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Fast and Exact Fiber Surfaces

for Tetrahedral Meshes

Pavol Klacansky, Julien Tierny, Hamish Carr, and Zhao Geng

Abstract—Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has

generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm

for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates

of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber

surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the

topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows

visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive

exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that

it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and

we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our

algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables

interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation

is provided as additional material to reproduce our results.

Index Terms—Bivariate Data, Data Segmentation, Data Analysis, Isosurfaces, Continuous Scatterplot.

F

1 INTRODUCTION

Isosurfaces are geometric primitives that serve as the basis of

many data analysis and segmentation tasks. Regarding multi-

variate scalar fields, Scientific Visualization has historically had

no counter parts to isosurfaces, even for bivariate fields. This

was recently remedied by fiber surfaces, which generalize iso-

surfaces by taking the inverse image of a separating line, curve

or polygon in the range [6]. Fiber surfaces have been shown to

provide more flexible segmentation capabilities than sequences

of isosurfacing/thresholding on the individual components of the

data, as illustrated in Fig. 1. In this chemistry example, while

isosurfaces of the electron density capture regions of influence

of atoms (grey surfaces), they do not distinguish atom types.

Similarly, isosurfaces of the reduced gradient capture regions

of chemical interactions (blue surfaces) but do not distinguish

covalent from non-covalent interactions. In contrast, polygons

isolating the main features of the continuous scatterplot yield fiber

surfaces distinguishing atom types (red: oxygen, grey: carbon)

as well as interaction types (blue: covalent bonds, green: non-

covalent hydrogen bond). We refer the reader to [6] for further

motivating examples and applications in cosmology, combustion

and dental imaging.

However, due to its approximate nature and time requirement

(several seconds of computation even for moderately small data-

sets), the existing algorithm [6] currently prevents a usage of
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fiber surfaces as widespread as for isosurfaces. Thus, as with

the original works on isosurfaces, two major issues need to be

addressed: (i) accuracy (to allow for robust post-processing [16],

[15]) and (ii) speed (to allow for interactive surface-based data

exploration [27]).

This paper fills this gap by introducing the first algorithm that

extracts provably exact fiber surfaces in tetrahedral meshes, with

up to two orders of magnitude speedups in contrast to previous

work [6]. Its result is shown to be exact, it assumes no restriction

on the topology of the input polygon, handles degenerate cases and

better captures sharp features induced by polygon bends. The al-

gorithm also easily allows visualization of individual fibers on the

output surface, which better illustrates their relationship with data

features in range space. To reach interactive extraction rates, we

investigate several speedup strategies. First, we show that our algo-

rithm is trivially parallel and we report nearly linear scalings with

the number of cores. Second, we generalize both domain-based

and range-based isosurface extraction acceleration algorithms to

fiber surfaces. In particular, we show how to generalize interval

trees (widely used in isosurface extraction [9]) to the case of fiber

surfaces and we describe how this problem reduces to the design

of hierarchical partitioning data-structures efficiently supporting

polygon intersection tests. Experiments show the superiority of

this approach with up to two orders of magnitude speedups over

previous work. Finally, we describe an interactive system for fiber

surface exploration that combines and exploits these contributions.

Overall, our algorithm provides the robustness and speed required

for a widespread usage of fiber surfaces, in automatic or interactive

contexts. In the interest of reproducibility and rapid uptake of these

methods, we provide a lightweight VTK-based C++ implementa-

tion as additional material that we hope will become a reference

implementation for fiber surfaces. In summary, this paper makes

the following new contributions:
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Fig. 1. Isosurfaces (a) and Fiber surfaces (c) of a bivariate field representing chemical interactions within an ethane-diol molecule ((b): continuous scatter plot,

X: electron density, Y: reduced gradient [19]). While isosurfaces of the electron density capture regions of influence of atoms ((a): grey), they do not distinguish

atom types. Similarly, isosurfaces of the reduced gradient capture regions of chemical interactions ((a): blue) but do not distinguish covalent from non-covalent

interactions. In contrast, polygons isolating the main features of the continuous scatter plot (b) yield fiber surfaces (c) distinguishing atom types (red and grey)

as well as interaction types (blue and green). Image adapted from [6].

1) Accuracy and robustness:

• Exact extraction of fiber surfaces in tet-meshes;

• Extension to input polygons of arbitrary topology.

2) Interactive exploration:

• Generalization of domain-based and range-based

isosurface acceleration methods to fiber surfaces;

• Scalable parallel fiber surface extraction;

• On-surface individual fiber visualization;

• Interactive system for fiber surface exploration;

• A VTK-based C++ reference implementation.

2 RELATED WORK

For this paper, there are three primary areas of relevant work:

isosurface extraction, multifield visualization, and the recent paper

introducing fiber surfaces [6]. For the former, we shall assume that

the reader is broadly familiar with isosurface extraction except

when the details are significant, otherwise directing the interested

reader to a recent survey [27] and textbook [35]. For multifield

visualization, we shall sketch the relevant literature, and use a

separate section to sketch the principal results from the recent

paper on fiber surfaces.

2.1 Isosurfaces

Given a scalar field f : R3 → R, contours and isosurfaces can

be defined mathematically as the inverse image f−1(h) = {x ∈
Dom f : f (x) = h} of an isovalue h∈Ran f . For a simply connected

domain, this has the useful property that it separates the domain

into pieces: in particular, for many datasets, the isosurface is a

closed surface which represents some sort of boundary in the

phenomenon under study. In practice, f is usually represented by

a piecewise mesh with an interpolant over each cell of the mesh:

extraction methods therefore depend on the type of cells.

For regular cubic meshes, a trilinear interpolant is normally

assumed, for which the correct isosurfaces are hyperbolic

sheets [28]. These, however, are expensive and difficult to extract

and render, and in practice, a simpler approach is used.

Marching Cubes [23] therefore constructs a surface separately in

each cell of the input grid, following four stages: I) classification

(marking vertices as below or above the queried isovalue), II)

triangle topology (given the previous classification, a lookup

table is employed to retrieve the corresponding triangle mesh

topology), III) vertex interpolation (given the previous triangle

mesh, vertices’ positions are obtained through interpolation), IV)

normal vectors (given the triangle mesh embedding, its normals

are computed). While efficient and easy to implement, the surfaces

do not match the trilinear interpolant either topologically or

geometrically [28], [16], [15]. Variants of this also exist for other

mesh types, in particular for tetrahedral meshes with barycentric

interpolation [4]. In this case, known as Marching Tetrahedra, the

isosurface in a given cell is guaranteed to be planar and parallel to

all other isosurfaces in the cell, and the surface extracted is thus

known to be correct.

As a result of its simplicity, robustness and ease of implemen-

tation, Marching Cubes / Tetrahedra has become the standard

approach for extracting isosurfaces. However, its cost of is O(n)
in the input size rather than O(k) in the output size (the number of

triangles). Since many techniques depend on interactive extraction

of isosurfaces, considerable effort has therefore been devoted to

accelerating Marching Cubes, in particular through parallelization,

the adoption of geometric search structures, and through topolog-

ical analysis. Of these three, parallelization is the simplest, since

Marching methods compute independent surfaces in each cell of

the mesh: thus, parallelisation is easily achieved, and carries over

to fiber surfaces, as discussed in Sec. 8.

Geometric search for isosurface acceleration relies on the observa-

tion that only those cells which intersect a given isosurface (known

as active cells) need to be processed. This can be restated by

asking whether the desired isovalue h belongs to the image of

each cell K in the range. Since for scalar fields, a cell’s image is

always an interval [Kmin,Kmax], it can be stored in constant space,

and tested with a point-in-interval intersection: is h∈ [Kmin,Kmax]?
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Fig. 2. Fiber surface extraction on a bivariate field (electron density and reduced gradient) representing chemical interactions within an ethane-diol molecule

(dark surface in (a)). Fiber surfaces are defined as pre-images of polygons drawn in range space (i.e. the continuous scatter plot (b)). The existing algorithm for

their computation [6] relies on a distance field computation on a rasterization of the range. While increasing the raster resolution results in more accurate fiber

surfaces ((c): 162, (d): 10242), even for large resolutions, the distance field intrinsically fails at capturing sharp features of the fiber surface (here polygon bends

in the range, black sphere (b)), as showcased in the zoom-views (bottom) where the corresponding fibers are displayed with black curves. Our work introduces

the first algorithm for the exact computation of fiber surfaces on tetrahedral meshes. It accurately captures sharp features (e) and enhances fiber surfaces with

polygon-edge segmentation (colors in (b) and (e)) and individual fibers (e, bottom) to better convey the relation between fiber surfaces and range features.

One of the simplest geometric search structures is the octree [25],

in which the domain is recursively divided into octants. This was

exploited for isosurface extraction by computing the image of each

octant as the union of the images of its own octants, then storing

the resultant interval at the corresponding node of the octree [36].

In searching the octree for cells intersecting a known isovalue h,

any node whose interval does not include h can be ignored entirely.

In comparison, range-based queries such as span space [31] store

each cell explicitly as an interval in a search structure, with

nodes in the hierarchy generally representing isovalues. The most

efficient range structure, the interval tree [12], [9], is a ternary

tree with an isovalue key and three child nodes at each node,

of which the middle child stores cell intervals that contain the

isovalue, and the other two store intervals below the isovalue and

above the isovalue respectively. This allows the intersection test

to be reduced to a set of scalar comparisons, allowing efficient

descent through the tree. We will see in Sec. 9 that adapting

these structures is non-trivial but possible, but will defer further

discussion until fiber surfaces have been described.

Finally, the third branch of isosurface acceleration is based on

topological analysis to determine seed cells [33] from which

propagation can be used to extract the isosurface [37]. For fiber

surfaces, this depends on the topological analysis of bivariate

scalar fields, and while work has started on this [13], [5], it is not at

present sufficiently advanced for use in fiber surface acceleration.

2.2 Multifield Visualization

Other than reduction to scalar fields or direct volume rendering,

few general methods for bivariate visualization in Dom f are

known, except for the special case of complex-valued fields [34],

where a complex value was chosen in the range of f :C2→C, and

the corresponding 2-manifold contour in C
2 was constructed. If we

treat C as R2, f can be restated as f : R4→R
2, and these complex

contours are then fibers of f , as described in the following.

One method that is often used is to classify the data points

statistically as “interior” or “exterior” then apply stage II. of

Marching Cubes. However, this binary classification makes it

difficult to apply stages III. and IV, which are usually resolved with

heuristics[17], [30]. Multifields can be shown as multidimensional

histograms, and recent work on continuous scatterplots [1] has

shown the importance of the presumed mesh continuity. Subse-

quent work has focused on linear features [22] which are now [5]

known to be related to the topology of the multifield. This has led

to considerable work on the use of direct volume rendering (DVR)

for visualizing two fields, commonly an isovalue and gradient pair.

Since we do not rely on DVR in this paper, and the original fiber

surface paper covers the use of DVR for bivariate visualization, we

refer the interested reader to the treatment therein. For a broader

view on visualization techniques for multivariate data, we refer the

interested readers to a recent survey [21].

Recently, isosurfaces have been generalized to bivariate fields with

the notion of fiber surface (pre-images of separating lines, curves

or polygons in the range). However, the existing algorithm for their

computation [6] is only approximate as it relies on a distance field

computation on a rasterization of the range. While increasing the

raster resolution results in more accurate fiber surfaces, even for

large resolutions, the distance field intrinsically fails at capturing

sharp features of the fiber surface (Figure 2 and 4). Moreover, our

experiments show that it requires several seconds of computation

even for moderately small data-sets, which prevents its usage in

interactive exploration sessions where fiber surfaces should be

instantaneously updated upon user edits of the input polygon.
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Fig. 3. Example of fiber construction. Left: an isosurface of f1. Center: a fiber

defined by the intersection of isosurfaces (black). Right: an isosurface of f2.

Both isosurfaces also show the fiber for reference.

3 FIBERS AND FIBER SURFACES

To generalise isosurfaces to bivariate fields, instead of taking a

single value h ∈ R, we take a single point h ∈ R
2(= Ran f ), and

find its inverse image f−1(h) = {x ∈ Dom f : f (x) = h} to extract

a fiber [29]. For bivariate volumetric fields f : R3 → R
2, fibers

are the intersection of the isosurfaces of each component of f , i.e.

f−1(h) = f−1
1 (h1)

⋂
f−1
2 (h2) (Fig. 3). These are normally curves

in space, and do not constitute 2-manifold boundaries the way

isosurfaces do. This, however, can be remedied by taking the

inverse image not of a 0-manifold point, but of a 1-manifold

path in the range, which may be a curve, polyline or polygon.

If the curve separates the range of f , then the fiber surface

separates the domain of f : i.e. it produces a boundary of some sort.

Moreover, this leads to a simple algorithm [6] for extracting fiber

surfaces: classify mesh vertices as inside or outside this boundary,

then apply Marching Cubes tables to determine the local surface

topology. Interpolating vertices along mesh edges is performed

by computing the signed distance in the range from the curve to

each vertex, and finding the zero-distance point along each edge.

Finally, this computation can be accelerated by rasterising the

distance field of the polygon for use as a lookup table. It therefore

sufficed to deal with the case of a closed polygon, which we refer

to as a fiber surface control polygon or FSCP.

Fig. 4 illustrates configurations in a tetrahedron where the above

strategy fails at capturing accurately the fiber surface. First, the

interpolation based on the signed distance field fails at capturing

bends in the FSCP, which are “shortcut” by its zero level-set (left).

Note that since polygon bends are unlikely to coincide precisely

in the range with the vertices of Dom f , this inaccuracy occurs

for all bends. Second, the vertex classification (inside or outside)

is insufficient when the FSCP is completely included within the

image of a tetrahedron and that none of its vertices lie in the inside

of the FSCP (middle). Third, an FSCP may cross the image of an

edge of Dom f multiple times, which may prevent the identification

of intersections of the fiber surface with a tetrahedron, due the

vertex classification (Fig. 4, right). This latter configuration not

only yields a poor approximation of the geometry of the fiber

surface, but also an incorrect topology. As discussed in the result

section, these low-level configurations can have high-level impacts

on the geometry and the topology of the extracted fiber surface.

We describe in the following an algorithm that overcomes these

difficulties and extract the correct fiber surface.

4 CORRECT FIBER EXTRACTION

As noted in the previous section, a fiber in a bivariate volumetric

field can be defined by the intersection of isosurfaces with respect

Fig. 4. Configurations inaccurately processed by a fiber surface extraction

based on a signed distance field [6] (top: range, bottom: domain). Left: an

FSCP bend lies inside a tetrahedron (black sphere). The resulting distance

field yields a 0 level-set inaccurately capturing the fiber surface. Center: FSCP

edges completely included inside a tetrahedron result in a distance field

which yields an empty 0 level set. Right: an FSCP enters multiple times a

tetrahedron. The corresponding distance field yields a 0 level-set which not

only poorly approximates the fiber surface geometry but which also misses

some connected components (blue and yellow).

to the two components of the field. In a function defined over

a mesh, all that is required is to define a fiber for each cell

separately. For a tetrahedral mesh with barycentric interpolation,

this is straightforward, since we know that isosurfaces are simply

planar cuts through the tetrahedron. If we therefore take one

isosurface with respect to each component and intersect them, we

expect to produce a line segment, as shown in Fig. 3. Conveniently,

any pair of fibers in a tetrahedron are co-planar and parallel within

that plane, since the isosurface planes of each component are

parallel to each other. Instead of computing the intersection of two

planes, we observe that a fiber is a contour line of the restriction of

component 2 to an isosurface of component 1. Thus, we compute

the fiber by extracting the isosurface of component 1 explicitly

using Marching Tetrahedra, interpolating the value of component

2 at each vertex of the resulting triangles, then using Marching

Triangles to extract the exact fiber.

When we consider hexahedral cells with trilinear interpolation,

however, this becomes impractical. To see this, recall that isosur-

faces of the trilinear interpolant are hyperbolic sheets [28]. Thus,

any given fiber is the intersection of two arbitrary hyperbolic

sheets, and may have multiple connected components. Fig. 5

illustrates this: not only the fibers (thick curves) can be made of

several connected components, but also their geometry is complex

and cannot be accurately approximated with linear primitives.

Computing fibers for Marching Cubes cases is slightly easier, as

each cell may have at most 5 triangles, leading to intersection tests

between at most 25 pairs of triangles. However, surfaces extracted

with Marching Cubes [23] and its subsequent improvements

[26], [8], [28] are not exact to the trilinear interpolant from a

geometrical point of view. Finally, extracting an isosurface with

Marching Cubes, then contouring the triangles to produce fibers

may produce different results depending on which field we apply

first (this ambiguity does not occur with Marching Tetrahedra).

When this is combined with FSCPs that induce an arbitrary

number of intersections of a fiber surface with a given cube, it
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Fig. 5. Fiber surface extraction in a cell of an input regular grid with the trilinear interpolant (surface boundaries are shown with thin red curves, fibers

corresponding to vertices of the FSCP are shown with thick curves of the same color). Top: fiber surface extraction in the case of a simple, axis-aligned

FSCP made of 2 edges (inset); from left to right: isosurface of f1 (green), f2 (blue) and fiber surface. In this case, the fiber surface has 2 connected components

and 4 boundary components. Bottom: progressive fiber surface extraction (polygon edges are progressively introduced from left to right) for an arbitrary FSCP.

From left to right, the number of connected components (and boundary components) is: 1 (1), 1 (2), 2 (5), 3 (8). These results have been obtained with our

algorithms on the tetrahedral mesh of an up-sampled grid cell (2563).

is clear that exact fiber surfaces for trilinear cubic meshes are not

presently tractable. Fig. 5 exemplifies this with a simple, axis-

aligned FSCP (top) and a more complex one (bottom). Even for

a simple case (top), the geometrical complexity of the trilinear

interpolant yields fiber surfaces with complex topology. In this

example, the surface has two connected components and four

boundary components (note the isolated red closed curve in the

front face of the top right cube). The potential geometrical and

topological complexity of the fiber surface within one trilinear cell

is further exemplified with the arbitrary FSCP shown at the bottom

of Fig. 5, where the edges of the FSCP are progressively added

(insets). In particular, along the process, the topology of the fiber

surface becomes more and more complex, eventually resulting in

a surface with three connected components and eight boundary

components. Such a topological variability, combined with a

complex geometry, makes a systematic extraction of fiber surfaces

impractical in the trilinear case. In contrast, in the tetrahedral case,

the pre-image of FSCP edges are always planar primitives (as

discussed in the next section), which makes their extraction much

more tractable.

5 CORRECT FIBER SURFACE EXTRACTION

Once we can extract single fibers exactly, we look at exact

extraction of fiber surfaces.

First, we observe that each edge (i.e. each line segment) of an

FSCP will locally induce planar segments of the fiber surface

in each tetrahedron, as shown in Fig. 6. For scalar fields, an

isosurface can be interpreted as the zero level-set of the signed

range distance field to the queried isovalue i: f−1(i) = {p ∈
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Fig. 6. Fiber surface extraction within a tetrahedron (top: range, bottom:

domain). Left: Base fiber surface extraction (Algorithm 1, green surface). Right:

Fiber clipping (Algorithm 2, thicker blue fibers, case 3 of Fig. 7).

Dom f | f (p)− i = 0}. Similarly, for bivariate functions, the pre-

image of a line
←→
l ∈ Ran f can be interpreted as the zero level-set

of the signed range distance field h to
←→
l . Thus, as for any other

scalar field, the pre-image of zero by h within each tetrahedron

is indeed guaranteed to be planar due to the usage of the linear

interpolant. In the following, we call such planar segments base

fiber surfaces. This observation motivates the first stage of our

algorithm (Algorithm 1).

Second, as seen in Fig. 4, base fiber surfaces meet at the fibers

induced by the vertices of the FSCP. We can therefore decompose

the problem by considering each tetrahedron and each FSCP edge

separately. In particular, to take an FSCP vertex v into account, one

needs to clip the base fiber surfaces of each FSCP edge adjacent to

v at the pre-image v. This observation motivates the second stage

of our algorithm (Algorithm 2).

Therefore, our algorithm is composed of two stages (described in

the following): base fiber surface extraction (Fig. 6, left) and fiber

clipping (Fig. 6, right). In particular, each edge e of the FSCP is

processed independently and for each of these, the tetrahedra of

Dom f are traversed independently.

Algorithm 1 Extracting Base Fiber Surface in Tetrahedron

Require: mesh M, functions f = ( f1, f2), line
←→
l

1: for all tetrahedra T ∈M do

2: set case C = 0

3: for all vertices wi ∈ T do

4: compute vertex distance hi = n · ( f1, f2)−d

5: if distance hi > 0 then

6: set case C =C|2i

7: end if

8: end for

9: for all triangles t in Marching Tetrahedra case C do

10: interpolate vertex positions

11: interpolate vertex values f1 and f2

12: end for

13: end for

Fig. 7. Six rotationally and sign symmetric base cases for fiber clipping within

one triangle. The clipped fiber surface is shown in blue. Plus denotes a vertex

with 1 < t, and minus t < 0. An empty circle denotes a vertex with 0≤ t ≤ 1.

Base fiber surface extraction: Given a tetrahedron T ∈ Dom f

and an FSCP edge (u,v) ∈ Ran f living on a line
←→
l , we ignore

the endpoints u and v and extract the pre-image of
←→
l to produce

the corresponding base fiber surface (in Fig. 6,
←→
l is shown as a

green line in the range (top)). This cut is found by the marching

tetrahedra method by considering the zero level-set of the signed

range distance field h to
←→
l , using the Hesse normal form of the

line (line 4 of Algorithm 1, where n and d stand for the line’s

unit normal and its distance to the origin respectively). Since the

following stage relies on having correct function values f1, f2 for

every vertex of the base fiber surface, we compute these values

with linear interpolation when we extract the triangles.

Fiber clipping: We next clip the base fiber surface to obtain the

segment between fibers f−1(u) and f−1(v). Given a triangle ABC

of the base fiber surface, we recall that A,B,C, f−1(u) and f−1(v)
are all coplanar in Dom f (and colinear in Ran f ) in virtue of the

linear interpolant yielding planar pre-images of the signed distance

field h. The clipping procedure depends on whether f (A), f (B) and

f (C) lie between u and v or not on
←→
l . We parameterize

←→
l with

u at t = 0 and v at t = 1, and test with linear interpolation the

parameters t of f (A), f (B), f (C) against [0,1], such that t < 0 is

interpreted as white (-), t > 1 as black (+), and 0≤ t ≤ 1 is grey (=).

For example, in Fig. 6, t(A) < 0 (-), t(C) > 1 (+) and 0 ≤ t(B) ≤

Algorithm 2 Fiber Clipping

Require: triangle T = {(w,( f1, f2))|w ∈Dom f ,( f1, f2) ∈ Ran f},
line segment L = o+ td

1: mesh M = /0

2: for all (wi,( f1, f2)) ∈ T do

3: set case C = 0

4: project ( f1, f2) onto L

5: compute parameter t for vertex v

6: if t < 0, set C =C+0∗3i (minus)

7: if 0≤ t ≤ 1, set C =C+1∗3i (neutral)

8: if 1 < t, set C =C+2∗3i (plus)

9: end for

10: for all triangle T ′ in Fiber Segment case C do

11: interpolate vertex positions on edges of T

12: add T ′ to M

13: end for
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Fig. 8. Fiber surface texturing. (a) Continuous scatter plot. (b) Fiber surface segmented on a per FSCP edge basis (matching colors with (a)). (c) Employed

textures. (d) The fiber-base texturing of the fiber surface provides further visual insights about the relation of the fibers constituting the surface and the

corresponding points in the range, indicating possible transitions in the topology of fibers, (e) and (f).

1 (=). Since we have three vertices, each triangle has 33 = 27

possibilities, and we can construct a lookup table with the base

cases shown in Fig. 7. Similarly to the Marching Triangles, such a

lookup table enables the efficient retrieval of the appropriate fiber

surface connectivity within each base fiber surface. The lookup

table shown in Fig. 7 has been constructed by enumerating all the

27 possibilities. For each possibility, a minimal triangulation of

the set of points of the base fiber surface for which 0 ≤ t ≤ 1 is

verified has been performed. Note that the 27 possibilities can be

retrieved from these 6 cases through rotations. For example, if

A is white, B is grey and C is black, we get case 3, and extract

the coloured portion of the triangle as the required segment of the

fiber surface. Note that case 1 retains the entire triangle, while

case 2 discards it.

We express this as shown in Algorithm 2, noting that this can

be incorporated into Algorithm 1 if desired. We also note that

the triangles used in Algorithm 2 were generated from a lookup

table in Algorithm 1. Since no tetrahedra can have more than

two triangles in its base fiber surface (i.e. before fiber clipping),

and that the interpolant is guaranteed to be linear across the base

fiber surface, it is possible to compute a lookup table with 34

entries, in which case some triangles can be combined within one

tetrahedron. While we have done so in our implementation, this

only reduces the number of triangles by about 2.5%, so we report

the simpler solution for clarity.

6 DEGENERATE CASES

One of the practical difficulties with geometric algorithms is how

to deal with degenerate cases. For isosurface extraction, Marching

Cubes and Marching Tetrahedra assume a binary test: i.e. black

vertices have f ≥ h while white vertices have f < h, or vice versa.

This can be seen as a special case of simulation of simplicity [14],

as it is equivalent to adding a small ε to the the function value

before comparing with h.

For bivarate data, it is more difficult to have a simple robust test,

so we instead use a ternary test [10], [2] (i.e. to check if a vertex is

either (i) black (+), (ii) white (-) or (iii) grey (=)) in both phases of

the algorithm. With this approach, the only concern that remains

is a degenerate tetrahedron, all four of whose vertices belong to

the inverse image. In this case, as with isosurfaces, there should

be a volumetric bulge in the fiber surface.

However, unless all tetrahedra are degenerate, we are guaranteed a

boundary between degenerate and non-degenerate tetrahedra. Each

non-degenerate tetrahedron along this boundary will share three

vertices with a degenerate tet, and the entire face will therefore be

extracted for the base fiber surface. Thus, the boundary between

degenerate and non-degenerate tetrahedra is guaranteed to be

extracted without degeneracies, which is what is needed.

7 FIBER SURFACE TEXTURES

Sections 4 and 5 showed how to extract exact fibers and fiber

surfaces. We next extend this to display fibers on a fiber surface,

using colour to relate sections of the fiber surface to segments in

the FSCP. Since we extract portions of the surface separately for

each FSCP segment, we can use the ID number of the segment to

label each triangle extracted, then assign colours accordingly.

More generally, we observe that the FSCP is 1-parametrizable to

the range [0,1], either by assigning each vertex an integer, then

normalizing, or by using a line-length parametrisation. Since the

fiber surface is constructed from fibers, and all points on each fiber

map to the same point on the FSCP, this can be used to assign

colours or other properties to each fiber, using texture hardware

on a video card. Assigning a suitable texture parameter for each

vertex of the fiber surface can be done easily given Algorithm 2.
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Recall that our algorithm processes each segment uv of the FSCP

separately, and assigns u,v the parameters 0,1 respectively. Since

we then parameterize the vertices in each triangle to the same

scale, it is then possible to map each vertex’ parameter to the

global range [0,1] for use with the texture, as done in general with

texture-based surface enhancement methods [18].

If we assign a different colour in the texture to each segment of

the FSCP, we then get the same coloration as if we assign labels

to each triangle based on the segment. More interestingly, we can

store a dotted line in the texture map, with black values indicating

a fiber to be drawn in black, and white values indicating no fiber.

Combining these two ideas, as seen in Fig. 8, simultaneously

shows the viewer how the fibers change across the fiber surface,

and which regions of the surface correspond to which values in the

domain. Two things now become visible: first, regions where the

original fiber surface algorithm is inaccurate are precisely at sharp

bends in the polygon, as shown in Fig. 2. Second, the development

of fibers across the surface indicates that topological analysis of

the fibers is likely to provide further insight in the future.

8 ALGORITHM COMPLEXITY AND PARALLELISM

As we observed in Sec. 2.1, fiber surfaces are nearly as paralleliz-

able as Marching Tetrahedra, since the fiber surface is separately

calculated in each cell of the mesh. From Sec. 5, we also see that

the surface patch for each FSCP segment is separately calculated.

As a result, we could on principle parallelize all cells and all FSCP

segments, with O(N×E) independent calculations, where N and

E stand for the number of tetrahedra and FSCP edges respectively.

In practice, we expect E to be small, so we choose to parallelize

over the cells, breaking them up into a number of regions based

on the core count, then assigning each region to a separate thread.

Step 1: Our parallel algorithm starts by segmenting sequentially

Dom f into n partitions of approximatively equal size.

Step 2: n threads are created. Each thread runs the fiber surface

extraction algorithm (Algorithms 1 and 2) for its own region and

progressively fills its own output surface data-structure.

Step 3: We now need to reduce n surface data-structures into one

output. We sequentially allocate the output memory based on the

sum of the number of triangles computed by each thread in step

2. In this process, we also identify n memory offset intervals, such

that each interval will collect the triangles of a distinct thread.

Step 4: Finally, n threads copy the n sets of triangles computed in

step 2 in each of the n offset intervals of the output data-structure.

Note that this algorithm is fully parallel except for the synchro-

nization at Step 3. In step 2, the threads only perform reading

operations on the input data, hence requiring no synchronization

between the threads. Similarly, no synchronization is required in

Step 4 since each thread writes to distinct memory intervals.

9 GEOMETRIC ACCELERATION TECHNIQUES

Recall from Sec. 2.1 that geometric acceleration of isosurfaces can

be reduced to point-in-interval tests by comparing the isovalue

(a point) to the image of a cell (an interval). For fiber surface

acceleration, the image of a tetrahedral cell in the range is known

Fig. 10. Speedup of our parallel algorithm as a function of the number of

threads on the up-sampled Engine data sets (285,927,495 tets). Each col-

ored curve (continuous scatter plot, bottom right, X: scalar field, Y: gradient

magnitude) corresponds to the fiber surface of the matching color (top left).

to be either a triangle or quadrilateral [32], or a more complex

polygon for hexahedral cells [24]. For geometric search structures,

the union of multiple such images will become a progressively

more complex polygon, with inevitable implications for storage

and runtime cost. Since the FSCP is a polygon rather than a

point, and the image of a cell is a polygon rather than an interval,

this then replaces the simple point-in-interval inclusion test with

a polygon-polygon intersection/inclusion test. While polygon-

polygon intersection tests will be more common in practice,

inclusion tests are still required since an FSCP can be completely

included within the image of a tetrahedron while intersecting none

of its edges (Figure 4, center). Once this is recognized, it becomes

clear that general 2-D intersection tests are required, and the rich

literature on collision detection can therefore be brought to bear

on the problem. In particular, polygon-polygon intersection tests

can be replaced with a conservative test of axis-aligned bounding

boxes of the polygons, albeit in the range of the function rather

than the domain, at the expense of returning cells that do not

intersect the fiber surface. We therefore show in the following

how to extend two types of acceleration data-structures: domain-

based (octree) and range-based (BVH), which allow us to reach

interactive rates in our visualization.

9.1 Domain based acceleration data-structure

As we saw in Sec. 2.1, the octree can be used to store an interval

representing the range of a scalar function at each node, then

comparing the desired isovalue against this interval to determine

which nodes can be discarded [36]. We have also observed that the

corresponding exact test requires polygon-in-polygon tests, but

can be replaced by a conservative test of axis-aligned bounding

boxes in the range:

Off-line construction: The octree of Dom f is first computed in

a top-to-bottom fashion, by recursive division of the domain into

octants, yielding a tree data-structure [25]. At each node, we take

the range bounding boxes (RBBs) of the child nodes, and compute

the (min, max) with respect to each component in order to find the

RBB of the entire node. For efficiency, we do not descend all the

way to individual tetrahedra, instead providing a threshold nT on

the minimum number of tetrahedra per node, below which the

base level RBB is computed from the vertices of the tetrahedra,

but nT can be set to 1 if desired.
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Fig. 9. Clipped view of the tetrahedra returned by our acceleration data-structures for each FSCP edge (matching colors). From left to right: (a) continuous

scatter plot, FSCP, output fiber surface, queried tetrahedra with the octree (b, α = 0) and the BVH respectively (c, nT = 1).

On-line query: Given an FSCP edge e, the octree query starts at

the root node and recursively visits each node’s children only if the

RBB intersects or overlaps e. Thus, a conservative over-estimate

of the active cells is provided as input for fiber surface extraction

(Algorithms 1 and 2). If an unneeded cell is returned by the octree,

the ordinary operation of the fiber surface extraction will discard

it in any event, so no additional geometry will be created.

The octree is not necessarily balanced in general, except for

regular grids, and sub-trees can be arbitrarily deep (depending

on the threshold nT ). To account for this, we use an additional

termination criterion during off-line construction, stopping the

recursion if a node’s RBB is smaller than a fraction α of the

RBB of the entire mesh. This criterion avoids deep sub-trees for

parts of the mesh which concentrate to a small region of the range,

yielding fewer line-bounding-box intersection tests and therefore

faster online queries in these regions.

9.2 Range based acceleration data-structure

As discussed above, querying in the range for the set of cells that

project on the edges of the FSCP can be reduced to an intersection

test in 2-D. We therefore apply one of the most efficient strategies,

based on bounding volume hierarchies (BVH) [20], [11].

Off-line construction: The BVH of Dom f is first computed in

a top-to-bottom fashion, by recursively splitting the RBB in the

middle along the horizontal and vertical axes. This is performed

nS times for each node, yielding a nS-ary tree. In particular, each

node of the BVH is given the list of tetrahedra whose RBB is

completely included in its own RBB. The recursion stops if a node

is given fewer tetrahedra than a given threshold nT . Note that this

data-structure differs from a quad-tree, as each node updates its

RBB after its list of tetrahedra has been transferred from its parent

node and before creating children nodes. This yields less regular

but more refined range subdivision patterns.

On-line query: The query on the BVH is similar to that of the

octree. Given a FSCP edge e, the query starts at the root and

recursively visits each node’s children if their RBB intersects or

overlaps e. Only tetrahedra returned by the BVH are used for fiber

surface extraction.

As with the octree, the BVH does not encode the precise polygonal

projection of the tetrahedra (but only the RBBs), so it can also

return tetrahedra that are not intersected by the fiber surface.

10 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained with

a VTK-based (version 6.1) C/C++ implementation of our algo-

rithms. Our implementation was evaluated on a desktop computer

with two Xeon CPUs (2.6 GHz, 6 cores each) with 64 GB of

RAM. Parallelism was implemented with OpenMP. All of our

data sets are tetrahedral meshes obtained with 5-subdivisions of

regular grids. All continuous scatter plots were computed using

the original authors’ implementation [1].

10.1 Performance

Table 1 reports the execution times of our sequential implementa-

tion for various data sets and various user-defined FSCP. Our non-

accelerated algorithm (column “Regular”) has a time complexity

of O(N×E) steps (N: number of input tets, E: number of FSCP

edges). This complexity is verified in practice for a given data

set as E increases (Tooth, Engine), and for a constant value of

E across data sets of increasing size (Tooth - Blue polygon VS

Combustion or Engine - Orange polygon VS Enzo). Since our core

algorithm extracts a triangle soup, it may be suitable to turn it into

a manifold surface. This has been achieved by merging coincident

points (using VTK’s vtkMergePoints class). Alternatively, one

could store in a map the list of output vertices for each input

tet and use this information in a post-process. Throughout our

tests, this feature has always been executed as an optional post-

process. In practice, this step takes nearly a linear time in the

output size (Table 1, column “Manifold post-processing”). Finally,

the visualization strategies discussed in Sec. 7 also require an

overhead scaling nearly linearly in the size of the output.

As expected, our acceleration algorithms (column “Octree” and

“BVH”) provide significant speedups, especially for small fiber

surfaces which intersect only few tetrahedra (such as EthaneDiol

- Green polygon). For the other data sets, these algorithms al-

ways improve over the non-accelerated algorithm, with average

speedups of 18 and 36 for the octree and the BVH respectively.
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TABLE 1

Timings of our algorithms measured in seconds (1 thread).

Data set Tets Polygon Pre-processing Extraction Output Manifold Fiber Polygon

Edges Regular Octree BVH Regular Octree BVH Triangles Post-processing Texture Segmentation

Tooth — Blue polygon 7,588,800 4 0 4.926 1.361 0.790 0.277 0.164 280,394 0.189 0.046 0.034
Tooth — Red polygon — 5 — — — 0.882 0.114 0.044 48,974 0.035 0.011 0.005
Tooth — White polygon — 5 — — — 0.969 0.238 0.126 226,248 0.150 0.004 0.011
Tooth — Yellow polygon — 5 — — — 0.962 0.249 0.129 144,644 0.086 0.014 0.003
EthaneDiol — Black polygon 8,718,150 4 — 4.596 1.545 0.783 0.020 0.011 18,760 0.073 0.008 0.004
EthaneDiol — Blue polygon — 4 — — — 0.809 0.020 0.011 11,252 0.009 0.014 0.017
EthaneDiol — Green polygon — 3 — — — 0.631 0.008 0.004 10,956 0.005 0.011 0.017
EthaneDiol — Red polygon — 4 — — — 0.819 0.018 0.008 12,724 0.016 0.008 0.015
EthaneDiol — Teaser polygon — 5 — — — 1.151 0.388 0.177 259,160 0.148 0.009 0.006
Combustion 18,675,345 4 — 12.484 4.165 1.898 0.321 0.177 260,680 0.169 0.018 0.025
Engine — Black polygon 35,438,625 11 — 17.050 6.857 9.121 0.741 0.341 720,608 0.537 0.426 0.174
Engine — Blue polygon — 6 — — — 5.696 1.204 0.704 1,734,388 1.284 0.212 0.022
Engine — Orange polygon — 8 — — — 7.438 1.425 0.798 1,775,262 1.177 0.069 0.068
Engine — Red polygon — 7 — — — 6.103 0.649 0.325 545,402 0.362 0.161 0.058
Enzo 82,906,875 8 — 39.052 16.451 17.264 2.455 1.585 3,460,562 2.486 0.392 0.302

TABLE 2

Statistics for various computation parameters of our accelerating

data-structures (1 thread, EthaneDiol data-set).

Parameters Memory (MB.) Pre-process (s.) Queried Tetrahedra Extraction (s.)

Octree (α = 0) 768.810 4.345 11.835% 0.388
Octree (α = 0.001) 649.736 2.362 35.260% 0.311
Octree (α = 0.005) 634.104 1.799 58.984% 0.331
BVH (nT = 1) 477.109 2.106 7.460% 0.171
BVH (nT = 8) 116.728 1.478 12.654% 0.177
BVH (nT = 16) 77.266 1.366 16.320% 0.203

Table 2 further investigates the behavior of our accelerating data-

structures for our sequential algorithm. Since our input data sets

have been obtained through a 5-subdivision of regular grids,

the minimum number of tets per octree leaf has been set to

5 (corresponding to a single voxel). Due to this, the octree

will necessarily return more candidate tets than necessary. For

example, the range bounding box of a leaf can be intersected by

a FSCP edge while none of its tets are actually intersected. The

parameter α (Sec. 9.1) can be used to improve the depth of the

octree, resulting in smaller memory footprint, shorter construction

times and faster queries at the expense of returning more tets to

the fiber surfacing procedure. We found in practice that α = 0.001

offered the best trade-off. Since it is not domain-based, the BVH

data-structure better captures the geometry of the input polygon

in range-space, resulting in fewer returned tetrahedra, smaller

memory requirements and faster queries. Similarly to the octree,

the BVH depth can be tuned by adjusting the parameter nT and

nS, which offered a best trade-off for nT = 8 and nS = 8.

Fig. 9 shows the tetrahedra returned by our accelerating data-

structures, set up with parameters maximizing their depth. As

suggested by Table 2, the BVH data-structure returns a sub-portion

of the volume which better approximates the output surface.

However, as discussed in Sec. 9.2, since the BVH does not encode

precisely the polygonal range projection of each tetrahedron (but

its range bounding box), it can still return tetrahedra which are not

intersected by the fiber surface, as highlighted with the red ellipse.

Fig. 10 reports the scaling performances of our parallel non-

accelerated algorithm. For this experiment, we considered an up-

sampled version of the Engine data set (512x512x220) prior to its

5-subdivision into a tetrahedral mesh (yielding 286 million tets). In

practice, visited tetrahedra which are not intersected by the fiber

surface will still be processed faster than intersected tetrahedra

TABLE 3

Quantitative comparison with [6] for varying raster resolutions (EthaneDiol

data-set).

Raster Time (s.) Hausdorff Average

Resolution Distance Field Isosurface Distance Distance

162 0.555 1.242 5.268% 0.657%

322 0.523 1.214 3.00% 0.203%

642 0.523 1.220 1.752% 0.081%

1282 0.540 1.222 1.256% 0.036%

2562 0.587 1.220 1.212% 0.025%

5122 0.802 1.222 1.027% 0.021%

10242 1.640 1.226 1.007% 0.020%

Exact signed distance field 3.471 1.227 1.007% 0.024%

since no triangle will be created in the output. Also, whereas the

threads are balanced input-wise, there is no guarantee that each

thread produces the same number of triangles. This can lead to

threads idling faster than others in the reduction step (step 4).

Despite this, as showcased in Fig. 10, our algorithm scales nearly

linearly with the number of cores, irrespectively of the size of

the output, achieving a maximum speedup of 11.71 in the hyper-

threaded regime of our 12 cores, for a maximum throughput of 79

million tets per second.

10.2 Quantitative comparison

In this subsection, we provide a quantitative comparison with the

existing algorithm for fiber surface extraction [6]. In particular,

this algorithm approximates the fiber surface by extracting the

0 level-set in Dom f of the signed range distance field to the

FSCP. A faster approximation is also proposed in [6], where

the authors perform a rasterization of the range, yielding fewer

distance field evaluations and hence faster extractions. In our

experiments, we adapted this algorithm, that we will call “Raster

Algorithm”, to tetrahedral meshes by using Marching Tetrahedra

tables instead of Marching Cubes. We also evaluated the distance

field value of each vertex of Dom f in the range raster using

bilinear interpolation. This yields smoother results than piecewise

constant interpolation (as employed in the original algorithm) even

for low raster resolutions.

Table 3 reports computation times for the raster algorithm (for

the data set illustrated in Fig. 2) as well as distance evaluations

between its output and that of our algorithm (measured with the
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TABLE 4

Time performance comparison with [6] (measured in seconds).

Data set Tets Polygon Raster algorithm [6] Our algorithms (1 thread) Max Our algorithms (24 threads) Max

Edges 10242 Regular Octree BVH Speedup Regular Octree BVH Speedup

Tooth — Blue polygon 7,588,800 4 2.080 0.790 0.250 0.157 13 0.072 0.167 0.037 56

Tooth — Red polygon — 5 3.624 0.882 0.113 0.047 77 0.130 0.095 0.021 173

Tooth — White polygon — 5 3.632 0.969 0.244 0.147 25 0.105 0.172 0.038 96

Tooth — Yellow polygon — 5 2.388 0.962 0.245 0.161 15 0.106 0.195 0.041 58

EthaneDiol — Black polygon 8,718,150 4 2.162 0.783 0.020 0.011 197 0.069 0.021 0.013 166

EthaneDiol — Blue polygon — 4 2.165 0.809 0.006 0.005 433 0.068 0.011 0.012 197

EthaneDiol — Green polygon — 3 2.100 0.631 0.006 0.004 525 0.079 0.009 0.011 233

EthaneDiol — Red polygon — 4 2.123 0.819 0.016 0.008 265 0.087 0.018 0.013 163

EthaneDiol — Teaser polygon — 5 2.991 1.151 0.311 0.203 15 0.107 0.146 0.050 60

Combustion 18,675,345 4 4.468 1.898 0.299 0.169 26 0.160 0.227 0.041 109

Engine — Black polygon 35,438,625 11 13.121 9.121 0.785 0.370 35 0.879 0.506 0.090 146

Engine — Blue polygon — 6 10.256 5.696 1.238 0.759 14 0.534 0.692 0.136 75

Engine — Orange polygon — 8 11.277 7.438 1.351 0.810 14 0.804 0.870 0.167 68

Engine — Red polygon — 7 10.590 6.103 0.603 0.366 29 0.613 0.415 0.085 125

Enzo 82,906,875 8 24.549 17.264 2.387 1.897 13 1.413 1.439 0.317 77

Hausdorff distance and the average of the minimum distance,

expressed as a percentage of the bounding box diagonal). Note

that our implementation of the raster algorithm uses a CPU-

based implementation for the range distance field computation,

but more efficient, GPU-based implementations [38] can also be

considered. This table shows that, for small raster resolutions, the

raster algorithm spends more time projecting the vertices of Dom f

into the range raster than evaluating the distance field: the timings

in the column “Distance field” only starts to significantly increase

for a resolution of 2562. As predicted by the approximation nature

of this algorithm, the Hausdorff distance to our exact computation

decreases as the raster resolution increases (column “Hausdorff

Distance”). The line “Exact signed distance field” reports the

statistics for the full signed range distance field computation (using

no range raster), resulting in particular in slower running times.

Even for the exact range signed distance field, the Hausdorff

distance to our result reaches a lower bound (1% of the bounding

box diagonal). This is due to the fact that the distance field

intrinsically fails to capture the configurations illustrated in Fig.

4, in particular sharp surface features corresponding to FSCP

bends. In practice, we saw that this lower bound was already

reached at a raster resolution of 10242 (and did not improve with

higher resolutions). We therefore use in the remainder a raster

resolution of 10242 (implying faster computations, for an output

of equivalent approximation quality).

Fig. 2 provides a visual interpretation of Table 3. At a resolution

of 162 (c), the fiber surface obtained with the raster algorithm (in

purple) is far from our output (transparent). As the raster resolution

increases, this distance decreases. For a resolution of 10242 (d),

the only visual differences between the raster output (in orange)

and that of our algorithm (transparent) occur in the vicinity of the

fibers corresponding to FSCP bends. In particular, we illustrated

these with black curves. While the orange surface produces a non-

smooth surface that fails at capturing these features, our algorithm

extracts them perfectly (e) while generating a smooth output.

Table 4 provides run-time comparisons between the raster algo-

rithm and our algorithms. Our non-accelerated sequential algo-

rithm (column “Regular”, 1 thread), was faster than the raster

algorithm for all data sets (for an average speedup of 55%).

This can be partly explained by the fact that the raster algorithm

needs to compute the sign of the distance field, which requires an

additional step to test if the vertices of Dom f , once projected in

the range, are included within the FSCP.

Our acceleration data-structures further improve our speedup in

sequential mode, with an average speedup of 113. Further, we

evaluate our parallel algorithm combined with our acceleration

data-structures. For few data sets (especially for small fiber sur-

faces intersecting only few tetrahedra), the performance did not

necessarily improve, since setting up the threads and reducing the

result takes most of the time in these cases. Globally, our parallel

algorithm combined with our acceleration data-structures provides

the best time performance, leading to computations occurring in

less than a second for all data sets (with BVH acceleration), for an

average speedup of 120.

We therefore conclude that our algorithm is more accurate as well

as faster, improving running time by up to 2 orders of magnitude.

10.3 Qualitative comparison

In this section, we provide further qualitative comparisons be-

tween the raster algorithm and our approach. Fig. 11 provides

side-by-side comparisons on several data sets: combustion (top

row, X: scalar field, Y: gradient magnitude), enzo (middle row, X:

matter concentration, Y: dark matter concentration), tooth (bottom

row, X: scalar field, Y: gradient magnitude). As discussed in

the previous subsection, the raster algorithm provides inaccurate

geometrical approximations (orange surfaces, top and middle

rows, center) in comparison to our algorithm (transparent surface),

which can lead to disconnected structures, especially in the vicin-

ity of polygon bends, as illustrated with the zoom-in views of

the enzo data set, where polygon bends correspond to boundaries

between segments of different colors (middle row, right). In these

two data sets (combustion and enzo), our fiber surface texturing

enables the visual identification of the location in the range of

the individual fibers constituting the fiber surface (top row) or of

the FSCP edges responsible for segments of the surface (middle

row). The tooth data set (bottom row) illustrates the ability of fiber

surfaces to segment material boundaries based on intensities and

gradient magnitude. Such a segmentation was already achieved

qualitatively in volume rendering with multi-dimensional transfer

functions. However, fiber surfaces enable the explicit geometrical

extraction of these boundaries. While our approach (right) tends

to produce smoother surfaces than the raster algorithm (center), it
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Fig. 11. Visual comparison with the raster algorithm [6]. Left: continuous scatter plot and FSCP. Center: fiber surfaces extracted with the raster algorithm. Right:

fiber surfaces extracted with our algorithm.

also has the ability to handle non-closed FSCPs (in contrast to the

raster algorithm). This is illustrated in the bottom right zoom-in

view, where only the fiber surface corresponding to thick FSCP

edges (left) have been extracted, yielding distinct open surfaces

(white and yellow) revealing the boundary between the enamel

and distinct materials. Note that, since our algorithm processes the

FSCP on a per edge basis, it actually handles FSCPs of arbitrary

topology. This is further exemplified in the accompanying video,

where even self-intersecting polygons are demonstrated.

10.4 Interactive Fiber Surface Exploration

As documented in Sec. 10.2, our approach provides an overall

speedup of up to two orders of magnitude over the raster algo-

rithm, for an exact output. Such speedups enable processing times

below a second for all of our data sets. This makes it possible

to derive a user interface for the interactive exploration of fiber

surfaces, with real-time updates of the surface upon user edits

of the FSCP. Such an interface is illustrated in Fig. 12 and further

demonstrated in the accompanying video, which has been captured

on a commodity laptop (Core2 Duo CPU at 2.4 GHz, 4 GB of

RAM and an AMD 3650 mobility GPU). In contrast to the raster

approach, our algorithm can process the FSCP on a per edge basis.

Thus, since the user edits only a finite number of FSCP edges at

a time, only the corresponding fiber surface patches are updated

in the 3D view, which further improves the response time of the

system. As illustrated in the accompanying video, our extraction

algorithm enables instant updates of the fiber surface, allowing for

a fully unconstrained exploration of the space of possible fiber

surfaces.
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Fig. 12. Screen capture of our real-time fiber surface exploration user interface (left: fiber surface, right: continuous scatter plot and FSCP).

10.5 Limitations

Our algorithm relies on the linear interpolant of tetrahedral meshes

to extract an exact fiber surface. Other meshes and in particular

hexahedral meshes have different interpolants, which can be

handled by the approximate algorithm [6] or by subdivision into

tetrahedra. However, different tetrahedral subdivision schemes

will induce different linear interpolants [7], which will lead to

topologically and geometrically different fiber surfaces. Future

work will be required to obtain exact fiber surfaces directly

(without tetrahedral subdivision), but as demonstrated in Sec. 4,

this is likely to be a non-trivial task in its own right. We also

observe that the fiber surface does not strictly depend on the

continuous scatterplot, which is used as the interface to define the

FSCP. Since the ethanediol data set in particular has narrow spikes

that are hard to capture manually in the continuous scatterplot,

this indicates that automated definition or improved interfaces are

worth examining in more detail.

11 CONCLUSION AND FUTURE WORK

In this work we introduced the first algorithm for exact extraction

of fiber surfaces in tetrahedral meshes. In contrast to the existing

algorithm, our approach has no restriction regarding the topology

of the control polygon, it has no parameter (such as the range raster

resolution) and it handles degenerate cases. We showed that it is

trivially parallelizable and scales nearly linearly with the number

of cores. We described two acceleration strategies based on hier-

archical data-structures. Overall, our approach improved previous

work by up to two orders of magnitude at run-time, enabling real-

time edits of the control polygon, with instantaneous updates of the

fiber surface. We also provide as additional material a VTK-based

source code that we hope will become a reference implementation

for fiber surfaces. Several future directions are apparent. Due to its

resemblance to Marching Tetrahedra, our approach can be further

improved with any of Marching Tetrahedra’s extensions (such as

dual contouring). Since we handle control polygons of arbitrary

topology, it brings the necessary robustness for use with automatic

range feature analysis (such as ridge extraction on the continuous

scatter plot). A natural future direction is the extension of this

work to higher dimensional data (both for the domain and the

range), as investigated for isosurfaces [3], but also considering

time-varying bivariate data.
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