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Abstract

This paper introduces the idea of a ‘simplifying transformation’ for nonlinear structural dynamic systems.
The idea simply stated; is to bring under one heading, those transformations which ‘simplify’ structural
dynamic systems or responses in some sense. The equations of motion may be cast in a simpler form or
decoupled (and in this sense, nonlinear modal analysis is encompassed) or the responses may be modified in
order to isolate and remove certain components. It is the latter sense of simplification which is considered
in this paper. One can regard normal form analysis in a way as the removal of superharmonic content
from nonlinear system response. In the current paper, this problem is cast in an optimisation form and the
differential evolution algorithm is used.

Key words: nonlinearity, differential evolution, optimisation, simplifying transformation, su-

perharmonics.

1 Introduction

The machine learning methods that are introduced in this paper via an optimisation algorithm that aims
to address the problem of validity relating to the modal analysis of nonlinear structures. Modal analysis is
an important tool in structural dynamics as it is used to understand the dynamical characteristics of the
structure. Many methods have been proposed in recent years regarding nonlinear analysis, such as nonlinear
normal modes or the method of normal forms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The motivation for this paper comes from the problem of how to transform second-order equations of motion
into a simpler form, as vibration problems are naturally expressed via such differential equations. The method
of normal forms can be used as an analytical tool when vibration problems are surrounded by nonlinearities
in order to recast the equations of motion in a simpler form.

One can regard normal form analysis in a way as the removal of some superharmonic content from nonlinear
system response. In the current work, this problem is cast in an optimisation form and the differential
evolution algorithm is used. The advantage of this data-based approach introduced here is that complicated
algebraic analysis is not needed and the details of the equations of motion are not required.

The layout of the paper is as follows. Section 2 covers the main features of the optimisation algorithm and
the proposed transformation, while Section 3 gives an example of nonlinear analysis based on the technique
that is mentioned in Section 2. The paper finishes with some overall conclusion and future work.



2 Simplifying transformation strategy and differential evolution

In vibration analysis, the relationship between system resonances and external forcing is particularly important
especially when nonlinearities are present. Using the approach that is proposed here, leads to a simpler form
when simulating resonant behaviour by removing the dominant superharmonic.

The transformation is as simple as a polynomial expansion. Adopting a machine learning approach, one can
learn the undetermined coefficients from measured data, freeing the system from the dominant superharmonic.

A different approach to both analytic solutions and pattern recognition methods is to treat the removal
of superharmonic content from nonlinear system response in terms of an optimisation problem, where the
aim is to choose parameters such that the new signal is free from the 1st superharmonic that appears at
three times the natural frequency (for a symmetric nonlinearity). For this purpose, a nonlinear optimisation
algorithm based on differential evolution will be used here. For the purposes of this paper a brief description
of differential evolution is given and readers are referred to [11, 12, 13] for more details. A section will follow
with results using the technique on data simulated to represent the theoretical situation that was discussed.

Differential evolution, introduced by Storn and Price [12], is an evolutionary algorithm in the same sense as
a genetic algorithm that begins with an initial population of trial solutions to a problem and via successive
cycles of mutation, crossover and selection computes an optimal set of solutions. These trial solution are
subject to a suitable objective function, in respect to the given problem. In turn, for the current analysis the
trial solutions are a vector of parameter guesses that satisfy the condition that the new signal is a simplified
transformation as described before.

The optimisation algorithm is summarised in Fig. 1. The routine, although seeming complicated, follows
a smooth but powerful procedure. An initial population of parameter vectors are randomly generated.
Then to each parameter vector of this initial population, the objective function specifies a cost value and a
new generation of solutions is born from this initial population. A target vector is chosen from the initial
population and then a trial vector is created by ‘mutation’. Mutation takes two random parameter vectors A
and B according to Fig. 1 from the population and subtracts one from the other by multiplying it by some
constant or scaling factor and finally adds it to a third randomly chosen parameter vector (C) from the initial
population. The trial vector can be considered as the ‘child’ of the target vector and the mutated vector.

After this chain of actions a new parameter vector is born between mutated trial vector and the target
vector and the procedure is called ‘crossover’. A predefined hyperparameter determines if the trial vector
takes a parameter value from the target vector or the mutated vector. This new vector will then be selected
for the next generation if its cost value is lower than that of the target vector. If not, the target vector is
forwarded to the next generation population. This procedure is repeated several times and as the process
evolves through a chain of generations, parameter vectors with low cost values will be constructed.

In this analysis a slight variation of DE was used called self-adaptive differential evolution (SADE) [11, 13].
This algorithm evolves in a similar fashion to the DE procedure except that it also learns which values of
scaling factor and hyperparameter are most likely to result in a trial vector that will be forwarded to the
next generation, giving faster convergence compared to DE algorithm. The main advantage of using this
evolutionary population based tool in respect to the parameter estimation problem is that the algorithm will
potentially converge on the global minimum cost value rather than a local minimum.

For the purposes of the nonlinear simplifying transformation, a suitable objective function must be chosen
on the basis of isolating and remove certain components (superharmonics).



Fig. 1: Schematic of a typical differential evolution algorithm [14].



3 An example

The system of interest will be a nonlinear one-DOF lumped parameter system (see Fig.2). Data were
simulated using a fixed-step 4th-order Runge-Kutta algorithm with harmonic excitation and the associated
displacement was extracted. The model parameters adopted were: m = 1, c1 = 0.001, k1 = 50, knl = 103.
The nonlinearity that is assumed is cubic.

Fig. 3 shows the resulting power spectral density (PSD) for the simulated physical variable. The method
that is used in order to calculate the power spectral densities (PSDs) which follow is the Welch method based
on time averaging over short, modified periodograms which could decolour the effect of different random
excitation inputs [15]. The signals are split into sections and the periodograms of each section are averaged.
Through the Welch method these data sections are overlapped and a window, such as the Hanning window is
applied in order to filter each section. The overlapping of the signal sections is usually either 50% (as in this
paper) or 75%.

For all the graphs the vertical axis is the PSD of displacement and the frequency is in Hz.

As can be seen, the third order superharmonic (which as expected appeared at three times the natural
frequency) is the dominant trend in the signal. Following this evidence a simplifying transformation of a
polynomial expansion is adopted in the form of:

z(i) = a+ by(i) + cy(i)3 + dy(i)5 (1)

where {z} is the transformed signal, {y} is the initial signal and [a, b, c, d] the undetermined parameters of
the polynomial expansion.

The task of the optimisation algorithm is to determine the polynomial coefficients and at the same time
transform the new signal by zeroing the 1st dominant superharmonic that appears at three times from the
natural frequency.

As can be seen in Fig. 4 the method that is introduced successfully removes the superharmonic. However, as
can be noted in Fig. 5 if the frequency spectrum is widened then the second superharmonic (5th order) is
rising in magnitude to counter balance the reduction of the the 3rd order superharmonic. This problem will
be investigated in the second part of this paper.

Fig. 2: Nonlinear one-DOF lumped parameter system.
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Fig. 3: PSD for physical variable.
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Fig. 4: PSD for transformed variable.
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Fig. 5: PSD for transformed variable including second superharmonic (5th order).

4 Conclusion

The purpose of this paper is to highlight the key utility of some machine learning methods, not only for
dynamic analysis of structure but as well as a method of simplification for nonlinear mechanical systems. The
main benefit of the approach taken here is that complicated algebraic analysis is not necessary. Furthermore,
the physical equations of the system are not needed. As a result, this machine learning approach is suited to
experimental investigation of nonlinear systems using only the measured output responses. A further work in
the second part of this paper investigates the apperance of higher order superharmonics.
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