
This is a repository copy of Comparative performance evaluation of latency and link
dynamic power consumption modelling algorithms in wormhole switching networks on
chip.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/100154/

Version: Accepted Version

Article:

Harbin, James orcid.org/0000-0002-6479-8600 and Soares Indrusiak, Leandro
orcid.org/0000-0002-9938-2920 (2016) Comparative performance evaluation of latency
and link dynamic power consumption modelling algorithms in wormhole switching
networks on chip. Journal of systems architecture. pp. 33-47. ISSN 1383-7621

https://doi.org/10.1016/j.sysarc.2016.01.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Comparative Performance Evaluation of Latency and

Link Dynamic Power Consumption Modelling

Algorithms in Wormhole Switching Networks On Chip

James Harbin1,∗, Leandro Soares Indrusiak1

Real-Time Systems Group, Department of Computer Science, University of York, UK

Abstract

The simulation of interconnect architectures can be a time-consuming part

of the design flow of on-chip multiprocessors. Accurate simulation of state-

of-the art network-on-chip interconnects can take several hours for realistic

application examples, and this process must be repeated for each design it-

eration because the interactions between design choices can greatly affect

the overall throughput and latency performance of the system. This pa-

per presents a series of network-on-chip transaction-level model (TLM) al-

gorithms that provide a highly abstracted view of the process of data trans-

mission in priority preemptive and non-preemptive networks-on-chip, which

permit a major reduction in simulation event count. These simulation mod-

els are tested using two realistic application case studies and with synthetic

traffic. Results presented demonstrate that these lightweight TLM simula-

∗Corresponding author: Telephone +44 (0)1904 325550, Fax +44 (0)1904 325599
Email addresses: james.harbin@york.ac.uk (James Harbin),

leandro.indrusiak@york.ac.uk (Leandro Soares Indrusiak)

Preprint submitted to Journal of Systems Architecture March 11, 2016

tion models can produce latency figures accurate to within mere flits for the

majority of flows, and more than 93% accurate link dynamic power con-

sumption modelling, while simulating 2.5 to 3 orders of magnitude faster

when compared to a cycle-accurate model of the same interconnect.

Keywords: network on chip, transaction level modelling, TLM, NoC

modelling, simulation models, dynamic power consumption

1. Introduction

As the number of cores upon on-chip multiprocessors and system-on-chip

(SoC) devices has increased, inter-core communication has become a critical

design issue. The design architecture of the NoC (network-on-chip) is a vital

factor in performance tuning, given the large influence it has upon commu-

nication latency and power consumption. As a result of the highly dynamic

nature of application traffic and the potential for interactions between traf-

fic during transmission, most design flows use simulation rather than static

analysis to evaluate the power and latency performance delivered by a can-

didate NoC architecture. NoC interconnect simulation (as distinct from the

full system simulation including execution of code upon processing elements)

has been identified as an important research issue [1]. The design space of

viable NoCs for multicore or SoC problems spans a wide range of candidate

architectures and topologies, and is further expanded by the possible vari-

ability in application task mapping decisions. Particularly during the early

stages of the design process, it is important to accelerate NoC simulation

2

with as little impact upon accuracy as possible, allowing the design space

to be explored rapidly. Therefore, methodologies other than cycle-accurate

simulation are promising as candidates to rapidly explore the NoC design

space.

This paper specifies and evaluates a family of NoC simulation models

which are both fast and accurate in comparison to cycle-accurate references.

Two NoC architectures are considered which can be accurately described us-

ing transaction-level modelling (TLM). The models assume delay-sensitive

applications that have certain timing constraints, and therefore the appli-

cation model includes priorities used in arbitration decisions. Since these

application models typically require one flow to be prioritised over another,

priority preemptive NoCs following the example of QNoC [2] are the first

architecture assumed. However, given that priority preemptive NoC archi-

tectures have higher silicon area requirements for implementation, a non-

preemptive architecture is also considered and evaluated.

The definition of TLM assumed in this work is that of Cai and Gajski

[3], in which components are either transaction initiators, targets or inter-

connects. The relationship of our models to the TLM definitions specified

by Cai and Gajski is considered in Section 5. Compared to cycle-accurate

models, the proposed TLM algorithms are simplified to reduce the frequency

of simulation events. Events are generated only upon flow admission, flow

removal or when simulation state must be updated to ensure consistency.

Removing the necessity to model low-level details such as the progress of

3

every data flit through arbiters, routers and other simulator-level elements

permits the reduction of simulation event count by orders of magnitude.

A fine-grained cycle-accurate model can offer precise simulation of the

NoC internals, including the occupation and free status of particular buffers.

However, in order to improve execution time performance and reduce simu-

lation algorithm complexity, the buffer occupation of intermediate routers is

not considered within the TLM models described in this paper. Even under

the design structure of a transaction level model, several design choices are

possible regarding the abstraction levels chosen, with resulting implications

for timing performance and accuracy. In our earlier work [4], [5], [6] the entire

route was be treated as a single unified abstraction when making contention

decisions. Although this modelling approach is simple and its execution tim-

ing performance favourable, heavy contention requires a more fine-grained

approach to improve timing accuracy.

The major novelty in this paper is the presentation of the TLM model

TLM-NPD, which provides a finer locking granularity at the level of individ-

ual links and the ability to model flow behaviour in single-cycle increments

in case of contention. The further intent of this paper is to comparatively as-

sess and evaluate the simulation latency accuracy and execution time perfor-

mance of our family of transaction level models TLM-PRE [4], [5], TLM-NP

[6] and TLM-NPD, compared to reference cycle-accurate implementations.

These evaluations are performed with test cases incorporating two applica-

tion models and with synthetic traffic.

4

The paper is structured as follows. Section 2 surveys the literature on

TLM for NoCs, comparing and contrasting the approaches presented with

the present work. Section 3 motivates the work by describing the difficulties

in accurate latency prediction, particularly in non-preemptive NoCs. Section

4 describes the NoC scenarios, specifying the synthetic and application traffic

models used in the evaluation results. Section 5 specifies in detail the family

of TLM models evaluated in the work, typically via pseudocode implemen-

tations. Section 6 evaluates the accuracy and execution time performance of

the implementation under a variety of traffic models, and provides a discus-

sion of the comparative merits of the various models in view of the results.

Finally, Section 7 details potential extensions to the current work, and Sec-

tion 8 concludes the paper.

2. Literature Review

The goal of transaction level modelling is to improve simulation speed by

the abstraction away of low level events such as individual flit transmissions,

in favour of boundary events. TLM is frequently associated with SystemC

[7] although the methodology is suitably generic to be applied to other lan-

guages and simulation frameworks. The TLM 2.0 [8] framework models a

VLSI system such as a NoC or SoC as groups of transaction initiators or tar-

gets (communicating nodes) and interconnects which transfer transactions

from initiators to targets. In [9], SystemC TLM models are used for NoC

simulation by treating the transmission across multiple arbiters as a single

5

transaction. However, since blocking delays upon the path are only estimated

statistically, accuracy may be compromised in complex application models.

Schirner and Dömer [10] investigate the tradeoff between TLM accuracy

and simulation speed, finding that TLM may potentially be four orders of

magnitude faster than cycle-accurate models. However, the work introduces

simplifications that reduce accuracy, with a potential average inaccuracy of

35% reported in timing user transactions for their most abstract TLM model.

TLM models have been applied to the individual processing elements, and

can retain accuracy if using a granularity larger than individual instructions

(assisted by an earlier cycle-accurate static analysis phase). The approach

presented in this paper is distinct from this earlier work, as our work involves

the application of TLM to the NoC and not code execution on the PEs.

Bus TLM modelling is considered in Result-Oriented Modelling (ROM)

[11] which optimistically predicts transaction delays, and retroactively cor-

rects in the case of contention. ROM can provide error-free timing prediction,

however, frequent cascading corrections produce a reduction in simulation

event speed and require an increase in modelling complexity. Considering

TLM models for on-chip interconnects, timing points can be identified from

the protocol specifications of the bus [12]. Simulation speed improvements

of up to two orders of magnitude can be obtained while retaining accuracy

in comparison to a cycle-accurate model. This approach relies on accurate

identification of timing points from the bus protocol specification, which is

difficult as interconnects become more complex. In contrast, our approach

6

discovers preemption points for simulation dynamically during simulation,

from the arrival of contending traffic from the application model.

In [13], a speed-up of 50 times for the TLM models predicting NoC in-

terconnect latency compared to the cycle-accurate reference is shown, with

accuracy of 99.9%. This is obtained by using local time references for in-

dividual tasks communicating over the NoC, and only synchronising when

tasks are common initiators or targets of a single transaction. Modifications

to the simulation kernel to use lightweight schedulers [14] with a common

time reference were shown to produce a 38% speed up. However, this ap-

proach requires simulation kernel modifications, which our approach does

not require. In another approach [15], simulation parallelisation has been

explored to take advantage of multiple CPU cores on the host simulation

machine. By effectively dividing the independent tasks, a speedup almost

linearly proportional to the number of cores can be demonstrated.

Existing work has covered simulation of wormhole NoCs [16], which re-

duce the total number of simulation events by simulating only packet headers

and trailers. Our current approach requires the simulation of the progression

of all flits since it is necessary to register their power consumption impact.

Previous works by the current authors introduced a family of fast TLM al-

gorithms which are further clarified in Section 5 and evaluated with new

results. A TLM algorithm for priority preemptive NoCs [4] is referred to

as TLM-PRE within this paper. This model was studied and evaluated

for its power consumption accuracy in preemptive NoCs [5]. A fast non-

7

preemptive TLM model was applied to application task mapping in [6]. This

non-preemptive model is referred to as TLM-NP in this paper. A more ad-

vanced non-preemptive NoC model was presented in [17], although the model

presented in this current paper as TLM-NPD incorporates signficant alter-

ation to its internal model of how flows advance through the network, in

order to improve latency prediction performance.

3. Problem Description

It is likely that cycle-accurate simulation of NoC interconnect data trans-

mission will prove prohibitive for future realistic application cases, particu-

larly when evaluating a wide design space. In our earlier work on assessing

and improving NoC simulation algorithm execution speed, cycle-accurate

simulation of 2 seconds of execution of a target application required ap-

proximately 10 minutes [5]. Since the cycle-accurate framework operates

at flit granularity, simulator events are required every time a flit advances

through an architectural entity such as an arbiter or buffer. This not only

scales in proportion to the amount of data transmitted, but leads to wasteful

overheads in simulator state management and event scheduling which are

unrelated to the internal state of the NoC models.

A key challenge is to improve simulation speed by reducing overheads,

reducing the number of events that have to be scheduled and processed. By

contrast, in our TLM models events are scheduled upon flow admission or

upon the estimated time of removal of the flow, leading to event counts grow-

8

D

1S

S
2

Arrival at

t + ε

Arrival

at t

Flow from S

is blocked
2

(a) Timing advantage for flow from S1

D

1S

S
2

Arrival at

t + ε

Arrival

at t

Flow from S

is blocked
1

(b) Timing advantage for flow from S2

Figure 1: Small packet arrival timing offsets can determine which flow re-
ceives arbitration at contention points, potentially influencing flow latency,
particularly in non-preemptive NoCs (based upon [17])

ing with the contention between the flows. However, it is important in this

process to retain the accuracy of the system under network contention. Fig-

ure 1 illustrates a non-preemptive NoC in which two packet headers arrive at

a common router with a small timing offset ǫ. Even a relatively small timing

offset of a few cycles could determine which packet would be granted access

to a contended resource such as an arbiter output port. This would result in

the packet not receiving arbitration suffering blocking, and needing to wait

until the completion of its interferer in order to progress. Correct prediction

of the arrival timings of packet headers at contention points is therefore im-

9

portant in developing an accurate TLM simulation model. This is especially

critical in a NoC without priority preemption, in which large-scale latency

can be influenced by small-scale timing inaccuracies. By contrast, priority

preemption in the NoC reduces the impact of timing prediction errors upon

higher priority packets, since higher priority packets can always preempt a

lower priority interferer in the case they require access to a contended re-

source. As long as the TLM model correctly respects the priority ordering

in its arbitration decisions, the latency outcome will be close to correct.

However, in a non-preemptive NoC interconnect, the absence of preemp-

tion means that latencies are harder to predict. The most sophisticated TLM

model presented in this paper (TLM-NPD) compensates for this by tracking

the positions of individual flows as they advance and allowing the earliest

flow to arrive at the contending arbiter to receive arbitration, with priority

used as a tie-break in the case of simultaneous arrival. The structures of

the relevant preemptive and non-preemptive NoC models are presented in

Section 4.2.

Another factor that may be affected by inability to predict the precise con-

tention patterns is the dynamic power consumption. In this paper, dynamic

power consumption is evaluated using a simple model considering link wires

as capacitors, and transmission of successive flits as constituting bit tran-

sitions that charge and discharge the link capacitances. This power model

is based upon [18] and its implementation in our model specified more fully

in [5]. Inaccuracies in modelling the outcome of contention may influence

10

power consumption accuracy, since bit transitions will occur in a different

order. The precise degree of inaccuracy in both power and latency results

will be quantified by the experiments performed in this work.

4. Scenario Description

This section presents various assumptions used in the evaluation of the

transaction level models, together with detailing the NoC interconnect struc-

tures and traffic models that are used for experimental evaluation.

4.1. Assumptions

The following assumptions regarding the NoC interconnect and its struc-

ture and routing behaviour have been made throughout the work presented:

Regular grid topology A regular grid topology, with homogeneous links

XY routing To provide predictability in the routing structure

Wormhole switching In order to reduce intermediate buffering require-

ments, by allowing partially transmitted packets to remain in the NoC

Power model Dynamic power consumption is approximated by the number

of bit transitions upon the NoC links. Although other factors are im-

portant in NoC power consumption, the long length and therefore high

capacitance of NoC links results in link switching activity becoming a

significant proportion (30% or more [19] [20]) of total NoC dynamic

power consumption [18] [21] [22].

11

No deadlock is possible It is not possible for the system to be deadlocked,

as long as packets are not injected into the system by the application

model beyond the rate at which they can be serviced. This is assured

since there is a unique priority index for each flow in the system, and

it is possible to establish a total ordering over priorities, preventing

circular waiting and leading to the impossibility of deadlock.

4.2. NoC Arbiter Models

The present work focuses upon two particular architectural constructs

that can be accurately described using TLM; a NoC architecture incorporat-

ing priority preemption, and a non-preemptive NoC architecture. A descrip-

tion of these architectures follows below.

4.2.1. Priority Preemptive Arbiter

In the priority preemptive case it is assumed that the NoC uses a virtual

channel architecture similar to QNoC [2]. In each input port, a different

FIFO buffer stores the flits of packets arriving in different virtual channels

(one VC is statically mapped globally for each priority level). The router as-

signs an output port for each incoming packet according to their destination,

which can be determined simply using XY routing. Credit-based flow control

[23] guarantees that data is only forwarded from one router to the next when

there is sufficient buffer space to hold it. When the requisite buffer space

is available at the recipient, flits for the highest priority virtual channel re-

questing arbitration are allowed to use it, ensuring that the highest priority

12

flows are always preferred and therefore that their blocking times are the

lowest.

4.2.2. Non-Preemptive Arbiter

The second architectural construct is the non-preemptive NoC, based

upon HERMES [24]. The major disadvantage of a priority preemptive NoC

arbiter is its requirement for virtual channels and their associated buffering,

in order to store flits from different priorities independently. The silicon area

requirements due to increased buffering in preemptive NoCs can be excessive

[25]. Therefore, this non-preemptive NoC arbiter is potentially a more viable

solution for practical synthesis. A key difference from the architecture in

HERMES is that although the system is non-preemptive, priorities are used

as a tiebreak during arbitration when multiple flows arrive and contend for

a busy output port upon the same arbiter.

4.3. Application Traffic Models

The primary challenge that makes static analysis of NoC interconnect

throughout and latency performance infeasible is that such results can be

heavily influenced by the traffic patterns employed. Synthetic test traffic

generated according to statistical workload distributions may fail to capture

realistic dependencies that exist between tasks, therefore failing to account

for sequential interactions, such as one task transmitting packets in response

to a request from an earlier task. On the other hand, timing or mapping

characteristics of real application models may be unusually favourable to

13

one particular architecture. Therefore, three traffic models are considered in

this paper, to incorporate the best features of both realistic scenarios and

synthetic traffic as a system testing tool.

4.3.1. Autonomous Vehicle Application

The autonomous vehicle application [26] consists of 38 communicating

tasks representing the multimedia processing (for video camera analysis, nav-

igation and communication processing) of an autonomous vehicle. The AV

application is used with a static task mapping as employed in our previous

work [5], intended to manually balance the load within the NoC.

The original AV application model assumed the presence of release jitter,

as a fixed percentage of the flow transmission period, typically 10%. Given

that the communication latency of flows during transmission is short relative

to the periods between transmission of the same flow, release time jitter was

disabled for the simulations performed in this paper. This results in the si-

multaneous admission of bursts of flows to the network, increasing contention

as in the situation described in Figure 1.

4.3.2. H264 Decoder

This test application consists of an implementation of the H264 decoder

(h264dl_mesh_4x4.rtp) from version 1.1 of the MCSL benchmark suite [27],

providing 51 tasks that model the distributed decoding of a multimedia pro-

cess. The tasks are organised as a branching tree structure, and the decoding

process is periodically triggered from the timing of a single clock pulse rep-

14

resenting the arrival of data into the system. This represents the decoding

of multimedia data via a distributed SoC. Although the original benchmark

structure did not include priorities, flow priorities have been assigned, in or-

der of the flow identifiers provided in the H264 benchmark definition. The

only alteration that has been introduced is the use of a modified task map-

ping in order to produce additional contention, and to ensure that no source-

destination pairs are mapped onto the same cores.

4.3.3. Synthetic Traffic

The synthetic traffic generator injects tasks during system execution. A

fixed number of tasks are generated within the system every task generation

interval, and assigned a fixed number of peers. Task peers, priorities and mes-

sage sizes are chosen randomly, given an initial seed value that allows com-

patibility to be ensured between experimental and reference cycle-accurate

models. Newly created tasks are dynamically mapped to the network pro-

cessing elements according to a simple load minimisation mapping that seeks

to balance the task loading across individual NoC cores. The advantage of

this traffic model is that its random selections generate significant contention

between flows of widely varying priorities and lengths. This serves to test the

latency accuracy of the different TLM models with increasing levels of load as

the network is populated during execution, with some packets experiencing

multiple blockings during advancement to their destination.

15

5. Models and Implementation

5.1. Overview

This section defines the transaction level (TLM) and cycle-accurate ref-

erence models that are investigated and contrasted within the paper. In this

section the fundamental design decisions and structure of each model are

explained and justified, together with general algorithm descriptions that

specify their underlying logic. Details of the reference implementation of the

particular model within the simulation framework are also provided. For

clarity the five models are referred to as CA-PRE, CA-NP, TLM-PRE [4]

[5], TLM-NP [6] and TLM-NPD. CA-NP and CA-PRE are the reference

cycle-accurate implementations, while TLM-PRE, TLM-NP and TLM-NPD

are the experimental TLM models evaluated here. Table 1 summarises the

key characteristics of these models. Criteria used for classifying the mod-

els include their priority preemption behaviour (priority preemptive or non-

preemptive), their cycle-accuracy (whether they function as a reference or

an experimental test model) and, for the TLM models, their granularity of

modelling. The granularity of modelling refers to whether the models store

and use individual link state in their NoC modelling decisions, or whether the

complete flow and its associated source-destination route is the fundamental

abstraction.

The relationship of the models to Cai and Gajski’s TLM classification [3]

is also defined in Table 1. The reference models CA-PRE and CA-NP are

examples of Cai and Gajski’s classification as a time-accurate communication

16

model, in that they provide a cycle-accurate model of communication but an

abstraction of computation on the processing elements. The TLM-PRE,

TLM-NP and TLM-NPD models are examples of bus-transaction models,

in that they also approximate communication timings using the mechanisms

defined in Sections 5.4, 5.5 and 5.6.

REFERENCE IMPLEMENTATIONS

Model Name Preemptive? Cycle-accurate Granularity Cai-Gajski [3]

CA-PRE ✓ ✓ Flit-level Time-accurate
CA-NP ✗ ✓ Flit-level Time-accurate

TLM EXPERIMENTAL IMPLEMENTATIONS

Model Name Preemptive? Cycle-accurate Granularity Cai-Gajski [3]

TLM-PRE ✓ ✗ Flow-based Bus-transaction
TLM-NP ✗ ✗ Flow-based Bus-transaction
TLM-NPD ✗ ✗ Link-based Bus-transaction

Table 1: The characteristics of the NoC models

Throughout the paper, the concept of flows is employed. A flow is de-

fined as a sequence of associated flits from the same source and destination

which travel together to their destination. Flows have an associated route,

which represents the links that they traverse on the route to their destina-

tion. Packets therefore represent the simplest example of a flow (being the

complete sequence of flits including a header and all transmitted data), al-

though a flow can also represent a partial packet which has not completely

entered its final flit into the NoC. All the TLM models presented track the

state of flows using the concept of flit position, which represents the progress

17

of the header flit of the packet along its route from the source node to its

destination. Flit position is required in the tracking of power consumption as

well as latency, since it provides information on the position of individual flits

relative to the links upon the route it traverses. Consider the progress of a

single packet under transmission from source to destination via intermediate

routers in an otherwise idle NoC, as shown in Figure 2.

Src DstR0 R1 R2 R3
0

Src DstR0 R1 R2 R3
22 1 0

0

Src DstR0 R1 R2 R3
1 0

Src DstR0 R1 R2 R3
2 1 03

Src DstR0 R1 R2 R3
2 1 034

Src DstR0 R1 R2 R3

Src DstR0 R1 R2 R3

2 134

Src DstR0 R1 R2 R3
34

Src DstR0 R1 R2 R3
4

234

T

i

m

e

Link index along route to destination

Figure 2: Structure of the algorithm and flow progression to the destination
(based upon [5])

18

Potential values for flit position at a given time are in the range 0 ≤ Fp < N +H − 1,

in which the hop count of the route is given by H and N refers to the total

number of flits (including header flits) that the packet contains. A growing

phase occurs when Fp < H − 1, in which data flits are in progress to the

destination, but some links further along the route can be idle as data flits

have not yet reached them. Following completion of the growing phase, every

link on the route has transmitted a header flit for this flow, and the worm-

hole process can continue to operate normally. The flow finally experiences

a shrinking phase in which Fp ≥ N . In this phase no additional data flits

are being injected, but the final flits are still in progress and have not yet

reached their destination. During transmission in the example in Figure 2

this flow goes through flit positions from 0 to 8 at successive time intervals.

5.2. CA-PRE - Preemptive Cycle-Accurate

The first model considered is a preemptive cycle-accurate model, referred

to as CA-PRE (Figure 3a). The figure shows the implementation of a test

NoC within the Ptolemy II simulation environment [28].

The CA-PRE model is structured to represent NoC components such as

arbiters, buffers and their associated ports as entities within the simulator.

On each transmission of a flit from one network component to another, sim-

ulator events have to be scheduled in order to process the arriving flit. For

example, flits arriving at an arbiter go through a simulated arbitration pro-

cess (using the multi-port mechanism of the Ptolemy II simulator to model

19

virtual channels) which processes the virtual channels in priority order, and

ensures that the highest priority requesting arbitration is sent out upon the

relevant output port. Priority sorting ensures that each output port is only

used once for transmission per cycle, and port multiplexing state is tracked to

model the arbitration delays. Credit based flow control is used to control the

propagation of data through the network, allowing additional flits to enter

input buffers as they empty.

Delays are defined and timing information is tracked such that the propa-

gation of flits through the system is cycle accurate, but due to the requirement

for simulation events to model the propagation of each flit through multiple

simulation entities such as arbiters and buffers, time consumed in simulation

scales in proportion to the amount of data sent. This model is therefore used

as a reference implementation to validate the execution time performance

and accuracy of the TLM-PRE TLM model for preemptive NoCs. Although

the current implementation uses the Ptolemy II simulation environment, the

model structure is sufficiently generic to be applied to any simulator that has

objects with state, and port connections between them that trigger events

upon message arrival.

5.3. CA-NP - Non-preemptive Cycle-Accurate

The second model considered is a non-preemptive cycle-accurate model,

referred to as CA-NP. The fundamental structure of the CA-NP model at

the simulator design level is identical to CA-PRE. The key distinction exists

20

(a) CA-PRE cycle-accurate simulation model
(peer to peer NoC router topology)

(b) TLM-PRE TLM simulation model (entire
NoC as single central entity)

Figure 3: The implementations of the simulation models for CA-PRE and
TLM-PRE

within the arbitration code, in that their ports do not model the independent

buffering provided by virtual channels. In the alternative non-preemptive

design employed instead, the first flit to use a particular output port locks

that input-output port combination until the transmissions have finished.

All other requesting flows awaiting transmission on that output port of the

arbiter are blocked until completion of the in-progress flow, and therefore

cannot access the output port requested regardless of their priority level.

However, the fact that the input ports are processed in priority order ensures

that when two flows contend simultaneously for an output port, the priority

levels are used as a tiebreak to determine which flow receives arbitration.

21

5.4. TLM-PRE - TLM Preemptive Single-Flow Activity

The TLM-PRE TLM preemptive model presented in this section is de-

scribed more fully in [4], [5] and [29]. The goal of the algorithm is to simulate

a priority preemptive NoC with a greatly reduced frequency of events. Events

are only processed upon flows entering or exiting the interconnect, or at an-

ticipated completion times for existing flows, in which simulation state must

be updated to ensure consistency. In the implementation of this and the

other TLM algorithms, an abstraction of the entire NoC is represented as a

single simulation entity (depicted centrally in Figure 3b). All abstractions of

processing elements are directly connected to this Interconnect entity.

The TLM-PRE algorithm is presented in Listing 1. The algorithm oper-

ates upon the set of currently active flows, processing them in priority order.

The algorithm uses the concept of interference sets in defining contention

between flows:

Definition 5.1. The interference set of flowi is composed of flows of higher

priority than flowi with routes sharing at least one link with the route of

flowi. Flows are considered to be in the interference set regardless of whether

flits from an interfering flow request arbitration on those shared links simul-

taneously with flowi.

For a particular flowi, the algorithm tracks its current activation status

activei, and its remaining flits for transmission flitstosendi. During the

update event, the progress of active flows is updated using the last activation

22

time tai. Completed flows are removed from the flow table. Activation of

any flows in the interference set of flowi inactivates flowi, preventing it

from transmitting. Flows without any active members of their interference

set are activated. Iteration over the flow set proceeds in priority order from

the highest to the lowest, ensuring that the activation decisions respect flow

priority. A further update event is scheduled at the expected completion

time of flowi. Therefore, simulation events only occur when flows enter or

leave the NoC, or to update state at an expected flow completion time.

The trackPower function (Listing 2) is responsible for dynamic power

consumption modelling for a particular flow. It allows dynamic power con-

sumption of multiple flits to be tracked in a single simulator event, over a

time window in which it was known that the flow had exclusive access to

particular links. The trackPower function is invoked in two circumstances

during the update function; when flowi completes, or when another higher

priority flow inactivates flowi.

The trackPower function operates as follows. Firstly, the flowing time

can be computed by subtracting the current time from its last activation

time. The number of flits transmitted over this flowing time is computed us-

ing the flow’s flit transmission rate, which is by default assumed equal to the

system clock speed. A range of flits between startF litPos and endF litPos

is therefore determined. Iterating over both flit position and link index upon

the route, the flits which crossed a link are looked up from the flow’s as-

sociated data. Then links are notified of the presence of these flits using

23

Listing 1: Pseudocode for updating a list of flows with power tracking (from
[5])

1 update (currentTime) {
2 for each flowi in f l o w l i s t {
3 i f (activei) {
4 flitstosendi = flitstosendi − s e n tF l i t s (currentTime −

tai) ;
5 tai = currentTime ;
6 i f (flitstosendi == 0) {
7 remove flowi from f l o w l i s t ;
8 trackPower (flowi) ;
9 }
10 for each flown in interferencei {
11 i f (activen) {
12 activei = f a l s e ;
13 trackPower (flowi) ;
14 }
15 }
16 } else {
17 i f (! a c t i v e n for a l l flown in interferencei) {
18 activei = true ;
19 requestUpdate (currentTime + bas i cLat (

f l i t s t o s e n d i)) ;
20 }
21 }
22 }
23 }

24

Listing 2: Pseudocode for TLM dynamic power tracking (from [5])

1 trackPower (currentF lowi) {
2 flowing time = currentTime − tai ;
3 endF litPos = startF litPos + flowingtime ∗

f l i tT ran sm i s s i onRat e (currentF low i) ;
4 for (flit index = s t a r tF l i tPo s to endF litPos) {
5 for (link index = 0 to hopLength (currentF low i)) {
6 flit for link = flit index − link index ;
7 i f (flit for link >= 0 and
8 flit for link < endFl i tL imi t (currentF low i)) {
9 link = getLink (currentFlow i , link index) ;
10 flit = ge tF l i t (flit for link) ;
11 r e g i s t e rTran sm i s s i on (link , flit) ;
12 }
13 }
14 }
15 s e tF l i tPo s (currentF lowi , endF litPos) ;
16 }

25

registerTransmission. This function handles dynamic power consumption

tracking for a particular flit and link, by tracking and accumulating bit tran-

sitions between sequential flits using a particular link. Since the algorithm

iterates over flit indices in its outer loop and along the route links in its inner

loop, the power consumption impact of previous flits will have been registered

in advance. It is therefore possible to extend the present work to apply more

advanced power models which incorporate cross-coupling between adjacent

links, e.g. [30] [31].

The example in Figure 2 shows a particular example of power track-

ing execution. Using a conventional cycle-accurate model in which every flit

transmission is directly modelled using low-level simulation events, simulator

events would be required upon every grey arrow. The TLM power tracking

described is able to model every flit transmission depicted with a single simu-

lation event, as long as the flow is not preempted during transmission. In the

case of preemption, an additional simulation event would be required, which

would handle modelling the completed flits up to the preemption point.

Consider Figure 2 to represent the algorithm’s internal processing. Mov-

ing from left to right along the horizontal axis (modelled in the inner loop of

Listing 2) represents advancing flits in single steps along their route to their

destination, with each gray arrow representing a power registration event for

a single flit. The rows represent sequential time-steps, which are handled in

the outer loop of Listing 2. Therefore, the link from processing core Src to

router R0 would receive in sequence flits 0, 1, 2, 3, 4 for power tracking reg-

26

istration. No link activity is modelled upon the vacant links closest to the

destination for flit positions 0 to 3, since the flow is still in its growing phase

and its flits have not reached this point yet. Correspondingly, the shrinking

phase occurs when the links closest to the source are idle.

5.5. TLM-NP - TLM Non-Preemptive Single-Flow Activity

In a preemptive NoC, it is always possible for a newly arriving higher pri-

ority flow to preempt another transmission in progress. The TLM simulation

model presented in this section, referred to as TLM-NP [6], operates upon

non-preemptive NoCs which do not permit such preemption. Upon flow ad-

mission, flows calculate their interference sets and activation status with any

other flow, in order to determine which flows will potentially interfere.

The pseudocode for the TLM-NP algorithm is the same as the previously

described TLM-PRE (Section 5.4), with a modification to the sorting order.

Instead of sorting flows for processing in order of priority, flows are sorted

on their distance to the next contention point (the link in the NoC at which

the routes of the two flows intersect). Priority is used as a secondary sorting

criterion if the distances to the next contention point are equal. For example,

two simultaneously arriving flows which wish to use the same link are sorted

such that the closest one to the contending router is processed first. Priority

is used as a tiebreak if their arrival at the point of contention would be

simultaneous. During the update event the flow processed first will reach the

contention point, is allowed to claim it and is set to active. Once a flow has

27

passed through the contention point, then the model assumes that it cannot

be preempted and will flow until its flitsToSend is zero.

5.6. TLM-NPD - TLM Non-Preemptive Dynamic Link Claiming

When one or more flows which share a link in common are active in the

network simultaneously, the TLM simulation algorithms presented in the pre-

vious sections have only allowed one of the them to be active simultaneously.

This may result in the simulation producing overestimates of latency, since

the model is too conservative in the temporal separation it provides. In the

real hardware implementation of a non-preemptive wormhole switching NoC,

both flows could advance through the arbiters along their routes in parallel,

until the latest of the two reaches the arbiter at which they are blocked or

contend for an output port. In the case of simultaneous arrival at an arbiter,

flow priorities would determine which would receive arbitration.

The TLM-NPD model is introduced in order to compensate for this, by

allowing individual links upon the route to be claimed dynamically. The

TLM-NPD model is the most sophisticated presented within this work, since

it models this situation by allowing multiple flows upon intersecting routes

to proceed simultaneously, claiming the links upon their arbiters up until the

point at which they will be blocked. This is therefore much more likely to

accurately predict latency in the problem case defined in Figure 1.

An earlier form of this non-preemptive NoC model (TLM-NPD) was pre-

sented in [17], although the model presented here has been modified to im-

28

prove latency prediction performance under contention, by restricting flow

advancement during the growing phase to a single flit at a time. By contrast,

when a number of growing flows existed which attempt to request access to

multiple links, the early version of the algorithm described in [17], would

advance system time in a single operation, granting access to the contended

links to whichever flow was selected. This selection criteria was based on a

criterion of dominance, which considered flit positions to calculate distances

to the first contention point, as well as priorities. The dominance ordering

was computed up front and used as a sorting order. The necessity to ad-

vance system time in relatively course steps while assigning dominance in

this form produced problems in accurate link claiming prediction in complex

scenarios, when high contention lead to multiple blocking events occurring

over the update interval. The dynamic flow advancement in single flit steps

in the algorithm presented here as TLM-NPD solves this problem.

The increased reliance upon dynamic calculations means that the logic

for flow admission using in TLM-NPD is simplified. Upon admitting a flow

to the NoC, it is merely added to the flow table. Route intersection checking

or interference set (Definition 5.1) calculation is no longer required during

flow admission, since the dynamic flow move calculation during the update

events replaces them. The simulation now uses a time window start lastUp-

dateTime which records the time over which the interval should be recon-

structed. During flow admission, if no other flows are present in the system,

lastUpdateTime is set to the new flow admission time.

29

Listing 3: Pseudocode for the TLM-NPD algorithm: update of a list of flows

1 update (currentTime) {
2 int a rb i t e rP lu sL inkPe r i od s = a rb i t e rPe r i o d s + 1 ;
3 double time = lastUpdateTime ;
4
5 while (time <= currentTime) {
6 // Process f l ow s so r t ed in p r i o r i t y order
7 fo r each (flowi so r t ed by p r i o r i t y) {
8 i f (flowi . isGrowing ()) {
9 headLink = flowi . headLinkAtFl i tPos i t i on () ;
10 i f (headLink != nu l l and ! headLink .

i sCla imed ())
11 tryGrowAdvance (flowi , time , headLink) ;
12 } else tryFlowAdvance (flowi , t ime) ;
13 }
14 time += minFlowPeriod () ;
15 }
16
17 lastUpdateTime = currentTime ;
18
19 fo r each (flowi so r t ed by p r i o r i t y) {
20 i f ((flowi . f l i t P o s i t i o nF i n i s h e d ())) {
21 removeFlow (flowi , currentTime) ;
22 } else {
23 completionTime = flowi . timeToCompletion (

currentTime , a rb i t e rP lu sL inkPe r i od s) ;
24 scheduleUpdateAt (completionTime) ;
25 }
26 }
27 }

30

Listing 4: Pseudocode for the TLM-NPD TLM function tryGrowAdvance

1 tryGrowAdvance (flowi , time , headLink) {
2 i f (time >= (flowi . lastMoveTime+minFlowPeriod () ∗

a rb i t e rP lu sL inkPe r i od s)) {
3 // Claim i t
4 headLink . c la imLink (flowi , t ime) ;
5 // Move forwards one , update move time , t r ack

power
6 moveForwardTrackPower (flowi , 1 , time ,

currentTime) ;
7 }

Listing 5: Pseudocode for the TLM-NPD TLM function tryFlowAdvance

1 tryFlowAdvance (flowi , t ime) {
2 i f (time >= (flowi . lastMoveTime + flowi . f l owPer iod)

) {
3 // Move forwards one , update move time , t r ack

power
4 moveForwardTrackPower (flowi , 1 , time ,

currentTime) ;
5
6 i f (flowi . i s Sh r i nk i ng ()) {
7 // Flow t a i l l i n k s can be r e l e a s e d
8 t a i l L i n k = flowi . t a i l L i n k () ;
9 i f (t a i l L i n k != nu l l) {
10 t a i l L i n k . r e l e a s eL i nk (flowi , t ime) ;
11 }
12 }
13 }
14 }

31

The pseudocode for update is presented in Listing 3. The first section

of the algorithm operates differently to the other TLM algorithms, in that

it is based upon advancing all flows simultaneously through the network in

single-flit steps as blocking permits, rather than computing the maximum

move limited by time and then advancing the flow in a single operation.

This is necessary in order to accurately model the claiming and releasing of

link locks when shorter flows are present in the network, since the release

of the lock upon a link may allow another flow behind it to advance. The

outer loop of the algorithm between lines 5 and 15 advances time forwards

in increments of the minimum processing period of flows in the network (by

default, this is equal to the system clock speed). The inner loop in lines 7

to 13 iterates over all active flows in priority order. This priority-ordered

iteration ensures that the all the higher priority flows in a flow’s interference

set (Definition 5.1) have been considered to check if they are eligible to claim

a link under contention, which respects the priority-favouring design of the

real hardware system.

If the flow is in its growing phase (in which it has not yet acquired all

the necessary links on the route to its destination), then the next link that

will be required by the advancing head is tested to determine if it is free

or claimed. If it is free, then tryGrowAdvance (Listing 4) is executed. This

compares the iteration time with the time of the flow’s next permitted move,

in order to determine if it can proceed yet. If this condition is met, then

the flow is permitted to advance forwards. Advancing a growing flow first

32

consists of claiming the relevant link at the head. This is followed by (in the

function moveForwardTrackPower) incrementing the flow flit position, and

tracking the power impact of registering the single flits in one move.

If the flow is not in its growing phase (that is, its header has claimed

all the links to its destination) then it is immune to blocking given that the

NoC design assumed is non-preemptive. Therefore, tryFlowAdvance (Listing

5) is called to determine whether the flow can move forward. tryFlowAdvance

verifies that the time elapsed since the last move is equal to or greater than

the flow processing period, and if so advances the flow. If the flow is in its

shrinking phase, then it is also necessary to free the link at the tail every

time it moves forwards.

The last step for update in lines 17 to 26 of Listing 3 is to register the

time of this last update, and to work out which flows have completed and

which need to be scheduled for further processing. Accordingly, the code

iterates over all flows within the network, testing their flit positions to deter-

mine whether these flows have already completed. If they have completed,

then they are removed from the network. If not, then their estimated com-

pletion time (assuming no further blocking events occur) is computed. An

additional update is scheduled at this time in order to handle their remaining

transmissions.

One particular issue involved that may produce inaccuracies in the TLM-

NPD model is consideration of buffering in the network. In the reference

cycle-accurate NoC model there will exist storage in the form of input buffers

33

attached to particular input ports (one buffer per virtual channel in the

priority-preemptive NoC). This allows several flits to be stored within one

arbiter input buffer, which can produce a bunching up of multiple flits at

intermediate buffers. However, for modelling simplicity, the concept of flit

position used for the TLM models assumes that all flits are arranged sequen-

tially along their respective route, without bunching up within the buffers of

intermediate routers. This therefore can lead to some incorrect predictions

of flit position and the resulting preemption behaviour by the TLM models,

as examined in the results.

6. Results

This section presents simulation results to evaluate the simulation execu-

tion time performance, latency and power consumption modelling accuracy

of the various TLM models compared to the cycle-accurate reference. The

default parameters used throughout the simulations are given in Table 2. If

alternatives to these default parameters are used in any particular simulation

run, it will be specified during the description of the particular experiment.

6.1. Simulation Execution Time Performance Results

A major issue for NoC simulations is improving their overall execution

time while retaining accuracy, in order to allow realistic application cases

to be simulated. This subsection considers the wall-clock execution times of

the TLM simulation models defined in this paper. The models are compared

34

Parameter Description Value

Larb Arbitration latency (cycles) 3
NoC Dimensions The structure of the XY grid for application cases 4x4
NoC Dimensions The structure of the XY grid for synthetic traffic 6x6
DAV Simulated execution duration of AV application 10s
DH264 Simulated execution duration of H264 application 1s
DSY NTH Simulated execution duration of synthetic traffic 5s
Flit width The number of bits per flit 32

tgen Synthetic traffic task generation interval 0.5s
tmsg Synthetic traffic message transmission interval 0.2s
P Task peer count (fixed) 2
TMAX Maximum number of tasks in the network 72
Mmin Synthetic traffic minimum message size 20 flits
Mmax Synthetic traffic maximum message size 100 flits

Table 2: Parameters for the overall simulation methodology, and for synthetic
traffic generation

against reference cycle-accurate models for the three application cases consid-

ered. Figure 4a illustrates the execution time performance of the TLM and

reference models for the AV application, indicating that the simpler TLM-NP

model is approximately 3.1 orders of magnitude faster than cycle-accurate.

The TLM-NPD algorithm is approximately 2.7 orders of magnitude faster.

This relative reduction in speed for TLM-NPD compared to TLM-NP occurs

due to the requirement for the TLM-NPD algorithm to iterate in a nested

loop forwards over the time window and also over all active flows, which is

more time-consuming than the logic of TLM-NP. Considering the preemp-

tive models for the AV application, the TLM-PRE algorithm has effectively

equivalent execution time performance to TLM-NP, since the structures of

35

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

S
im

u
la

tio
n

 e
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
s)

Simulated time in target model (seconds)

Execution times of TLM models versus
cycle−accurate NoC simulation

 for the AV application

CA−NP

CA−PRE

TLM−NPD

TLM−NP

TLM−PRE

(a) AV Application

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

S
im

u
la

tio
n

 e
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
s)

Simulated time in target model (seconds)

Execution times of TLM models versus
cycle−accurate NoC simulation

 for the H264 application

CA−NP

CA−PRE

TLM−NPD

TLM−NP

TLM−PRE

(b) H264 Application

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

S
im

u
la

tio
n
 e

xe
cu

tio
n
 t
im

e
 (

se
co

n
d
s)

Simulated time in target model (seconds)

Execution time of TLM models versus cycle−accurate
NoC simulation for synthetic traffic

CA−NP

CA−PRE

TLM−NPD

TLM−NP

TLM−PRE

(c) Synthetic Traffic

Figure 4: Performance of the transaction-level model simulations compared
with a cycle-accurate reference model

both algorithms are very similar. Similarly, the preemptive cycle-accurate

reference CA-PRE displays very similar execution time performance to CA-

NP, since their simulation structure and event counts are very similar.

Figure 4b illustrates the execution time performance of the H264 applica-

tion. The simulation duration is much shorter, and there is a smaller increase

in execution time for the TLM models since the tree structure of this applica-

36

tion produces lower contention. The TLM-NP and TLM-PRE models exhibit

3.1 orders of magnitude execution time performance improvement over the

CA-NP and CA-PRE cycle-accurate simulations. The TLM-NPD model de-

livers 2.7 orders of magnitude improvement. The vertical steps shown in the

results arise due to the staggered release of packets from the central trig-

gering clock of the H264 application, which produces variations in network

loading at different sampling intervals.

Figure 4c illustrates the equivalent execution time performance for the

synthetic traffic generator, starting with the injection of the first tasks into

the system. Since tasks are generated dynamically for this simulation starting

with an empty network, at the beginning of the simulation model-independent

features such as simulation setup, data generation and packet generation are

dominant over the modelling of simulation transmission events. Therefore,

at the start the execution timing performance advantage of the TLM simula-

tions over cycle-accurate is comparatively low. However, as additional tasks

are generated as simulation execution progresses, the load placed upon the

NoC and total flit transmission rate throughout the NoC increases. Since

the cycle-accurate models require simulation events per every flit transmit-

ted, the advantage of the TLM models becomes greater, producing approxi-

mately 3.3 and 3.1 orders of magnitude timing performance improvement for

the TLM-NPD and TLM-NP models over cycle-accurate. As in the AV ap-

plication case, TLM-PRE provides an equivalent execution time performance

improvement to TLM-NP, due to the similar application structure.

37

6.2. Latency Accuracy

The communication latencies produced during simulation by the TLM

models will vary according to how their algorithms handle the contention

between flows. This section presents and compares the normalised laten-

cies delivered for preemptive and non-preemptive TLM simulation models,

grouping packets according to their priorities. Normalised latency refers to

the latency per flit, that is, the total communication latency divided by the

number of flits transmitted. The total latency experienced by a packet dur-

ing transmission depends on the contention experienced during transmission,

which may change due to the activities of other flows at the transmission in-

terval. Therefore, a maximum-minimum range is specified at each priority

level. Priorities are defined so that the low priority index values represent

the highest priorities (e.g. priority 1 is therefore the highest priority in the

system). All packets transferred between a source-destination pair in the

application model use the same priority.

The latencies for the autonomous vehicle application are considered in

Figure 5a, covering results occurring over 10 seconds of simulation runtime.

The results show that the accuracy of the TLM-NPD algorithm is over-

all very high, with the largest error in the maximum normalised latency

under-estimation upon flow priority 17 corresponding to 15 flit-times (0.25

flit-times per message flit, with a message size of 60 flits). By contrast the

TLM-NP model exhibits large latency errors in several flow priorities, par-

ticularly overestimates at priority 14 and a major underestimate for priority

38

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x 10
−7

Flow priority index

N
o

rm
a

li
s
e

d
 l
a

te
n

c
y
 p

e
r

fl
it

(w
it
h

 m
in

−
m

a
x
 e

rr
o

r
b

a
rs

)
(s

)

Normalised latencies per flit for
AV application in non−preemptive models

CA−NP

TLM−NP

TLM−NPD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−7

Flow priority index

N
o

rm
a

li
s
e

d
 l
a

te
n

c
y
 p

e
r

fl
it

(w
it
h

 m
in

−
m

a
x
 e

rr
o

r
b

a
rs

)
(s

)

Normalised latencies per flit for
AV application in preemptive models

CA−PRE

TLM−PRE

(a) Priorities as in application

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x 10
−7

21
31

14

22
15

33

4

Flows sorted in order of increasing latency

N
o

rm
a

li
s
e

d
 l
a

te
n

c
y
 p

e
r

fl
it

(w
it
h

 m
in

−
m

a
x
 e

rr
o

r
b

a
rs

)
(s

)

Normalised latencies per flit for
AV application in non−preemptive models

CA−NP

TLM−NP

TLM−NPD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−7

Flow sorted in order of increasing latency

N
o

rm
a

li
s
e

d
 l
a

te
n

c
y
 p

e
r

fl
it

(w
it
h

 m
in

−
m

a
x
 e

rr
o

r
b

a
rs

)
(s

)

Normalised latencies per flit for
AV application in preemptive models

CA−PRE

TLM−PRE

(b) Flows sorted in latency order

Figure 5: Latency results for the AV application under both preemptive and
non-preemptive models

39

33. This occurs since the simpler TLM-NP algorithm in incapable of track-

ing precisely where contention occurs during the progression of a flow during

its growing phase. In the preemptive case, the TLM-PRE algorithm is more

accurate, since a preemptive architecture is inherently more predictable in its

timing. The only flow priority for which the latency is particularly inaccu-

rate is 19, in which there is an underestimate since the TLM-PRE algorithm

cannot model accurately contention during the growing and shrinking phases

of routes, conservatively assuming the route is active throughout. Figure 5b

shows the flows from the same simulation rearranged in order of increasing

mean normalised latency (in the cycle-accurate reference model), to demon-

strate the general trend in TLM simulation accuracy for flows with increasing

contention.

For the TLM-PRE algorithm for the AV application case, the normalised

latencies are overall a closer match to the cycle-accurate case, since the sce-

nario is overall more predictable. The largest latency error occurs for prior-

ity 19, in which the normalised latency is approximately 66% higher for the

cycle-accurate reference.

For the H264 application (Figure 6) in the non-preemptive case, both

TLM-NP and TLM-NPD correctly model overall structure of the latency

’ramp-up’ effect with priority that exists for low and high priorities. This

feature of the application arises as a result of the fan-out inherent in two

places in the H264 application, in which one source task transmits simul-

taneously to multiple destination peers. Given the complex mapping and

40

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Flow priority index

N
o
rm

a
lis

e
d
 l
a
te

n
c
y
 p

e
r

fl
it

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r

b
a
rs

)
(s

)

Normalised latencies per flit for H264 application
with non−preemptive models

TLM−NP

TLM−NPD

CA−NP

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Flow priority index

N
o
rm

a
lis

e
d
 l
a
te

n
c
y
 p

e
r

fl
it

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r

b
a
rs

)
(s

)

Normalised latencies per flit for H264 application
with preemptive models

TLM−PRE

CA−PRE

Figure 6: Latency results for the H264 application under both preemptive
and non-preemptive models

simultaneous application release, the model is very sensitive to cascading

latency errors, and for both TLM-NP and TLM-NPD there are two trans-

missions that are predicted incorrectly (priority 22 for TLM-NP and priority

28 for TLM-NPD). For the H264 preemptive case, the overall application

structure is more predictable since the NoC is preemptive and there is less

dependence on exact details of timing. This produces lower errors between

TLM-PRE and the CA-PRE cycle-accurate reference.

For the synthetic traffic simulations, results are displayed using flow re-

sorting (in order of increasing mean cycle-accurate latency) only. Since the

flow priorities are randomly selected and there is no defined application struc-

ture to the network, flow patterns are difficult to process intelligibly without

resorting. Figure 7 displays the resorted normalised latency of flows. For the

TLM-NP model, mean normalised latency values are highlighted with black

41

markers in addition to the TLM-NP data series. It is clear that the TLM-

NP algorithm provides a very poor estimate of latency in the non-preemptive

case, in that there is no relation between the shape of the cycle-accurate curve

and the TLM model. This occurs since the synthetic traffic produces much

higher contention than the other application examples, given that the task

peering relationships and mappings are randomly generated. Many flows

are blocked two or more times during their growing phase, which given the

wide variety of flow lengths and mappings can produce normalised latencies

per flit up to five times higher, or twice as low as the cycle accurate (CA-

NP) reference. By contrast, TLM-NPD provides much closer estimations

of cycle-accurate latency, with an overall close correspondence between the

mean values for TLM-NPD and the cycle-accurate reference. This is due

to its ability to track the timings and advancements of flows and therefore

anticipate which flow will receive arbitration in the event of a small timing

offset.

In the CA-PRE and TLM-PRE model comparison, it is notable that in

most cases the TLM model produces a latency above the reference cycle-

accurate model. However, occasionally the minimum latency is below the

minimum latency of the cycle-accurate reference. This can occur due the

dependencies between flows, in which a latency prediction error for one flow

in the TLM model can cause a dependent flow to miss contention that would

have occurred in the cycle-accurate model.

42

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−7

Flows sorted by mean normalised latency

N
o
rm

a
lis

e
d
 l
a
te

n
c
y
 p

e
r

fl
it

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r

b
a
rs

)
(s

)

Normalised latencies per flit for synthetic traffic with non−preemptive TLM models

TLM−NP

TLM−NPD

CA−NP

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−7

Flows sorted by mean normalised latency

N
o
rm

a
lis

e
d
 l
a
te

n
c
y
 p

e
r

fl
it

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r

b
a
rs

)
(s

)

Normalised latencies per flit for synthetic traffic with preemptive TLM models

CA−PRE

TLM−PRE

Figure 7: Latency results for synthetic traffic under both preemptive and
non-preemptive models

6.3. Worst Case Latency Errors

As a summary, the maximum worst-case normalised latencies (per-flit

latency) errors generated by the various TLM models are presented in Table

3. These errors are computed by comparing the peak normalised latency

produced a TLM model against the latency produced by the relevant cycle-

accurate model. The priority level which produced the latency error is also

annotated.

It is notable that considering the non-preemptive cases, the TLM-NPD

model is significantly more accurate than the TLM-NP model predictions in

the AV application and synthetic traffic cases. Particularly in the synthetic

traffic case, there are a large number of priority levels which produce a high

relative error for TLM-NP (as depicted in Figure 7) in addition to the worst

case value given in the table. In the H264 case in which there is a complex

43

mapping and the significant admission of packets to multiple destinations,

the worst case normalised latencies of the two models are approximately

equal.

Application TLM-NP TLM-NPD TLM-PRE

AVApp -74.3% (priority 33) -5.2% (priority 17) +66% (priority 19)
H264 +218.0% (priority 22) +218.0% (priority 28) +39% (priority 28)
Synthetic traffic +687% (priority 76) +32% (priority 29) +42% (priority 70)

Table 3: Maximum latency errors experienced by the TLM models

6.4. Link Transition Modelling Accuracy

This section considers the error in NoC link dynamic power consumption

modelling for the various TLM models, compared to the cycle-accurate ref-

erence. The dynamic power consumption on the links is approximated using

a model which counts the number of bit transitions upon the NoC links.

Although this does not include power consumption effects obtained from

switching logic or power coupling costs, due to the length of NoC links they

comprise a significant individual source of NoC dynamic power consumption

[18] [32] [21] [22] [19]. The results are presented as histograms indicating the

proportion of links in the network which exhibited the indicated error, which

allows the distribution of link errors to be examined.

Figure 8a demonstrates the link bit transition errors for the AV appli-

cation for the TLM-NP model, indicating that the majority of links have

dynamic power estimates within 0.1% accurate. The maximum inaccuracy

44

−2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

25

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e
rc

e
n
ta

g
e
 o

f
lin

k
s
 w

it
h
 e

rr
o
r

(a) TLM-NP model for AVApp

−2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

25

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e
rc

e
n
ta

g
e
 o

f
lin

k
s
 w

it
h
 e

rr
o
r

(b) TLM-PRE model for AVApp

Figure 8: Histogram of link bit transition estimation errors for TLM models
relative to cycle-accurate reference in AV application

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
0

2

4

6

8

10

12

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e
rc

e
n
ta

g
e
 o

f
lin

k
s
 w

it
h
 e

rr
o
r

(a) TLM-NP model for H264

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
0

1

2

3

4

5

6

7

8

9

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f

lin
k
s
 w

it
h

 e
rr

o
r

(b) TLM-PRE model for H264

Figure 9: Histogram of link bit transition estimation errors for the TLM
models relative to cycle-accurate reference for H264 application

of individual links is in the small cluster around a 2.5% underestimate. These

links are however carrying only a small amount of data, so this relative inaccu-

racy is less important for overall link power consumption. For the TLM-NPD

45

model, a power result histogram is not shown as the bit transition totals are

identical to the cycle-accurate reference, indicating zero link dynamic power

consumption error. The results for the TLM-PRE model in Figure 8b show

similar bit transition patterns, with minor variations caused by the transition

differences resulting from preemptions during flow transmission.

Figure 9a illustrates results for the H264 application using the TLM-NP

model. The variance in link power errors is much smaller than for the AV

application, with typical link power underestimates ranging between 0.5% to

0.7%. Similarly, for the TLM-NPD model, the power results were not shown

as a result histogram since they are identical to the cycle-accurate reference.

For the TLM-PRE model, shown in Figure 9b the results are overall similar,

but there is a slightly higher peak around a 0.61% underestimate. There is

more variation between TLM-PRE and TLM-NP for the H264 application

than for the AV application, due to the increased contention in the appli-

cation and mapping used. In particular, preemptions during transmission

cause slightly increased bit transition errors for TLM-PRE in the 0.8% to

0.9% underestimate range.

Figure 10 illustrates the equivalent results for synthetic traffic. The re-

sults for the TLM-NP model in Figure 10a illustrate an underestimate with a

peak around 2.3%, although outliers illustrate a proportion of errors approx-

imating 5.5% in a few cases. Given the wide range of flows and intersections

produced by the increased contention, the variance of the errors produced

is larger than in the application models. The results in Figure 10b show

46

that although the TLM-NPD model does produce some bit transition er-

rors under the complex contention pattern of synthetic traffic, it is better at

modelling arbitration decisions and therefore transitions correctly. The dis-

tribution of link bit transitions errors is centred around zero with a variance

of approximately 0.2%. In the preemptive TLM-PRE model (Figure 10c),

the underestimate of total transitions is around 2.2%. This is to be expected

from the similar structure of the algorithm to TLM-NP, given that both

TLM-PRE and TLM-NP operate on interference sets as defined in Section

5.4, and will therefore experience similar bit transition errors when flows are

in their growing and shrinking phases. With TLM-PRE the errors are more

closely clustered around the median value, although the worst case error for a

particular link is slightly higher at 6.6%, representing additional errors from

preemptions.

6.5. Discussion

This section summarises the points arising from the results presented in

the previous subsections, and considers the utility of the various TLM models

in the analysis of NoC power and latency during the design flow stage. From

the results presented above, the following considerations arise.

For the production of early power consumption estimates in non-preemptive

NoCs in which dynamic power consumption needs to only be approximated

roughly, the TLM-NP algorithm is suitable for approximating bit transitions.

This is especially true in situations in which the average packet size is large

47

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
0

1

2

3

4

5

6

7

8

9

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f

li
n

k
s
 w

it
h

 e
rr

o
r

(a) TLM-NP model

−1 −0.5 0 0.5
0

2

4

6

8

10

12

14

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f

li
n

k
s
 w

it
h

 e
rr

o
r

(b) TLM-NPD model

−7 −6 −5 −4 −3 −2 −1
0

2

4

6

8

10

12

Histogram of bit transition error count
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f

li
n

k
s
 w

it
h

 e
rr

o
r

(c) TLM-PRE model

Figure 10: Histogram of power consumption estimation errors of individual
links for synthetic traffic relative to cycle-accurate reference

48

and blocking is infrequent, and therefore bit transition errors resulting from

incorrect contention prediction are likely to be rare. If these conditions are

not met, then the TLM-NPD algorithm is more suitable for link dynamic

power consumption prediction.

If prediction of the latency of specific packets is not critical (because the

network does not have hard real-time constraints) or the network utilisa-

tion/mappings are not expected to produce significant contention, than the

TLM-NP algorithm can be useful to approximate overall network latencies.

However, TLM-NP is not the most suitable in cases in which there is heavy

contention (multiple blockings due to traffic intersecting simultaneously upon

a route).

When traffic patterns interleaving long packets with smaller packet sizes

are used, or higher accuracy in latency prediction for specific flows is required

then the finer-grained locking algorithm TLM-NPD is important for accu-

rately estimating latencies of individual flows. The TLM-NPD algorithm

is capable of modelling the specific positions of flows and their contention

timings, and has been demonstrated to produce close accuracy to the cycle-

accurate case for the majority of flow priorities in the cases studied. Although

the execution of TLM-NPD is about 2-3 times slower than TLM-NP, it is still

sufficiently fast compared to cycle-accurate to be practical for real simulation

workflows.

A preemptive NoC is generally more time-predictable than a non-preemptive

NoC. Considering the three application case studies used, the less sophisti-

49

cated TLM-PRE algorithm is still capable of obtaining more accurate latency

results under challenging contention patterns such as the H264 application.

This TLM-PRE algorithm also has the lowest execution time of the three

TLM models presented due to its simplicity.

7. Further Work

The TLM-NPD algorithm presented made use of fine-grained locking in

non-preemptive NoCs. However, for preemptive NoCs as specified in Section

5, when several flows contend for access to a certain link the preemptive

TLM model TLM-PRE only allows one of them to proceed through the

network at any given time. Therefore, useful further work would be to add an

additional TLM model of a preemptive NoC with fine-grained link claiming,

effectively providing a high-performance simulation of the virtual channel

mechanism. The algorithm involved would be considerably more complex,

since it would not be possible to claim links throughout the lifetime of the

flow in a preemptive NoC, since they could always be preempted by higher

priority flows. Also, in a preemptive NoC, flows will not always travel from

source to destination in a contiguous flit sequence; preemptions occurring in

transit will break them into smaller chunks. Therefore, operations for flow

splitting need to be defined to ensure similar accuracy to TLM-NPD.

50

8. Conclusion

This paper has presented a set of transaction-level models (TLM) for NoC

interconnects, aimed at providing scalable models extensible to the massively

parallel NoC architectures planned for future use. Simulations have been per-

formed in a pair of realistic benchmark application models and with synthetic

traffic in order to investigate their performance. The accuracy and execu-

tion time performance has been quantified to demonstrate that the TLM

models presented provide an improved accuracy of approximately 93% in the

prediction of link dynamic power consumption measured through bit transi-

tions. The TLM simulations have exhibited execution time performance 2.5

to 3 orders of magnitude faster when compared to a cycle-accurate model of

the same interconnect. In addition, the dynamic non-preemptive TLM-NPD

simulation model has been shown capable of accurately predicting per-flit la-

tencies even in synthetic traffic producing considerable contention. Although

the TLM models typically predict flow latencies accurate to within mere flits

of the cycle-accurate values, the worst-case latency error for any flow in the

most sophisticated non-preemptive NoC TLM model (TLM-NPD) is 218%,

as opposed to 66% in the preemptive NoC TLM model (TLM-PRE). This

is due to the inherent time-predictability of preemptive NoCs which makes

them more suitable for TLM modelling.

51

Acknowledgements

Financial support for this work was provided by the EPSRC, under

projects ’LowPowNoC’ (contract EP/J003662/1) and ’MCC’ (EP/K011626/1).

References

[1] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, Y. Hoskote,

Outstanding research problems in NoC design: System, microar-

chitecture, and circuit perspectives, IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems 28 (1) (2009) 3 –21.

doi:10.1109/tcad.2008.2010691.

[2] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, QNoC: QoS architecture

and design process for network on chip, J. Syst. Archit. 50 (2-3) (2004)

105–128. doi:10.1016/j.sysarc.2003.07.004.

[3] L. Cai, D. Gajski, Transaction level modeling in system level design,

Tech. rep., University of California, Irvine (2003).

[4] L. S. Indrusiak, O. M. dos Santos, Fast and accurate transaction-level

model of a wormhole network-on-chip with priority preemptive virtual

channel arbitration, in: DATE 2011: Design, Automation Test in Eu-

rope Conf., 2011, pp. 1–6.

[5] J. Harbin, L. S. Indrusiak, Fast transaction-level dynamic power con-

sumption modelling in priority preemptive wormhole switching networks

52

on chip, in: SAMOS: Int. Conf. Embedded Computer Systems Archi-

tectures Modelling and Simulation, 2013.

[6] J. Harbin, L. Indrusiak, Dynamic task remapping for power and

latency performance improvement in priority-based non-preemptive

networks on chip, in: ReCoSoC 2013: 8th Int. Workshop

Reconfigurable and Communication-Centric SoC, 2013, pp. 1–7.

doi:10.1109/ReCoSoC.2013.6581526.

[7] A. Rose, S. Swan, J. Pierce, J. M. Fernandez, et al., Transaction level

modeling in SystemC, Open SystemC Initiative 1 (1.297).

[8] L. Cai, D. Gajski, Transaction level modeling: an overview, in:

CODES+ISSS 2003: 1st Int. Conf. Hardware/Software Codesign and

System Synthesis, 2003, pp. 19 –24. doi:10.1109/codess.2003.1275250.

[9] A. Kohler, M. Radetzki, A systemc TLM2 model of communication

in wormhole switched networks-on-chip, in: Specification Design Lan-

guages, 2009. FDL 2009. Forum on, 2009, pp. 1–4.

[10] G. Schirner, R. Dömer, Quantitative analysis of the speed/accuracy

trade-off in transaction level modeling, ACM Trans. Embed. Comput.

Syst. 8 (1) (2009) 4:1–4:29. doi:10.1145/1457246.1457250.

[11] G. Schirner, R. Domer, Result-Oriented Modeling: A novel tech-

nique for fast and accurate TLM, IEEE Trans. Computer-Aided

53

Design of Integrated Circuits Systems 26 (9) (2007) 1688–1699.

doi:10.1109/TCAD.2007.895757.

[12] H. W. M. Van Moll, H. Corporaal, V. Reyes, M. Boonen, Fast and

accurate protocol specific bus modeling using TLM 2.0, in: DATE

2009: Design Automation Test in Europe Conf., 2009, pp. 316–319.

doi:10.1109/DATE.2009.5090680.

[13] E. Viaud, F. Pêcheux, A. Greiner, An efficient TLM/T modeling and

simulation environment based on conservative parallel discrete event

principles, in: DATE 2006: Design Automation Test in Europe Conf.,

2006, pp. 94–99.

URL http://dl.acm.org/citation.cfm?id=1131481.1131514

[14] M. Hosseinabady, J. Nunez-Yanez, SystemC architectural transaction

level modelling for large NoCs, in: FDL 2010: Forum on Spec. Design

Lang., 2010, pp. 1–6. doi:10.1049/ic.2010.0143.

[15] M. Eggenberger, M. Radetzki, Scalable parallel simulation of networks

on chip, in: Networks on Chip (NoCS), 2013 Seventh IEEE/ACM Inter-

national Symposium on, 2013, pp. 1–8. doi:10.1109/NoCS.2013.6558402.

[16] L. Ost, F. Moraes, L. Möller, L. S. Indrusiak, M. Glesner, S. Määttä,

J. Nurmi, A simplified executable model to evaluate latency and

throughput of networks-on-chip, in: SBCCI 2008: Proc 21st Ann. Symp.

Integrated Circuits and System Design, SBCCI ’08, ACM, New York,

54

NY, USA, 2008, pp. 170–175. doi:10.1145/1404371.1404420.

URL http://doi.acm.org/10.1145/1404371.1404420

[17] J. Harbin, L. S. Indrusiak, Fine-grained link locking within power and la-

tency transaction level modelling in wormhole switching non-preemptive

networks on chip, in: Proceedings of Workshop on Parallel Programming

and Run-Time Management Techniques for Many-core Architectures

and Design Tools and Architectures for Multicore Embedded Comput-

ing Platforms, PARMA-DITAM ’14, ACM, New York, NY, USA, 2014,

pp. 33:33–33:38. doi:10.1145/2556863.2556865.

URL http://doi.acm.org/10.1145/2556863.2556865

[18] W. Fornaciari, D. Sciuto, C. Silvano, Power estimation for architec-

tural exploration of HW/SW communication on system-level buses, in:

CODES ’99: 7th Int. Workshop Hardware/Software Codesign, 1999, pp.

152 –156. doi:10.1109/hsc.1999.777411.

[19] K. Chatha, K. Srinivasan, Layout aware design of mesh based noc archi-

tectures, in: Hardware/Software Codesign and System Synthesis, 2006.

CODES+ISSS ’06. Proceedings of the 4th International Conference,

2006, pp. 136–141. doi:10.1145/1176254.1176288.

[20] K. Srinivasan, K. Chatha, G. Konjevod, Linear-programming-based

techniques for synthesis of network-on-chip architectures, Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on 14 (4) (2006)

407–420. doi:10.1109/TVLSI.2006.871762.

55

[21] M. Palesi, G. Ascia, F. Fazzino, V. Catania, Data encoding schemes

in networks on chip, Computer-Aided Design of Integrated Cir-

cuits and Systems, IEEE Transactions on 30 (5) (2011) 774 –786.

doi:10.1109/tcad.2010.2098590.

[22] J. C. S. Palma, L. S. Indrusiak, F. G. Moraes, A. Garcia Ortiz,

M. Glesner, R. A. L. Reis, Inserting data encoding techniques into noc-

based systems, in: VLSI, 2007. ISVLSI ’07. IEEE Computer Society

Annual Symposium on, 2007, pp. 299 –304. doi:10.1109/isvlsi.2007.58.

[23] H. Kung, R. Morris, Credit-based flow control for atm networks, IEEE

network 9 (2) (1995) 40–48.

[24] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost, HERMES: an

infrastructure for low area overhead packet-switching networks on chip,

Integr. VLSI J. 38 (1) (2004) 69–93. doi:10.1016/j.vlsi.2004.03.003.

[25] A. Mello, L. Tedesco, N. Calazans, F. Moraes, Virtual channels in net-

works on chip: implementation and evaluation on Hermes NoC, in: Pro-

ceedings of the 18th annual symposium on Integrated circuits and system

design, ACM, 2005, pp. 178–183.

[26] Z. Shi, A. Burns, L. S. Indrusiak, Schedulability analysis for real time

on-chip communication with wormhole switching, International Journal

of Embedded and Real-Time Communication Systems (IJERTCS) 1 (2)

(2010) 1–22.

56

[27] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, Z. Wang,

A NoC traffic suite based on real applications, in: ISVLSI 2011: IEEE

Com. Soc. Annual Symp., 2011, pp. 66–71. doi:10.1109/ISVLSI.2011.49.

[28] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng, Het-

erogeneous concurrent modeling and design in Java (vol .2: Ptolemy II

software architecture), Tech. Rep. UCB/EECS-2008-29, EECS Depart-

ment, University of California, Berkeley (Apr. 2008).

[29] L. Indrusiak, J. Harbin, O. M. dos Santos, Fast simulation of networks-

on-chip with priority-preemptive arbitration, ACM TODAES (Transac-

tions on Design Automation of Electronic Systems) (2015) (accepted).

[30] N. Banerjee, P. Vellanki, K. S. Chatha, A power and performance

model for network-on-chip architectures, in: DATE 2004: Design

Automation Test in Europe Conf., Vol. 2, 2004, pp. 1250–1255.

doi:10.1109/date.2004.1269067.

[31] J. A. Davis, J. D. Meindl, Compact distributed RLC interconnect mod-

els - Part II: Coupled line transient expressions and peak crosstalk in

multilevel networks, IEEE Trans. Electron Devices 47 (11) (2000) 2078

–2087. doi:10.1109/16.877169.

[32] L. Ost, G. Guindani, F. Moraes, L. Indrusiak, S. Maatta, Exploring noc-

based mpsoc design space with power estimation models, Design Test of

Computers, IEEE 28 (2) (2011) 16–29. doi:10.1109/MDT.2010.116.

57

