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Open Source Automatic Non-uniform Mesh
Generation for FDTD Simulation

Michael K. Berens, Ian D. Flintoft, Senior Member, IEEE, and

John F. Dawson, Member, IEEE,

Abstract—This article describes a cuboid structured mesh generator suitable for 3D numerical modelling using

techniques such as finite-difference time-domain (FDTD) and transmission-line matrix (TLM). The mesh generator takes

as its input an unstructured triangular surface mesh such as is available from many CAD systems, determines a suitable

variable mesh discretisation and generates solid and surface meshes in a format suitable for import by the numerical

solver. The mesher is implemented in the MATLAB language and is available as open source software.

Index Terms—mesh generation, ray-casting, finite-difference time-domain, transmission-line matrix

✦

1 INTRODUCTION

The finite-difference time-domain (FDTD)
method is a numerical technique that is widely
used to solve Maxwell’s differential equa-
tions in the time domain [1]. Both space and
time are discretised. Space is discretised into
rectangular-shaped elements in 2D or cuboid
elements in 3D. Cuboid elements, where the
electric fields are located on the edges of the
cuboid and the magnetic fields normal to the
faces, are called Yee-cells and are the funda-
mental elements of most FDTD methods [2].
By filling up the problem space with these
cells, we obtain a 3D mesh, where neighbouring
cells share edges and faces. Each cell has three
associated electric and magnetic field compo-
nents, while the other field components be-
long to adjacent cells. The properties of each
cell are adjusted to represent materials such
as dielectrics or conductors by adjusting the
constitutive parameters used in the field equa-
tions in the corresponding cells, hence forming
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the geometrical structure of the problem to be
solved. For example, Figure 1 shows a sphere
and a version of the sphere discretised using
cubic elements.

Algorithms for automatic structured mesh
generation have been developed since the ca-
pabilities of the FDTD method and computer
hardware reached the point at which relatively
complex geometries could be simulated. A se-
lection of the techniques proposed are reported
in [3], [4], [5], [6], [7], [8], [9], [10], [11]. The
process of generating a cuboid structured mesh
from an arbitrary model geometry consists of
two main steps. The first is to determine an
efficient placement of the structured mesh lines,
constrained by the numerical requirements of
the FDTD method, to “best fit” the model ge-
ometry and the second is the identification of
which structured mesh cell belongs to which
object, a process called material mapping.

With regard to the mesh line placement an
interesting local approach was made in [12],
where the non-uniform mesh of overlapping
objects is considered as a constrained opti-
mization problem. By optimizing an objective
function, which expresses all the constraints,
such as the maximum and minimum cell sizes,
neighbouring cell size ratio and the influence
of neighbouring intervals, an acceptable mesh
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solution for many problems is found. Another
local approach was proposed in [13], where
the numerical error, caused by a rapid change
of mesh size, is reduced by considering only
the two cells on either side of a transition
point between two intervals. There are also
global approaches with a focus on all the in-
tervals of a mesh [14]. Less constrained Carte-
sian mesh generation algorithms have also been
developed, e.g. for the Conformal FDTD al-
gorithm [15], [16], [17] and for the hybrid
FDTD/FETD algorithm [18]. Another indepen-
dent category of non-uniform mesh generation
is adaptive mesh refinement (AMR) [19], [20],
[21]. This method is used to refine the mesh in
regions of interest after (or during) a simulation
without creating a completely new mesh.

A number of different ray tracing methods
have been reported for the material mapping
stage. A good method should be fast, memory
conserving and capable of handling different
kinds of special cases, e.g. intersections in a
very narrow angle or exactly in the object
plane, edge or node. These special cases can
cause “singularities” and make the ray casting
more difficult to implement. These issues are
explained in more detail in [22] and [23]. Very
efficient ray casting approachs are described
in [24] and [25].

Although there are many freely available
computer-aided design (CAD) or meshing pro-
grams that can directly create an unstructured
polygonal mesh there are no freely available
meshers that create structured cuboid meshes
with sufficient generality for practical EM sim-
ulations of complex structures. Therefore we
have developed a MATLAB [27] code for uni-
form and non-uniform structured mesh gener-
ation and published it as open source software.
The code also works in GNU Octave [28]. The
output data format has been kept quite generic
so it can be easily adapted to create structured
output meshes for a wide range of numerical
solvers. While the mesher is mostly based on
the known algorithms briefly reviewed above,
we hope the open-source nature of the code
will make it useful to research and teaching
institutions that write and use their own nu-
merical solvers. Moreover, the code can be used

Fig. 1. Unstructured triangular mesh (top) and structured cubic
mesh (bottom) of a sphere.

as a tool to aid the understanding of mesh
generation, and for experimentation with mesh
generation techniques.

The geometry of structures to be modelled
using an FDTD solver must be defined by
some means which allows the production of
a suitable cuboid mesh. Here we assume the
description is principally in the form of an
unstructured triangulated mesh describing the
surface of each object, such as that shown in the
top part of Figure 1 for a sphere, since such a
representation can be generated by most CAD
software packages.

2 STRUCTURED MESH GENERATION

FOR FDTD SOLVERS

In this section we consider the factors that affect
the placement of the mesh lines. Since the mesh
cell size determines both the time step duration
and upper frequency limit, it is one of the most
important factors limiting the FDTD simula-
tion. In addition, the cell size has to be chosen
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in such a way that the geometrical structure can
be represented appropriately and the numerical
error is acceptably small. However the smaller
the cell size the larger the memory consumed
and the longer the run-time for a given prob-
lem. Therefore a mesher should produce mesh
lines with the largest spacing that satisfies the
above constraints.

2.1 Numerical errors due to cell size and
cell size variation

Numerical errors are inherent undesired ef-
fects within the classical Yee-cell based FDTD-
methods that originate from numerical disper-
sion and anisotropy. In other words they orig-
inate from the dependence of the numerical
wave propagation velocity in the mesh on fre-
quency and direction [29]. Because numerical
dispersion causes cumulative phase errors and
non-physical refraction, it is necessary to min-
imize these effects. In general the dispersion
error per wavelength can be expressed as

ψerr = 2π ·

(
λ

λ̃
− 1

)
, (1)

where λ/λ̃ is the ratio of the exact (continu-
ous space) wavelength to the numerical wave-
length. The more cells there are per wavelength,
the closer the numerical wavelength is to the
exact one. Since the Yee-cell based FDTD algo-
rithm is second-order accurate, the dispersion
error decreases by a factor m2 if the cell size
decreases by a factor m. The effect of disper-
sion can therefore be reduced to an acceptable
level by setting the mesh size appropriately.
The typical “rule of thumb” is that the mesh
size should be at most dmax ≤ λ/10 with the
mesh spacing in each direction, dx, dy, dz ≤ dmax

[30]. For many problems a finer mesher with
dmax ≤ λ/20 or dmax ≤ λ/30 may be necessary
to achieve the required accuracy.

The central-difference formulation used in
many FDTD codes is only accurate to first-order
locally if the mesh in non-uniform, though it re-
mains accurate to second-order globally [31]. In
the interests of accuracy it is therefore better to
keep the mesh as uniform as possible and limit
the mesh size ratio between neighbouring cells

to a number close to unity. Nevertheless there
are advantages of non-uniform meshes, which
allow a fine mesh where geometrical detail or
field variation requires (for example material
interfaces) and a coarse mesh elsewhere. This
allows a trade-off between numerical error and
computational efficiency. In addition, a variable
mesh cell size allows the mesh-to-object fitting
to be adjusted, which can be important, for ex-
ample, to ensure accurate resonant frequencies
are obtained. Nevertheless, the ratio of adjacent
mesh cell sizes needs to be constrained; in most
cases it is sufficient to chose the upper limit for
this ratio as di/di+1 < 1.5.

3 AN ALGORITHM FOR STRUCTURED

MESH GENERATION

3.1 Input unstructured mesh

Since most CAD packages are capable of ex-
porting an unstructured mesh, regardless of
their internal representation, we chose to use
an unstructured mesh, rather than a particular
CAD representation as input to the mesher. For
the internal unstructured and structured mesh
formats we created a format based on those
defined in the AMELET-HDF specification [34].
These formats are quite general and allow the
definition of mesh nodes and various mesh ele-
ments like line elements (two nodes) and trian-
gles (three nodes). The AMELET-HDF formats,
which were specifically developed for com-
putational electromagnetics applications, also
allow naming groups of elements of different
types like nodes, lines, surfaces in order to iden-
tify these types of object in the mesh and allow
the allocation of different material properties to
each group.

Since AMELET-HDF uses HDF5, which is
difficult to parse in a portable way in both
MATLAB and Octave and is also quite com-
plex, we chose the Gmsh msh-format [33] as the
primary ”on-disk” format for the unstructured
mesh. Gmsh can import and modify a range of
other common structured mesh formats from
CAD and other (unstructured) meshing tools
(such as STEP and IGES), and has the capability
to group elements, so it can act as an interface
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Fig. 2. Flow chart of a typical work-flow for generating the input
unstructured mesh.

between a CAD program and the mesh genera-
tor introduced in this article. Figure 2 illustrates
a typical work-flow using a CAD tool such
as FreeCAD to generate the original geometry
which can be saved in a suitable intermediate
format for Gmsh.

3.2 Generating a uniform structured mesh

As mentioned above, a uniform mesh min-
imises the magnitude of certain numerical er-
rors and therefore it is the basic mesh for FDTD
simulations. It is also simpler to implement and
understand than a mesh where the cell size
varies, but still provides a good introduction to
some of the issues of structured mesh genera-
tion.

Consider a problem scenario where objects
with different electromagnetic properties are
present such as in Figure 3. In our mesher, the
maximum mesh size, dmax, is constrained such
that the mesh cells are less than or equal to λ/10
in the material with the shortest wavelength
(this is can be defined manually or determined
from a material database using the frequency
dependent constitutive parameters of the mate-
rial). A minimum mesh size, dmin, is specified

Object 0

Object 1

Object 2

Object 3

Object 4

y

x

d0
max d1

max d2
max d3

max d4
max d5

max d6
max d7

max

Fig. 3. Example of overlapping objects in one coordinate direc-
tion (x).

manually. In order to fit the geometry to the
mesh, the mesher must choose a mesh size be-
tween these limits which best fits the geometry
of the objects to be meshed. The maximum
uniform mesh size is bounded above by the
smallest mesh size of all the intervals,

dmax = min(dmax
i ≤ λ/10), (2)

where i indexes the intervals. When dmin = dmax

the algorithm simply uses the defined mesh
size without any optimization.

We take a simple approach to a best fit by
trying to find a mesh size in each coordinate
direction that ensures that the edge of each
object’s bounding box lies on a mesh line. We
define the edge of each object’s axis aligned
bounding box (AABB) in each dimension as a
constraint point which divides the mesh into a
number of intervals di as shown in Figure 3. The
constraint points (i.e. interval boundaries) are
defined by Xi (i = 1, . . . , Nx), Yi (i = 1, . . . , Ny)
and Zi (i = 1, . . . , Nz), where Nx, Ny, Nz are the
number of constraints in the respective direc-
tions. These points have to be part of the mesh
to guarantee the mesh is adjacent to the objects.
Since the restriction dmin prevents this align-
ment in most cases, the lack of a perfect mesh
solution changes the task to finding a mesh
solution that causes minimum deviation from
the input geometry in the FDTD simulation.
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The uniform mesh lines are defined by

xi = X1 + i · dx,opt i = 0, ..., nx − 1

yi = Y1 + j · dy,opt j = 0, ..., ny − 1,

zi = Z1 + k · dz,opt k = 0, ..., nz − 1

(3)

where di,opt is the unknown optimum mesh size
in the i-direction and nx, ny and nz are the
number of mesh lines in the specified direction.
The next step aims to satisfy the condition that
all the constraint points are closely aligned with
a mesh line by independently minimizing the
functions

fx(dx,opt) =
Nx−1∑

i=1

(
∆Xi

dx,opt

)

fy(dy,opt) =
Ny−1∑

j=1

(
∆Yj
dy,opt

)

fz(dz,opt) =
Nz−1∑

k=1

(
∆Zk

dz,opt

)

(4)

with

∆Xi = Xi+1 −Xi i = 1, ..., Nx − 1

∆Yj = Yj+1 − Yj j = 1, ..., Ny − 1,

∆Zk = Zk+1 − Zk k = 1, ..., Nz − 1

(5)

using the golden section search with parabolic
interpolation algorithm available in MATLAB’s
fminbnd function. In the case of several equal
solutions, the one with the largest value of
dopt is chosen to minimize the computational
time. If a cubic mesh is required then the sum
fx(dopt) + fy(dopt) + fz(dopt) is minimised in a
single optimisation.

After dopt is known it is still necessary to
determine the optimum offset of the mesh lines
relative to the constraint points. Therefore we
carry out another optimisation to simultane-
ously minimize the functions

gx(x0) =
Nx∑

i=1

| Xi − x0 − x |

gy(y0) =
Ny∑

j=1

| Yi − y0 − y |,

gz(z0) =
Nz∑

k=1

| Zi − z0 − z |

(6)

where x, y and z are the mesh lines calculated
using (3) and (4) and x0, y0 and z0 are the

Fig. 4. Example of a uniform mesh solution for three overlapping
objects.

offsets to be determined. For this MATLAB’s
multi-variable gradient-based fmincon optimi-
sation function is used. Because the solution
of (6) is periodic, the offsets are limited to the
ranges defined by 0 ≤ x0 ≤ dx,opt, 0 ≤ y0 ≤ dy,opt
and 0 ≤ z0 ≤ dz,opt. Since this step shifts the
origin of the mesh, it is necessary to extend the
mesh in order to ensure that it still encloses the
objects to be meshed. The position of the mesh
lines are therefore

x = X1 − x0 + i ·Dx,opt i = 0, ..., nx

y = Y1 − y0 + j ·Dy,opt j = 0, ..., ny.

z = Z1 − z0 + k ·Dz,opt k = 0, ..., nz

(7)

A practical example of the results of the
algorithm can be seen in Figure 4, where a
uniform mesh has been generated to represent
three overlapping objects by using the smallest
mesh size defined by one of the objects. The
structured mesh shown is the optimal mesh
solution found by the above algorithm, with all
object boundaries aligned with the mesh lines.
The full implementation also allows weights to
be assigned to different constraints so the user
can control the optimisation process.

3.3 Generating a non-uniform mesh

In contrast to the uniform mesh algorithm de-
scribed in the previous section, an automatic
non-uniform mesh algorithm that can handle
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most mesh scenarios is a much more com-
plex problem. Each object may impose different
mesh size limits, objects may overlap on any
axis and the rate of change of mesh size is lim-
ited; all these interactions must be considered to
produce a good mesh. For simplicity we present
the treatment of only one axis in the following -
the process is identical for each axis. This means
that the aspect ratio of the cells is not currently
constrained directly, though the way that the
maximum mesh size in each material is used
in the constraints in each direction indirectly
limits the ability of the algorithm to generate
high aspect ratio cells.

Considering a scenario similar to the one
in Figure 3, it is first necessary to create a 1D
projection of the objects on to each axis. For
each interval delineated by the object bound-
ing boxes, the object with the smallest defined
maximum mesh size, dmax

i , must dominate all
other overlapping objects when the mesh is
generated. If we take the maximum mesh size
for each interval, as determined from the object
with the smallest maximum mesh size in that
interval, and plot it against position on one axis
a plot like that of Figure 5 is obtained.

In order to produce a viable mesh we must
honour the maximum mesh size in each inter-
val. However in order to minimise the number
of mesh elements we must allow the mesh size
to grow when we progress from an interval
with a small maximum mesh size to an interval
with a larger mesh size. The growth in mesh
size being limited by the maximum cell size
ratio rmax. Figure 6 shows the possible growth
in mesh size from each interval added to the
interval mesh sizes of Figure 5. We now know
for all interval boundaries the maximum mesh
size that can be created, either by the respective
interval itself or by growth of the mesh size
from neighbouring intervals.

Figure 7 shows the next step. In order to
avoid exceeding rmax, the smallest mesh size
has to be selected at each boundary. If this mesh
size was determined by mesh growth from a
smaller cell it is continued until it either ends
in another subinterval boundary (position A)
or until it exceeds the maximum mesh size,
dmax
i , of the current subinterval (position B) as

xInterval 1

Interval 2 Interval 8

Interval 9

dxi
max

Fig. 5. The maximum allowed mesh size in each interval along
the x-axis.

x

dxi
max

Interval 1

Interval 2 Interval 8

Interval 9

Fig. 6. Geometric progression of mesh sizes from each interval.

x

dxi
max

Interval 1

Interval 2 Interval 8

Interval 9

A B C

Fig. 7. Initial selection of smallest mesh size at interval bound-
aries and extension of growth lines.

x

dxi
max

Interval 1

Interval 2 Interval 8

Interval 9

A B C

Fig. 8. Final selection of maximum mesh size at each point on
the axis.
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diA diBL

LMLA LBdi

x

di
max

Fig. 9. Mesh size for interval for a non-uniform mesh that grows
from both sides reaching the interval maximum d

max
i .

diA diBL

LA LB
di

x

di
max

1/2(L - LB + LA)

Fig. 10. Mesh size for interval for a non-uniform mesh that grows
from both sides and does not reaching the interval maximum
d
max
i before clashing.

illustrated in Figure 7. Another possible mesh
solution occur if two geometric progressions
intersect before overstepping dmax

i (position C).

Now we can choose the line of smallest
mesh size in each interval as shown in Figure 8.
Having now determined the feasible limit of
mesh size in each interval we have to place the
mesh lines. However it should be pointed out
that Figure 8 represents only an approximate
solution as there must be an integer number of
mesh cells in each interval if the interval bound-
aries are to be maintained. Mesh lines, which
satisfy the mesh size and ratio constraints, can
be created locally for each interval with the
information for each interval illustrated in Fig-
ure 8.

There are a number of scenarios that can
occur in each interval and each must be treated
individually. Figure 9 shows the mesh size dx
across an interval of length L for the case where
the mesh size grows and reaches its maximum
value, dmax

i , within the interval. LA is the dis-
tance from the left boundary over which the
mesh size grows, LM is the distance for which
the mesh size remains constant at its maximum
value, and LB is the distance over which the
mesh grows from the right boundary. LA and
LB are initially not known. The number of mesh

cells, NiA , in LA is

NiA =

1 +
log

(
dmax
i

diA

)

log(rmax)

 (8)

where ⌊z⌋ is the largest integer smaller than or
equal to z and diA is the mesh size at the left
boundary. Now, as NiA is rounded down to an
integer we have a maximum mesh size less than
dmax
i after NiA mesh cells, which is sufficient to

meet the mesh size criterion, that is

r
NiA
maxdxA

≤ dmax
i . (9)

The length of the transition region, LA, can now
be computed by summing the geometric series

LA =

NiA∑

i=1

diAr
NiA
max = diA

1− r
NiA
max

1− rmax

. (10)

Similarly for LB

NiB =

1 +
log

(
dmax
i

diB

)

log(rmax)

 (11)

and

LB = diB
1− r

NiB
max

1− rmax

. (12)

It should be clear that after the preprocessing
resulting in a solution similar to the example in
Figure 8 there is no scenario with diA > dmax

i or
diB > dmax

i .
If LA+LB < L, then the situation is as shown

in Figure 9, with LM = L − LA − LB. Now
LM might not correspond to an exact number
of cells of size dmax

i that will respect the ratio
between the intersection points of LA, LM and
LB. If necessary we must modify the number
of cells and cell ratios in LA and LB by incre-
menting NiA and NiB and reducing the step in
cell sizes to reduce LM to an exact number of
uniform cells (possibly zero). This is achieved
by an iterative solution.

If LA + LB > L then the situation is as in
Figure 10. Here we must compute the point at
which the cell sizes intersect with 1/2 · (L −
LB + LA) and modify NiA , NiB and the step
in cell sizes to ensure that the sections meet
in an integer number of cells without breaking
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Fig. 11. Example of a non-uniform mesh showing a slice through
three different regions and the generated mesh lines.

Fig. 12. Input unstructured mesh (left) and generated structured
mesh (right) of three objects.

the ratio condition. This is also achieved by an
iterative solution.

A practical 2D example of the results of the
algorithm can be seen in Figure 11, where a
non-uniform mesh is used to represent three
overlapping objects. The mesh size increases
from the smallest to the largest ensuring that
the electromagnetic properties of the objects are
respected as well as the object boundaries.

4 ALGORITHM FOR MATERIAL MAP-

PING

4.1 Ray casting

After the positions of the mesh lines are cal-
culated, it is necessary to identify which struc-

tured mesh cells or faces belong to which mesh
objects in the input unstructured mesh so that
the correct material properties can be assigned.
This process is called material mapping. In this
paper the ray casting method is considered.
In essence, a set of rays are cast through the
computational domain and the intersections of
the rays with the objects in the unstructured
mesh are located. A fast ray-triangle intersec-
tion algorithm reported [26] and implemented
by [39] was used to find the intersections. This
set of intersections is then projected onto the
structured mesh to locate the object. While
rather simple in concept the method is difficult
to implement reliably due to the occurrences of
“singularities” associated with borderline cases.
These are discussed in more detailed below.

The directions in which the rays are cast
has a significant impact on the number of
singularities that occur. Casting divergent rays
from a point outside the computational do-
main (along a diagonal of its bounding box) is
one effective strategy to minimize the effect of
singularities [22]. However, for the MATLAB
implementation considered here this hinders
the vectorization of the algorithm. We therefore
also considered an approach where the rays are
cast along a line of structured cells. This allows
one dimension of the ray-casting to be com-
pletely vectorized using the ray-triangle inter-
section algorithm implementation in [39]. The
result of the mapping for a simple geometry
consisting of a two cubes and a sphere is shown
in Figure 12.

The number of triangles in the unstructured
mesh can become enormous (several tens of
millions) for electrical large or geometrically
complex objects. Part of the approach to miti-
gating this is parallelisation - and the ray cast-
ing approach is extremely parallelizable, see
for example [9]. In addition, even more effi-
ciency can be obtained by applying ray tracing
acceleration techniques based on spatial parti-
tioning, such as bounding volume hierarchies
(BVHs) [40]. A simple BVH has been imple-
mented in the open source mesher. The method
works by successively dividing the volume oc-
cupied by the triangles forming an object into
smaller and smaller sub-volumes forming a
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hierarchy. The AABB of all the triangles in each
sub-volume is determined as the sub-division
proceeds and stored in a binary tree structure.
Now when casting a ray through the object we
first test if the highest level sub-volume AABB
(the whole object) intersects the ray. If it does,
we descend the two branches of the tree and
test for intersection of the ray with the sub-
volume AABBs of the children. If there is no
intersection with a child AABB then that child,
and all its children, can immediately be elimi-
nated from the search, potentially saving a very
large number of intersections tests. If the child
AABB also intersects then its children’s sub-
volumes are are checked and so on down the
tree. BVHs implemented in low-level languages
often subdivide the object until there is only
one triangle in the sub-volume. Because we are
using a vectorized intersection algorithm in a
high-level language there is an optimum depth
for the BVH that was determined empirically
to be when there are about 1000 triangles in a
sub-volume. The partitioning algorithm used to
divide the triangles into sub-volumes also im-
pacts on the performance of the algorithm; it is
best to try and balance the number of triangles
in each child at the same level of the tree. In
the mesher reported here we implemented a
number of partitioning methods including the
Surface Area Heuristic (SAH) [41].

4.2 Mesh generator for structured solid ob-
jects

A solid is represented in the structured mesh
by the volumetric material cells of the inside
volume of a closed unstructured surface in the
input mesh. Because both solid and surface
objects are represented by a surface input mesh,
it is necessary to distinguish amongst these
using control parameters for each group of
input objects. Thus, the input mesh for a solid
is required to be a closed surface with a well
defined inside which can be identified by the
occurrence of an even number of intersections
between ray and object. This means that it is
possible to identify where a ray enters and
leaves the object as shown in Figure 13. The
decision about whether a cell belongs to the

grid

cell center

ray

A

object

Fig. 13. Detection of active cells when mapping solid objects.

solid structure is the main task. By selecting all
cell centres between the intersection points the
inside volume of the object can be identified
(see the grey cells).

Unfortunately the situation is not always as
clear-cut as that shown in Figure 13. For an
arbitrarily shaped object a ray may hit an edge
or a vertex of a triangle resulting in multiple
intersections, e.g. both the triangles sharing an
intersected edge will be identified as being
hit by a ray and this must not be interpreted
as independent hits entering and leaving the
object. If a ray hits an edge/node that lies on
the perimeter of the silhouette of the object as
seen from the ray-casting point (i.e. skims the
surface of the object) then it is should not be
regarding a traversing the object’s surface. Such
cases are called singularities and they require
careful treatment in order to ensure the correct,
or at least a consistent, decision is made about
whether the ray traverses the object boundary.
The wrong choice can lead to local “blister-
ing” of an object or even disastrous globally
incorrect mapping, turining part of the object
“inside-out”. A detailed description of the dif-
ferent types of singularity and methods to deal
with them is given in [22]. Here we outline the
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grid

cell center

ray

A

object

Fig. 14. Detection of active cells when mapping surface objects.

approach for the open source mesher.
Providing all the triangles in the unstruc-

tured mesh have a consistent normal direction
and the input mesh satisfies certain tolerances
regarding triangle size it is possible to identify
edge/node singularities reliably since they will
be manifested as multiple intersections with
triangles at the same position (within a toler-
ance) along the ray, with a mixture of inward
and outward facing normals. By default such
intersections are regarded as non-traversing, i.e.
the ray does not cross the boundary of the
object. This, together with a verification that an
even number of intersections are made by all
the rays passing through the object ensures the
global integrity of the mapping. Optionally, for
improved local fidelity, a six-point interpolation
based resolver can be invoked after all the
object has been mapped to determine whether
non-traversing singularities that occurs at a cell
centers should be inside or outside the object
based on the cells immediately adjacent to the
singular cells [22]. A fall-back procedure that
allows rays to be cast from multiple directions
and the decision for each cell to be determined
by a “vote” between the results for each di-
rection (with user defined dictator, majority or
consensus decision threshold) has also been im-
plemented, though this substantially increases
the computational effort.

The entire mapping algorithm depends on
quite a number of interacting tolerances that

require careful tuning in order to prevent mesh-
ing artifacts appearing. Some of the tolerances
are determined by an analysis of the scale
and variability of the triangles in the input
mesh. They can also be overidden by the user
on an object-by-object basis. There is also a
presumption that the input unstructured mesh
does not contain any pathological features such
a dramatic changes in scale comparable with
the defined tolerances. Such difficulties can be
avoided by applying appropriate mesh clean-
ing algorithms to the input unstructured mesh
before it is mapped.

4.3 Mesh generator for structured surface
objects

A surface in the structured mesh is represented
by a set of cell faces (typically to support
perfect electric conductor (PEC) and sub-cell
material models and source and observation
surfaces) approximating a surface in the input
unstructured mesh. In order to map an arbitrar-
ily orientated surface rays are cast from three
directions, along the Cartesian coordinate axis
directions; rays along the x, y, z-direction are
used to identify which x, y, z-normal cell faces
respectively form part of the object’s surface.
In general the surface may be open and there
is no concept of inside or outside as shown in
Figure 14. As a consequence the set of ray in-
tersections is not restricted to an even number.
Every cell is associated with one face normal to
each direction, by convention taken to be the
faces on the low coordinate side of the cell (in
Figure 14 the right side of each cell). In cases
where the cell centre is exactly on the object
surface, all six surfaces enclosing that cell centre
get identified as part of the object by conven-
tion (Figure 14 position A). This special case
treatment is a simple solution to avoiding holes
in the structured surface and irregularities in
the later FDTD simulation. More sophisticated
approaches to maintaining the local topology of
the mapped surface are possible though none
have been implemented yet.



IEEE ANTENNA AND PROPAGATION MAGAZINE 11

Fig. 15. Performance of the mesher with different numbers of
input and output elements.

5 PRACTICAL EXAMPLES AND MESHER

PERFORMANCE

By investigating the meshing process, we see
that the number of unstructured input elements
and structured output elements both have a
significant influence on the performance. For
clarification the number of output elements in-
cludes both the cells for the both the objects
themselves and the free space in the compu-
tational volume. Since the mesh line generation
is not significantly influenced by the number
of input elements, only the material mapping
is investigated in the following using a 64-bit
Linux PC with an Intel Xeon E5-2687Wv2 CPU
running at 3.40 GHz.

Figure 15 shows how the CPU-time in-
creases with the number of output elements.
Analysing models with different numbers of
input elements from 240 to 101 158, a significant
influence on the CPU-time can also be seen.
Since the mesh line creation typically takes mil-
liseconds to process, its influence on the overall
runtime is negligible. The maximum analysed
runtime was approximately 15 minutes for a
structure with 101 158 input and 13 481 272 out-
put elements.

The run-time is strongly influenced by the
vectorisation of the MATLAB code and the
bounding volume hierarchy. Currently the par-
allelisation of the algorithm with regard to cast-
ing different rays on separate computational
cores has not been fully implemented. This is

Fig. 16. A wideband hybrid antenna [36].

relatively straightforward to do and will sub-
stantially improve the performance on large
models.

As an example of the current practical
mesher performance, Figure 16 shows a wide-
band hybrid antenna [36] which required a
computational runtime of less than one minute
(input: 12 678 elements, output: 47 360 cells).
This example also demonstrates the mesher’s
ability to deal with structures consisting of dif-
ferent object types. The antenna model consists
of a metal surface ground plane (green) and
vertical metal “blade” (yellow), a solid dielec-
tric pillar (blue) and a metal feed structure
(red). The mesher output is a good represen-
tation of the input mesh without any irregular-
ities or geometric deviations.

Larger models with a more complicated sur-
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Fig. 17. Input unstructured mesh (top) and generated structured
mesh (bottom) of an aeroplane [37].

face structure need longer computational run-
times, e.g. the aeroplane shown in Figure 17
took 67 minutes (input: 44 847 elements, output:
503 941 914 cells). This is a complex object for
the mesher since it has uneven planes at dif-
ferent angles as well as holes and cuts in the
surface. This surface structure can, if not rep-
resented accurately, cause an incorrect electro-
magnetic behaviour of the object. The mesher
again achieves good conformity between the
unstructured and generated structured meshes.

Another complex-shaped object can be seen
in Figure 18. This object took approximately
100 minutes to map (input: 179 146 elements,
output: 324 242 703 elements). Besides the com-
plicated surface structure, different parts of this
model overlap each other in the x, y and z
directions. If the mesher did not identify enter-
ing and exiting locations of this model exactly,
the structured output mesh would not conform
with the unstructured mesh.

Fig. 18. Meshing example of a complex ring structure [38],
showing the input unstructured mesh (top), structured mesh
(middle) and a zoomed view of the detail of the structured mesh
(bottom).
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6 CONCLUSIONS

This article presents an open-source implemen-
tation of an algorithm for uniform and non-
uniform cuboid mesh generation for FDTD
solvers and similar codes. The mesher takes
an unstructured mesh as input, thus allowing
great flexibility in the CAD tools that can be
utilised in the initial creation of the simulation
geometry.

The algorithm is based on an optimisation
approach to the placement of mesh lines and
the well-known ray-casting approach to mate-
rial mapping. While the mesher currently does
not have all the features of a commercial tool it
can mesh structures of modest size with reason-
able complexity, as shown by the examples pre-
sented. Further work is continuing to improve
the material mapping performance and feature
set.

The code is available under a GPL Ver-
sion 3 licence from https://bitbucket.org/
uoyaeg/aegmesher/overview.
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