstration that food allergy test
results are contingent on the time of day(42).
The circadian system promotes energy substrate storage in

appropriate tissues during the day. Insulin sensitivity has a
bimodal daily peak during the active phase(43), and appetite for
most foods is clock-controlled and lowest in the morning,
perhaps to allow consolidated sleep despite diminishing energy
availability(44). Diet-induced thermogenesis too has a circadian
rhythm that peaks in the morning(45). These changes may be of
particular relevance to the obesity epidemic, as they suggest
that delayed bedtimes increase time for food consumption
when appetite is high, and that consuming a higher proportion
of dietary energy in the morning might encourage a negative
energy balance, the principle determinant of decreasing
body mass.

Feeding entrainment of clocks

Although the SCN clocks are primarily entrained by light, time-
of-day-restricted feeding (TRF) studies, where food availability
is restricted to a period of several hours, have shown that
peripheral clocks are predominantly responsive to feeding.
Indeed, rest phase TRF inverts gene expression profiles in many
peripheral tissues including the heart, kidney, liver, pancreas,
adipose tissue and the gastrointestinal tract(7,46–48). The time
course of this entrainment varies depending on the organs in
question, with the liver clock responding to feeding particularly
rapidly. As a result, peripheral tissue rhythms can be uncoupled
from SCN rhythms(7). Interestingly, feeding shifts the liver
clock more rapidly in SCN-lesioned mice, suggesting that
the SCN counters internal desynchronisation – the loss of
appropriate phase relationships between clocks that is thought
to contribute to metabolic aberrations(49). During ad libitum
conditions, TRF does not appear to affect the phase of the SCN
clock; however, the SCN clock phase may respond somewhat
to TRF combined with energy restriction(50). Although few
studies on the effects of TRF on the human circadian system
have been published, circadian rhythms in core body

temperature and heart rate were advanced after 3 d of
morning v. evening TRF in healthy young men(51).

Coupling between metabolism and clocks

Feeding entrainment of tissue clocks is predicated on reciprocal
relationships between molecular clocks and metabolic sensors
and regulators(52). Feeding/fasting cycles produce changing
nutrient availability, and hence periodic phosphorylation of
energy sensors such as 5' AMP-activated protein kinase
(AMPK), which promotes ATP production during reduced
energy availability, and mechanistic target of rapamycin
(mTOR), which promotes anabolic processes during
increased energy availability. These regulators are coupled to
molecular clock components, which in turn influence myriad
metabolic processes integral to nutrient homoeostasis. AMPK, for
example, phosphorylates and destabilises cryptochrome (CRY) 1
in peripheral cells(53) and interacts with SIRTUIN (SIRT) 1.
In turn, SIRT1 modulates transcription factors including
period (PER) 2(54) as well as the ventromedial hypothalamic
clock, a brain region that contributes to regulation of the
circadian rhythm in feeding behaviour(55). SIRT1 is one of
a family of deacetylase enzymes that have many roles in meta-
bolic regulation, and SIRT1 and SIRT6 appear to be
particularly important to temporal partitioning of metabolism
by controlling the transcription of distinct sets of genes
with circadian expression profiles, with SIRT6 regulating the
rhythmic transcription of genes involved in cholesterol and fatty
acid (FA) metabolism(56).

Both tissue-specific and whole-body genetic disruption of the
molecular clock produce diverse metabolic aberrations(57,58),
and the molecular clock partly mediates beneficial effects of
some nutritional interventions, such as the longevity-promoting
effects of energy restriction(59). These findings support recent
observational studies that have associated SNP in clock genes
with various facets of metabolic health. Regarding circadian
locomotor output cycles kaput (CLOCK), for example, CLOCK
SNP have been associated with non-alcoholic steatohepatitis,
the metabolic syndrome, small dense LDL levels, obesity and
diabetes(60–64). Perhaps the most studied of these associations is
that of obesity: to date, eight common CLOCK SNP have been
linked to obesity and three have been associated with energy
intakes(65). Results of such small, candidate-gene association
studies need support from large, unbiased, genome-wide
association studies, however.

Food anticipatory activity and food-entrainable oscillators

Coupling between nutrient availability and the circadian system
is also evident at the behavioural level. TRF in animals such as
rats produces food anticipatory activity (FAA) – food-seeking
behaviour at times during which food procurement is
most likely. FAA is goal-directed towards places where food is
available, and may thus be an adaptive strategy to
enhance foraging success(8). Indeed, FAA is accentuated
during energy restriction. As FAA is entrainable and persists
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during several days of food deprivation, FAA appears to be a
true circadian rhythm.
Interestingly, FAA persists both following SCN ablation(66) and

disruption of the positive and negative arms of the molecular
clock(67); therefore, the food-entrainable oscillators thought to
underlie FAA must reside elsewhere. Candidate oscillators
comprise various brain structures (including the cerebellum,
dorsomedial nuclei, and dorsal striatal and mesocorticolimbic
circuits(68–70)), neurochemical pathways (including dopaminergic
and melanocortinergic signalling(71,72)) and hormonal signals
(including ghrelin and orexins(73)).

Eating patterns: feeding/fasting matters

As metabolic rhythms are intertwined with nutrient availability,
clear feeding/fasting cycles consolidate robust metabolic and
behavioural rhythms. High-fat diets (HFD) blunt feeding/fasting
cycles in mice, increasing the proportion of energy consumed
during the rest phase, and hence dampen circadian rhythms in
clock genes(74,75). Consistent with this, expression of adipose
tissue clock genes such as PER2 is increased following weight
loss in humans(76). Ad libitum access to HFD consistently and
rapidly produces obesity in many animals, and endocrine
rhythms are similarly blunted in obese humans(77). Whether
obesity precedes dampened circadian rhythms has been
contentious, but recent evidence indicates that HFD induce
rapid re-organisation of gene transcription rhythms before overt
increases in adiposity in mice(78).
Compared with ad libitum feeding, TRF offsets HFD-induced

blunted feeding rhythms in mice, and the result is superior
metabolic health, including reduced adiposity, despite similar
energy intakes(75). Comprehensive recent experiments have
shown that, despite similar energy intakes and locomotor
activity, various TRF schedules are beneficial during different
nutritional ‘challenges’, such as HFD and high-fructose diets,
and that beneficial metabolic effects of TRF are proportional to
fasting duration(9). During HFD feeding, TRF produces nutrient
sensor profiles (including AMPK and mTOR) that are more
similar to mice fed normal chow(75). Furthermore, TRF counters
HFD-induced reductions in cyclical changes in the gut micro-
biota, and stool metabolite analyses suggest that this effect of
TRF contributes to metabolic health benefits of TRF(79). These
studies used male C57/BL6 mice, animals with a particular
susceptibility to diet-induced obesity. As such, it may be
premature to extrapolate these findings to humans.
Nevertheless, recent research found that eight obese adults with
habitual eating periods exceeding 14 h experienced sustained
weight loss and improved sleep when consumption of
energy-containing foods and drinks was restricted to an
11-h period each day(80). The latter study was clearly limited by
its sample size, however.
In contrast to the beneficial effects of TRF during HFD

feeding, TRF may not confer such striking metabolic advantages
when mice are fed normal chow(75). The same may be true
among lean humans consuming typical diets. Among fifteen
healthy young adults, a cross-over trial found that evening TRF
increased fasting glycaemia and impaired glucose tolerance v.

an isoenergetic diet comprising three meals throughout
the day(81). Another study of the same design associated
TRF with increased hunger, blood pressure and cholesterol(82).
However, findings may have been confounded by circadian
variations in these parameters, as measures were taken at
different times of the day.

Although not described as TRF studies, breakfast skipping
is conceptually akin to TRF. In a larger study of overweight
and obese adults, breakfast skipping did not influence
responses to weight-loss diets(83), and a careful study in lean
young adults found that one of the only effects of 6 weeks
of breakfast omission was increased afternoon glycaemic
variability(84). Subsequent research using the same protocol in
obese adults also found few differences between groups,
although insulin sensitivity was higher in breakfast eaters(85).
It is possible that breakfast omission altered the timing of
peak insulin sensitivity, however. Therefore, it appears that
TRF may not benefit metabolic health in all contexts.
Certainly, further studies with larger sample sizes are needed.
Important questions remain unanswered, such as what is the
optimal TRF period and meal frequency, and under what
circumstances?

Time-of-day-restricted feeding: meal timing matters

One factor that may be relevant to the efficacy of TRF is meal
timing. Mice fed HFD during the rest phase tended to gain
more fat mass than mice fed HFD during the active phase(4).
Similarly, mice fed normal chow during the rest phase also
gained more fat mass than mice fed during the active
phase. Rest phase TRF also altered clock and metabolic
gene expression profiles in peripheral tissues, blunted cortico-
sterone rhythm amplitudes, reduced energy expenditure
despite comparable locomotor activity and reduced lipid
oxidation within 9 d(6). It is possible that deleterious metabolic
effects of rest phase TRF are related to misalignment between
energy intake and energy expenditure. Clock gene mutations
alter circadian rhythm periods in organisms including
humans(86), and a transgenic hPER1 mutation in mice increases
obesity risk by advancing peak feeding time relative to peak
daily energy expenditure. Subsequently using TRF to synchro-
nise feeding with peak energy expenditure mitigates obesity
development in these animals(87).

Ramadan confines eating to the rest phase and modifies
circadian rhythms in hormone secretion – for example,
the timing of the morning rise in cortisol and night-time
melatonin peak are both delayed(88). Some results of Ramadan
studies appear to contradict rodent TRF study findings,
however. Meta-analysis of thirty-five observational studies
found a mean reduction in body mass of 1·24 kg during
Ramadan, with differences between ethnicities and greater
reductions in men. No effects on dietary macronutrient
proportions were observed, and fasting duration was not
associated with body mass changes(89). It was not possible to
evaluate body composition, however, and carefully controlled
human TRF experiments are needed to determine
whether large differences in TRF timing produce similarly large
metabolic changes to those seen in mice.
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Time-of-day-restricted feeding: nutrient and energy
distribution timing matters

We refer to nutrient intake timing as the timing of ingestion of
specific nutrients and the distribution of energy assigned
to eating occasions when the timing of eating occasions is
otherwise similar. Studies of mice show that high-fat meal
consumption at the end of the active phase increases adiposity,
insulin, leptin, and triacylglycerolaemia v. consumption at the
beginning of the active phase(90). Similarly, restricting fructose
access to the rest phase increases adiposity and insulin
resistance in comparison with restricting access to the active
phase(91).
In overweight and obese women matched for energy

intakes, those who consumed a larger proportion of daily
energy early in the day lost more weight than those consuming
more later in the day(92), consistent with other findings
that earlier lunch consumption is associated with greater weight
loss after 20 weeks(93). Similar associations have since been
reported in severely obese adults following bariatric surgery(94).
As diet-induced thermogenesis peaks in the morning, and
breakfast consumption is associated with higher subsequent
non-exercise activity thermogenesis, and hence energy
expenditure(84), it is plausible that assigning more of daily
energy expenditure to earlier meals may encourage a negative
energy balance during hypoenergetic diets. Further studies on
how meal composition and energy availability affect responses
to TRF will be valuable.

Eating patterns: consistency matters

Finally, eating patterns are very inconsistent in some adults(80),
and this may be relevant to metabolic health. In mice, fixing
TRF to a 12-h period during twice-weekly 6-h LD cycle
advances might be expected to uncouple LD cycle-entrained
SCN rhythms from feeding-entrained peripheral clock rhythms
and produce corresponding metabolic disorder. In these
conditions, however, TRF mitigated the obesogenic effects of
LD cycle shifts observed in ad libitum-fed mice, despite similar
energy intakes. Hence, meal regularity and not just its timing
relative to activity may be important to metabolic benefits of
TRF(95). The mechanisms by which regular feeding schedules
offset obesity in this study are unclear, however, and
similar studies in humans are necessary to determine whether
these findings are applicable to populations such as shift
workers. It will also be interesting to clarify whether TRF needs
to be implemented daily to be beneficial; some evidence
suggests otherwise(96).
Together, it appears that TRF may be a promising way to

improve metabolic health in overweight and obese individuals.
Consistent meal patterns and consuming meals shortly after
physical activity may help optimise metabolic health. Further-
more, allocating a higher proportion of energy intake to earlier
meals may promote a lower energy balance when diets are
matched for energy intake. Nevertheless, many questions
remain. It is important to determine how effective different TRF
schedules are compared to one another and what factors
determine inter-individual variability in responses.

Nutrient composition modifies clocks

The compositions of foods have been shown to influence many
different circadian rhythms in rodents, from gene expression
profiles to behavioural rhythms. HFD have sometimes but not
always been found to influence peripheral tissue clock
gene expression profiles in mice studies(74,97), and these
discrepancies may have resulted from factors including diet
composition. In support of this contention, higher-protein,
lower-carbohydrate chow advanced expression rhythms of
multiple clock genes in the kidneys and livers of mice,
and increased mean expressions of brain and muscle aryl
hydrocarbon receptor nuclear translocator-like 1 (Bmal1) and
Cry1 in comparison with standard chow(98). In humans,
switching participants from higher-carbohydrate (55%)
and lower-fat (30%) diets to isoenergetic lower-carbohydrate
(40%) and higher-fat (45%) diets delayed and increased
the amplitude of cortisol rhythms, changed inflammatory
and metabolic gene expression profiles and altered PER gene
expression rhythms in monocytes(99).

In addition to the proportions of dietary energy coming
from the macronutrients influencing peripheral clocks, indivi-
dual nutrients may influence the circadian system, even within
certain types of nutrients. Using FA to exemplify this, palmitate,
the most abundant SFA in animals, and DHA, a PUFA found
plentifully in fish, differentially affected Bmal1 expression in a
murine hypothalamic cell line(100). Moreover, manipulating
dietary DHA and EPA content shifts liver clock gene expression
profiles in mice in vivo(101).

There are also several non-essential dietary compounds
consistently shown to influence the circadian system. Alcohol is
widely consumed in many societies and appears to be parti-
cularly disruptive to molecular, endocrine and behavioural
circadian rhythms in humans and other animals(102–106).
Caffeine, the most-used psychoactive compound worldwide, is
present in many foods and beverages and influences the
amplitudes and phases of peripheral tissue clock gene expres-
sion rhythms in mice(107). Evening caffeine consumption delays
the human circadian system in vivo and lengthens clock gene
expression periods in vitro(108). Hence, careful use of caffeine
can expedite circadian rhythm entrainment following jetlag(109).
However, even if subjective sleepiness is unaffected by its
ingestion, caffeine impairs sleep following jetlag(110). Caffeine
has also been studied for efficacy in entraining individuals with
chronic circadian system dysfunction. In a small study of blind
individuals with non-24-h sleep/wake rhythm disorder, a
disorder where light fails to synchronise the circadian system
with the 24-h d, 150mg of morning caffeine was insufficient to
entrain circadian rhythms(111). Dietary polyphenols are another
group of compounds consistently shown to influence
both molecular and behavioural circadian rhythms in some
animals(112,113), and other novel nutritional supplements such as
dietary polyamines(114) phase-shift the circadian system
in rodents. Further research is needed to see whether such
compounds might be useful in humans, however; if they are,
what are the best times to consume them to maximise their
impact, and what are the dose–response and phase–response
curves of these compounds?
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Conclusions and directions for future research

Growing interest in nutrition and the circadian system has
produced many insights into the reciprocal relationships between
the two in recent years. Findings from these studies have many
implications. When assessing nutritional status and the efficacy of
nutritional interventions, for example, test timing is an important
consideration. More specifically, physiological measures should be
taken relative to internal time (DLMO, for example) where
feasible. Related to this, chronotype classifies individuals into
morning or evening types according to their preference for when
to be active and when to sleep. Where laboratory measures of
internal time are impractical, chronotype can be estimated by
simple questionnaires such as the Morningness–Eveningness
Questionnaire and the Munich Chronotype Questionnaire
Test(115,116). As chronotype influences the times at which various
physiological processes are optimised, consideration of chron-
otype will be important for personalised nutrition recommenda-
tions. Recent studies have also begun exploring how clock gene
SNP may influence responses to dietary interventions(117), and
ultimately knowledge of circadian system gene variants may also
help inform personalised nutrition.
Pressing questions remain unanswered, and there is a

glaring need for human studies addressing these. Regarding
eating patterns, whether TRF can accelerate entrainment in
populations experiencing circadian disruption is a question
of relevance to many. With respect to specific foods and
supplements, are there dietary interventions with consistently
beneficial effects on sleep? It is known that the composition of
human breast milk varies daily(118), and perhaps infant formulae
should reflect this.
Continuing collaboration between chronobiologists and

nutritionists will further clarify interactions between nutrition
and the circadian system, and ultimately has the potential to
reduce the prevalence and burden of chronic diseases.
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