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Abstract 80 

We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at 81 

locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model 82 

Intercomparison and Improvement Project (AgMIP) Wheat Pilot.  Each model simulated 1981-83 

2010 grain yield, and we evaluate results against the interannual variability of growing season 84 

temperature, precipitation, and solar radiation.  The amount of information used for calibration 85 

has only a minor effect on most models’ climate response, and even small multi-model 86 

ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield 87 

response to climate; however models rarely share the same cluster at all four sites indicating 88 

substantial independence.  Only a weak relationship (R2
 ≤ 0.24) was found between the models’ 89 

sensitivities to interannual temperature variability and their response to long-term warming, 90 

suggesting that additional processes differentiate climate change impacts from observed climate 91 

variability analogs and motivating continuing analysis and model development efforts. 92 

93 
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1. Introduction 94 

Process-based crop simulation models have become increasingly prominent in the last several 95 

decades in climate impact research owing to their utility in understanding interactions among 96 

genotype, environment, and management to aid in planning key farm decisions including cultivar 97 

selection, sustainable farm management, and economic planning amidst a variable and changing 98 

climate (e.g., Ewert et al., 2015).  In the coming decades climate change is projected to pose 99 

additional and considerable challenges for agriculture and food security around the world (Porter 100 

et al., 2014; Rosenzweig et al., 2014).  Process-based crop simulation models have the potential 101 

to provide useful insight into vulnerability, impacts, and adaptation in the agricultural sector by 102 

simulating how cropping systems respond to changing climate, management, and variety choice.  103 

Such gains in insight require high-quality models and better understanding of model 104 

uncertainties for detailed agricultural assessment (Rötter et al., 2011).  Although there have been 105 

a large number of studies utilizing crop models to assess climate impacts (Challinor et al., 106 

2014a), a lack of consistency has made it very difficult to compare results across regions, crops, 107 

models, and climate scenarios (White et al., 2011a).  The Agricultural Model Intercomparison 108 

and Improvement Project (AgMIP; Rosenzweig et al., 2013; 2015) was launched in 2010 to 109 

establish a consistent climate-crop-economics modeling framework for agricultural impacts 110 

assessment with an emphasis on multi-model analysis, robust treatment of uncertainty, and 111 

model improvement.  112 

 113 

A crop model’s response to interannual climate variability provides a useful first indicator of 114 

model responses to variation in environmental conditions (Arnold and de Wit, 1976).  A 115 

simulation model’s ability to capture historical grain yield variability has shown it can serve as a 116 
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sensible basis on which to demonstrate the utility of crop models among stakeholders and 117 

decision-makers (e.g., Dobermann et al., 2000).  Considering the effort required in collecting 118 

data and calibrating a crop model for a particular application, previous studies have often relied 119 

upon only a single crop model and limited sets of observational data. This approach overlooks 120 

differences in plausible calibration methodologies as well as biases introduced in the selection of 121 

a single crop model and its parameterization sets; all of which may affect climate sensitivities 122 

(Pirttioja et al., 2015).  The final decision-supporting information may therefore be biased 123 

depending on the amount of calibration data available and the crop model selected for 124 

simulations.   125 

 126 

Here we present an agro-climatic analysis of 27 wheat models that participated in the AgMIP 127 

Wheat Model Intercomparison Pilot (described briefly in the next section and more completely 128 

in the text and supporting materials of Asseng et al., 2013; and Martre et al., 2015), with a focus 129 

on how interannual climate variability affects yield simulations and uncertainties across models.  130 

This is just one of several studies to emerge from the unprecedented Wheat Pilot multi-model 131 

intercomparison and it is intended to contribute to the overall effort by highlighting important 132 

areas for continuing analysis, model improvement, and data collection.  As most climate impacts 133 

assessments cannot afford to run all 27 wheat models, for the first time we examine the 134 

consistency of agro-climatic responses across locations, models, and the extent of calibration 135 

information to determine whether a simpler, smaller multi-model assessment may be a suitable 136 

representation of the full AgMIP Wheat Pilot ensemble.  The design of the AgMIP Wheat Pilot 137 

also enables a novel comparison of yield responses to interannual climate variability and to mean 138 

climate changes, testing the notion that the response to historical climate variability provides a 139 
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reasonable analog for future climate conditions.  The purpose of this analysis is to identify 140 

differences in model behaviors, data limitations, and areas for continuing research and model 141 

improvement.   142 

 143 

2. Materials and Methods 144 

2.1 The AgMIP Wheat Pilot 145 

A total of 27 wheat modeling groups participated in the first phase of the AgMIP Wheat Model 146 

Intercomparison Pilot in order to investigate model performance across a variety of climates, 147 

management regimes, and climate change conditions (focusing on response sensitivity to 148 

temperature and carbon dioxide).  This represented the largest multi-model intercomparison of 149 

crop models to date. Major climate change results for grain yields were presented by Asseng et 150 

al. (2013), while Martre et al. (2015) compared model performance across output variables 151 

against field observations.  As those studies thoroughly documented the protocols and 152 

participating models of the Wheat Pilot’s first phase, here we summarize the major elements 153 

with an emphasis on factors affecting interannual grain yield variability as simulated at four sites 154 

over the 1981-2010 historical period.  Additional work from the Wheat Pilot’s second phase 155 

have focused on response to increases in average temperature (Asseng et al., 2015), and the 156 

models are largely the same as those utilized in phase 1 and analyzed below. 157 

 158 

2.1.1 Locations 159 

The four locations simulated by participating wheat model groups are shown in Table 1, herein 160 

referred to as Argentina (AR), Australia (AU), India (IN), and the Netherlands (NL).  Each 161 

location corresponded to a field trial ranked as either “gold” or “platinum” in AgMIP’s field data 162 
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standards (Boote et al., 2015), allowing for detailed model calibration and analysis with high-163 

quality initial conditions, in-season measurements, phenology, and end-of-season records.  164 

Calibration in this study refers to the process of configuring a crop model for application at a 165 

given site, which typically entails the representation of soil properties, agricultural management, 166 

and coefficients representing the genetic properties of the cultivar planted; the core biophysical 167 

processes are properties of the model developed from extensive experimentation and are 168 

typically not adjusted to match field observations at these sites.  These high-quality seasonal data 169 

unfortunately do not correspond to coincident long-term variety trials using the same 170 

management, cultivars, and soils that would be ideal to calibrate interannual variability 171 

(corresponding crop growth observations and long-term variety trials are quite rare, particularly 172 

in developing countries).  Even where long-term variety trial data exist (and are publically 173 

available), considerable analysis is needed to attempt a direct comparison with multi-season crop 174 

model simulation given shifts in cultivars every 3-5 years (Piper et al., 1998; Dobermann et al., 175 

2000; Mavromatis et al., 2001; Singh et al., 2014; Boote et al., 2015).  As a result, analysis here 176 

follows many crop modeling studies in utilizing a single-year or short-period (~5 years or less) 177 

field dataset for calibration and then relying on soil properties, plant genetics, and established 178 

model biophysics to determine interannual variability rather than specifically calibrating internal 179 

parameters of response.  Palosuo et al. (2011) examined the potential of a smaller multi-model 180 

ensemble to reproduce interannual yield variability of variety trial for wheat having only two 181 

sites with a longer yield series (14+ seasons) but limited data for calibration, finding errors in 182 

each model but much improved statistics for the multi-model ensemble mean.  Rötter et al. 183 

(2012) came up with similar results for barley model simulations. 184 

 185 
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Daily climate data (maximum and minimum temperatures, solar radiation, precipitation, wind 186 

speed, vapor pressure, dew-point temperature, and relative humidity) were compiled from local 187 

observations with missing data filled using the NASA Modern Era Retrospective-analysis for 188 

Research and Applications (MERRA; Rienecker et al., 2011) and the NASA/GEWEX Solar 189 

Radiation Budget (Stackhouse et al., 2011; White et al., 2011b).  The Indian site was irrigated 190 

according to the field trial applications. The irrigation (date and amount) of the experimental 191 

year (Table 1) was used as input to the models for simulating the 30-years historical period 192 

although this may not be sufficient for each year. The other sites were rain-fed.  Calibration 193 

procedures varied from model to model (generally using the field data to detail crop management 194 

and soil properties and then configuring cultivar parameters to match growth stage periods).  To 195 

isolate the climatic signal, the same configuration was used for the historical simulations, future 196 

simulations, and the temperature and CO2 sensitivity tests at each site.  The specific calibration 197 

approaches were discussed by Challinor et al. (2014b), who found no clear relationship between 198 

the number of parameters calibrated and the relative error of harvest index or grain yield.  They 199 

further noted that this was consistent with compensating errors that can be a benefit of multi-200 

model ensembles but found no evidence of over-tuning in the AgMIP Wheat Pilot.   201 

 202 

Table 1: Locations simulated in AgMIP Wheat Pilot (for more details see Martre et al., 2015) 203 

Parameter Location 

 Argentina Australia India Netherlands 

Location Balcarce Wongan Hills Delhi Wageningen 

Latitude 37.75°S 30.89°S 28.38°N 51.97°N 

Longitude 58.30°W 116.72°E 77.12°E 5.63°E 

Cultivar Oassis Gamenya HD2009 Arminda 

Irrigated No No Yes (383 mm) No 

N fertilizer (kg N ha-1) 120 50 120 160 

Planting date 10 August  12 June 23 November 21 October 
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Anthesis date 23 November  1 October 18 February 20 June 

Harvest date 28 December 16 November 3 April 1 August 

Year of experiment 1992 1984 1984-1985 1982-1983 

 204 

Additional observations of yields in these regions potentially provide a target for accurate 205 

interannual variability that the models are challenged to match.  We therefore examined 1981-206 

2010 national level yield data from the UN Food and Agricultural Organization 207 

(http://faostat.fao.org/), overlapping district-level yields (in Australia; India: Ministry of 208 

Agriculture, Government of India; and the Netherlands: Central Bureau of Statistics, the Hague, 209 

STATLINE), and nearby variety trials (in Argentina: RET, www.inase.gov.ar; and the 210 

Netherlands: Central Bureau of Statistics, the Hague, STATLINE) as a point of comparison 211 

against simulated yields.  It is not expected that these four modeling locations are precise 212 

representations of the surrounding region; each represents carefully-controlled field trials in one 213 

location within countries characterized by substantial differences in soils, climates, cultivars, and 214 

management practices.   215 

 216 

2.1.2 Wheat Models  217 

Table 2 lists the 27 wheat models that simulated each of the four sites.  Details of the processes 218 

and parameter settings that distinguish each of these models are provided in the supplementary 219 

material (particularly Table S2) of Asseng et al. (2013).  The AgMIP Wheat Pilot’s first phase 220 

agreed on a policy of model anonymity in the presentation of results, so for the purpose of this 221 

study the models will be referred to only by a number assigned at random.  This allowed us to 222 

still determine the range of responses across these models’ native configurations and elucidate 223 

how the selection of a crop model contributes to uncertainty in interannual yield simulations and 224 
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related decisions.  The specific mechanisms for each model’s response are being considered in 225 

ongoing analyses and future intercomparison design. 226 

 227 

2.1.3 Types of simulation exercises 228 

Wheat Pilot protocols were designed to investigate whether limitations in data (which hamper 229 

the calibration of crop models in many locations) substantially affect the accuracy of yield 230 

simulation and/or alter the simulated sensitivity to climate variability and climate changes.  231 

Participants were therefore instructed to perform simulations in two steps: 232 

1) Low-information simulations: Weather data, planting, crop emergence, flowering, and 233 

physiological maturity dates, field management information, and soil characteristics and 234 

initial conditions were provided but no information was provided on end-of-season yields 235 

or in-season crop growth and soil water and nitrogen (N) dynamics.  This subset of field 236 

experiment data was referred to as “blind test” simulations by Asseng et al. (2013), and 237 

represent the types of data that may be accessible for a large number of locations. 238 

2) High-information simulations: In addition to the above data modelers were also provided 239 

with in-season growth dynamics from the same years’ field trial, including, leaf area 240 

index (all sites but AU), total above ground biomass and N, root biomass (at IN only), 241 

cumulative evapotranspiration (at AU and IN only), plant available soil water and soil 242 

inorganic N contents within the season (at AU and NL only), and end-of-season grain 243 

yield and protein concentration, and grain density measurements. Plant components 244 

(green leaves, dead leaves, stem, and chaff) biomass and N contents were also available 245 

at NL. This full set of experimental data was referred to as “full calibration” simulations 246 
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by Asseng et al. (2013) and is equivalent to the more rare gold or platinum standards set 247 

by Kersebaum et al. (2015) and Boote et al. (2015).   248 

Analysis by Asseng et al. (2013) revealed a considerable reduction of biases between field 249 

observations and yields using the high-information simulations, but noted that both the low- and 250 

high-information simulations showed a similar response to changes in mean temperature and 251 

CO2 concentrations.   252 

 253 

Table 2: Crop models included in AgMIP Wheat Pilot (in alphabetical order; for more information and details on 254 

the processes modeled in each model see supplementary materials of Asseng et al., 2013)  255 

Model Version Model description and 
applications 

Web address 

APES-ACE*  V. 0.9.0.0 (Donatelli et al., 2010; Ewert et 
al., 2011a) 

http://www.apesimulator.it/default.aspx 
 

APSIM-Nwheats V.1.55 (Asseng et al., 2004; Asseng et 
al., 1998; Keating et al., 2003) 

http://www.apsim.info 

APSIM-wheat V.7.3 (Keating et al., 2003) http://www.apsim.info/Wiki/ 

AquaCrop* V.3.1+ (Steduto et al., 2009) http://www.fao.org/nr/water/aquacrop.ht
ml  

CropSyst V.3.04.08 (Stockle et al., 2003) http://www.bsyse.wsu.edu/CS_Suite/Cr
opSyst/index.html 

DSSAT-CERES-
Wheat 

V.4.0.1.0 (Hoogenboom and White 2003; 
Jones et al., 2003), (Ritchie et al., 
1985) 

http://www.icasa.net/dssat/ 

DSSAT-CROPSIM-
Wheat 

 (Hunt and Pararajasingham 1995; 
Jones et al., 2003) 

http://www.icasa.net/dssat/ 

Ecosys (Grant et al., 2011)  https://portal.ales.ualberta.ca/ecosys/  

EPIC wheat   (Kiniry et al., 1995; Williams et 
al., 1989) 

http://epicapex.brc.tamus.edu/ 

Expert-N - CERES - 
wheat  

ExpertN 
3.0.10 
Ceres 2.0 

(Biernath et al., 2011; Priesack et 
al., 2006; Ritchie et al., 1987; 
Stenger et al., 1999) 

http://www.helmholtz-
muenchen.de/en/iboe/expertn/ 

Expert-N - GECROS - 
wheat 

ExpertN 
3.0.10 

(Biernath et al., 2011; Yin and 
van Laar 2005; Stenger et al., 
1999) 

http://www.helmholtz-
muenchen.de/en/iboe/expertn/ 

Expert-N - SPASS - 
wheat 

ExpertN 
3.0.10 

(Biernath et al., 2011; Priesack et 
al., 2006; Stenger et al., 1999; 
Wang and Engel 2000) 

http://www.helmholtz-
muenchen.de/en/iboe/expertn/ 

Expert-N - SUCROS – 
wheat 

ExpertN 
3.0.10 
Sucros2 

(Biernath et al., 2011; Goudriaan 
and Van Laar 1994; Priesack et 
al., 2006; Stenger et al., 1999) 

http://www.helmholtz-
muenchen.de/en/iboe/expertn/ 

FASSET V.2.0 (Berntsen et al., 2003) (Olesen et 
al., 2002)   

http://www.fasset.dk 

GLAM-wheat*   V.2  (Challinor et al., 2004; Li et al., http://see-web-

http://www.apesimulator.it/default.aspx
http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html
http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html
http://www.icasa.net/dssat/
http://www.fasset.dk/
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2010)  01.leeds.ac.uk/research/icas/climate_cha
nge/glam/download_glam.html  

HERMES V.4.26 (Kersebaum 1995; Kersebaum 
2007; Kersebaum 2011; 
Kersebaum and Beblik 2001) 

www.zalf.de/en/forschung/institute/lsa/f
orschung/oekomod/hermes 

InfoCrop V.1 (Aggarwal et al., 2006) http://www.iari.res.in 

LINTUL-4 v.1 (Shibu et al., 2010; Spitters and 
Schapendonk 1990) 

http://models.pps.wur.nl/models 
 

LPJmL*   (Bondeau et al., 2007; Fader et 
al., 2010; Waha et al., 2012) 

http://www.pik-
potsdam.de/research/projects/lpjweb 

MCWLA-Wheat*  V2.0 (Tao et al., 2009a; Tao and Zhang 
2010; Tao et al., 2009b; Tao and 
Zhang 2011) 

--- 

MONICA  V.1.0 (Nendel et al., 2011)   http://monica.agrosystem-models.com  

O'Leary-model V.7  (Latta and O'Leary 2003; OLeary 
and Connor 1996a; b; Oleary et 
al., 1985) 

Primary documentation for V7 (V3 
(O'Leary and Connor 1996a; b), with 
incremental documentation thereafter. 
 
 

SALUS V.1.0  (Basso et al., 2010; Senthilkumar 
et al., 2009) 

 www.salusmodel.net 

Sirius2010    (Jamieson and Semenov 2000; 
Jamieson et al., 1998; Lawless et 
al., 2005; Semenov and Shewry 
2011) 

http://www.rothamsted.ac.uk/mas-
models/sirius.php 

SiriusQuality V.2.0 (Ferrise et al., 2010; He et al., 
2011; He et al., 2010; Martre et 
al., 2006)  

http://www1.clermont.inra.fr/siriusqualit
y 

STICS V.1.1 (Brisson et al., 2003; Brisson et 
al., 1998)  

http://www6.paca.inra.fr/stics_eng/ 

WOFOST* V.7.1 (van Diepen et al., 1989; Supit 
and van Diepen, 1994; Boogard et 
al., 1998) 

http://www.wofost.wur.nl 

 256 

 257 

The 1981-2010 historical simulations that form the bulk of these analyses also served as the 258 

historical basis for climate change simulations conducted by each wheat-modeling group.  The 259 

same model configurations were therefore forced by the same climate time series and baseline 260 

carbon dioxide concentrations but with historical temperatures adjusted by -3˚C, +3˚C, +6˚C, and 261 

+9˚C every day of the year.  As initial soil conditions and crop management (including sowing 262 

date and nitrogen fertilizer application) were kept constant over the 30-year period, these 263 

simulations allow for a comparison between model responses to interannual climate variability 264 

http://www.wofost.wur.nl/
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and to mean climate changes.  The re-initialization of soil conditions each year reduces the carry-265 

over effects of multi-year droughts, which reduces overall interannual variability.  This is 266 

common in agricultural modeling applications (particularly those that examine future climate 267 

change where the sequence of events is more difficult to project than mean conditions), but 268 

sequential simulations are an important developmental priority for more accurate representation 269 

of extreme events and soil degradation (Basso et al., 2016) and crop rotation effects (Kollas et 270 

al., 2015). 271 

 272 

2.2 Performance of Ensemble 273 

Martre et al. (2014) compared grain yield, protein content concentration, and in-season and end-274 

of-season variables within the 27 wheat model simulations against observations at each of the 275 

four pilot locations.  Although some models had the closest match to specific observations, 276 

across all observed variables the 27-model unweighted arithmetic ensemble mean performed 277 

best, in line with earlier findings based on smaller model ensembles even when used to 278 

reproduce interannual yield statistics (Palosuo et al., 2011; Rötter et al., 2012).  Thus, while each 279 

wheat model has its own biases and accuracies, the errors across models tended to compensate 280 

and the resulting ensemble had additional value (see also Challinor et al., 2014b).  The superior 281 

performance of the ensemble also reflected that wheat models have evolved with enough 282 

independence in approaches to achieve a random distribution of biases for most variables rather 283 

than leading to the emergence of common biases.  284 

 285 

In light of the superior performance of the 27-member ensemble mean in reproducing field 286 

observations across the four sites (and the lack of long-term historical yield observations at each 287 
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location), for the purposes of this study we utilize the full, 27-model unweighted arithmetic mean 288 

ensemble as the basis for comparison of each model’s climate response.   289 

 290 

2.3 Methods of analysis 291 

2.3.1. Agro-climatic correlations 292 

As each of the simulations held management constant throughout the 1981-2010 simulation 293 

period and soils were re-initialized each year (with the exception of LPJmL, which did not 294 

reinitialize soil water), interannual yield variability is a result of model responses to climate 295 

factors.  Chief among these are precipitation, temperature, and solar radiation, which are likely to 296 

affect crop growth on a number of time scales.  Here we focus on the effects of variability in 297 

mean values over the growing season, using Pearson’s correlations against grain yield to 298 

determine key sensitivities within each crop model.  Additional variance is likely explained by 299 

climate variables at sub-seasonal time scales (particularly when extreme conditions align with 300 

vulnerable phenological stages), which merits further examination in future studies.  Correlation 301 

was chosen as a simple illustration of association between climate and crop model response, 302 

although aspects related to non-linearity and thresholds may not be captured.  Future work may 303 

also consider associative metrics such as the probability of detection for extreme events as a way 304 

of isolating important properties of observations and models (Glotter et al., 2016). 305 

 306 

As most studies will not have the luxury of running all 27 wheat models, we investigate the 307 

expected benefit of adding each additional member to a multi-model subset to converge on 308 

behaviors captured by the full 27-model ensemble.  Without running the full analysis it is not 309 

possible to know whether the models that are available are among the best or worst for a given 310 
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site’s climate variability response, so we utilize an 80%-exceedance threshold as a practical risk 311 

in simulation design.  Results therefore focus on the correlations that would be exceeded by 80% 312 

of the possible combinations for any number of combined models.   313 

 314 

2.3.2 Agro-climatic clustering 315 

We employed the k-means clustering technique to form clusters of wheat models that are 316 

characterized by similar correlations between yield and growing season temperature, 317 

precipitation, and solar radiation (with equal weighting for all).  K-means is an iterative process 318 

by which models are regrouped until silhouette values (i.e., similarity between each model and 319 

the other members of its cluster) are maximized.  For each location we examined the results with 320 

three, four, and five clusters and visually selected the number that best captured cohesive 321 

groupings in the climate-sensitivity space (this resulted in three clusters in both Argentina and 322 

India and four clusters in both Australia and the Netherlands).  Fewer clusters than this grouped 323 

models with substantially different yield sensitivities to climate variability in the same cluster, 324 

while more clusters tended to unnecessarily divide similarly-responsive models.  As each model 325 

belongs to a specific cluster at each location, we utilize the frequency that two models appear in 326 

the same clusters across the four sites as a metric of model similarity.   327 

  328 

3. Results and discussion 329 

3.1 Baseline interannual variability 330 

Figure 1 presents the 1981-2010 yields for the four Wheat Pilot locations from 27 wheat models, 331 

the full model ensemble, and national and regional yields.  These high-information simulation 332 

results indicate uncertainty across the model ensemble, although common differences in mean 333 
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yield across the four locations are clear (as discussed by Asseng et al., 2013, and Martre et al., 334 

2015).  Simulations exceed national and regional yields in each location, as wheat models often 335 

do not include the effects of pests, diseases, poor crop management due to labor or equipment 336 

shortages, waterlogging, and other factors that are common on farms outside of experimental 337 

plots.  Model results are therefore more representative of yield potential (Evans and Fischer, 338 

1999) than the more complex conditions of a typical farmer’s field.  The other source of 339 

variation in the gray lines within Figure 1 comes from the less explored interannual variability of 340 

simulated yields, which is the focus of analyses below.  Interannual variability is reduced in the 341 

model ensemble, as would be expected from averaging, although noteworthy variations suggest 342 

that there are common behaviors across the crop model responses.  Simulated yields (which 343 

examine a single field) are characterized by greater interannual variance compared to the 344 

national and regional level observations, likely because heterogeneities in soils, climate, 345 

cultivars, and management reduces extreme year anomalies when aggregated to scales that may 346 

exceed those of a given extreme event (Ewert et al., 2011b).  Only variety trials (in Argentina 347 

and the Netherlands) contain mean and variance of yields that are similar to the simulations, 348 

although differences in management and the varieties cultivated also reduce the utility of these 349 

records as a basis for truth in the comparison of models.   350 

 351 

Discrepancies between various observational sources and the experimental field simulated by the 352 

wheat models are large enough to caution against an expectation that the models would 353 

reproduce national, regional, or trial-based observational records over the historical period.  354 

These discrepancies are often due to the set up of the simulations from the single field 355 

experiment not representing the diversity of soils, management and cultivars which affected the 356 
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regional and national yield data (but are not documented). Also, yield variability is often driven 357 

by factors other than weather (Ray et al. 2015) and models that are driven by variations in 358 

weather only are bound to not reproduce observational records.  As noted above, we therefore 359 

turn to the High-information ensemble average (dark line in Figure 1) as the standard for the 360 

individual crop models given its superior performance in producing the full range of field 361 

observations (Martre et al., 2015).  The ensemble also reduces interannual variability through the 362 

averaging of multiple models’ potentially uncorrelated anomalies.   363 

  364 

3.2 Effect of calibration on climate sensitivity 365 

The Wheat Pilot’s protocol for Low-information and High-information experiments provides a 366 

useful examination of the ways in which model calibration has the potential to affect the 367 

resulting response to climate variability.  Figure 2 illustrates this sensitivity to calibration 368 

information via the correlation of each individual model’s low-information results with the full 369 

ensemble of Low-information simulations (LL), the correlation of each model’s Low- 370 

information result with the full ensemble of High-information simulations (LH), and the 371 

correlation of each model’s High-information results with the full ensemble of High-information 372 

simulations (HH).   373 

 374 

Correlations do not change dramatically between the Low- and High-information simulations for 375 

the vast majority of wheat models at each of the four locations.  The exceptions feature both 376 

substantial improvements (e.g., Model #25 in Argentina) and declines (e.g., Model #10 in 377 

Australia) in correlations as additional information is provided.  In these cases calibration to 378 

cultivars, soil conditions, or other internal parameters may have improved the experimental 379 
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year’s results but also affected climate sensitivity via shifts in the resilience to heat, water, and/or 380 

frost stresses. Effects of calibration strategy on simulations of climate change impact were also 381 

examined by Challinor et al. (2014b) and for simulations of crops across Europe (Angulo et al., 382 

2013).  The relative lack of different sensitivities between the Low- and High-information 383 

simulations could also be explained by the fact that each was simulated by the same model 384 

experts for a given  model, and that additional data provided for the High-information  385 

 386 

387 
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 388 

Figure 1: Historical period grain yields for a) Argentina, b) Australia, c) India, and d) The Netherlands, including 389 

the individual crop models at single simulation locations (gray lines), mutli-model ensemble mean (black solid line), 390 

and observations from national, regional, and local field trial data.  Linear trends were removed from observational 391 

data at all but the Argentinian site (which had no significant trend).  Modeled yields are the result of the high-392 

information calibration simulations.  393 

 394 
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simulations were mostly limited to details on the crop itself.  Additional information about the  395 

soil environment, in particular, would have potentially altered the sensitivity to interannual 396 

rainfall anomalies. 397 

 398 

A comparison between the LL and HH correlations indicates that most models have the same 399 

relationship with the full ensemble regardless of the level of calibration information.  Where LH 400 

and HH correlations are similar for a given model there is little benefit from additional 401 

calibration in terms of interannual climate response, as the Low-information results perform just 402 

as well as the High-information results against the High-information ensemble standard.  HH 403 

correlations are at least higher than LL correlations in the majority of cases, suggesting that 404 

additional calibration information does tighten the spread of models around the ensemble mean 405 

and thus improve the performance of several models.  This benefit is blurred by the likelihood 406 

that the fully-calibrated set of models would be expected to have closer agreement among 407 

members; however, it is important to note that calibration data at each site were only provided 408 

for a single year, making it impossible to directly calibrate the interannual variability examined 409 

here.  This is a typical limitation for crop model simulations, as there are few long-term field 410 

trials that would allow full calibration of interannual variability. Also calibration in many cases 411 

focuses on minimizing error between modelled and observed results for the calibration dataset, 412 

which may have little influence on model responses to variation in environmental conditions that 413 

may be controlled by model structure and parameters other than those in focus for the 414 

calibration. The remainder of this study will focus on the High-information simulation sets, as 415 

these are likely to be of highest fidelity.  Agro-climatological mechanisms at the root of these 416 

correlations are explored in Section 3.4 below. 417 

418 
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 419 

Figure 2: Single model run correlations against ensemble mean during 1981-2010 for (a) Argentina; (b) Australia; 420 

(c) India; and (d) The Netherlands. The correlation between the Low-information model runs and the Low-421 

information ensemble mean (LL) is displayed in light gray, the correlation between the Low-Information model runs 422 

and the High-information ensemble mean (LH) is displayed in dark gray, and the correlation between the High-423 

information model runs and the High-information ensemble mean (HH) is displayed in black.424 
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 425 

3.3 Benefit of multi-model ensemble 426 

The 27-model community approach of the AgMIP Wheat Pilot is not possible in the vast 427 

majority of crop model applications. Instead, what is needed is prior information that aids in the 428 

construction of a practical subset of models with a high likelihood of representing the larger 429 

ensemble.  Beginning on the left-hand side of Figure 3 (representing the use of a randomly 430 

selected single model), the plotted value represents the Pearson’s correlation (against the full 431 

High-information ensemble) that would be exceeded by 80% of the individual models.  This 432 

value is highest for Argentina (where 80% of the models exceed r = 0.50) and lowest for India (r 433 

= 0.28).  Introducing a second model results in (27*26)/2=351 possible combinations, but 80% 434 

of them have a correlation of at least r = 0.71 in Argentina and r = 0.53 in India.  Across the four 435 

sites, the benefit of adding a second model to a climate variability analysis is therefore an 436 

increase of +0.23 in its likely correlation with the full ensemble, with gains highest in Australia 437 

(+0.33) and lowest in the Netherlands (+0.13).  Adding a third model also substantially increases 438 

the 80%-likely correlation, although the average increase is reduced (+0.11).  The additions of a 439 

fourth and fifth model (increasing correlations by an average of 0.06 and 0.04, respectively) to 440 

the subset are also beneficial and lead to very high correlations, but the increases begin to be 441 

small in comparison to the effort likely required to calibrate an additional model (and collaborate 442 

with an additional modeling group) for the effort.   443 

 444 

Efforts to include a second and third model therefore provide substantial benefit to climate 445 

variability simulations; however, investment in including additional models has a diminishing 446 

return.  These results suggest a benefit at smaller subsets to account for interannual climate 447 
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variability than the 5- to 10-member subsets that AgMIP crop model pilots identified as 448 

beneficial by comparing multi-model convergence against the 13.5% error that is common in 449 

field observations for wheat (Asseng et al., 2013) and maize (Bassu et al., 2014) or the 15% 450 

observational error for rice (Li et al., 2014).  The analyses were also conducted using a 70% and 451 

90% threshold, with consistent patterns of benefit but the higher thresholds further emphasizing 452 

the risks of the worst model being randomly selected.   453 

 454 

Figure 3: Improvement in correlations with each additional model within a multi-model subset of the full ensemble. 455 

For each number of models included in the subset N, the value shown represents Pearson’s correlation coefficient 456 

between the subset’s mean yield and the full ensemble’s mean yield and that would be exceeded 80% of the time 457 

given a random selection of N models from the full set of 27 wheat models.  Simulations were performed at single 458 

locations in each country (see Table 1) after calibration with High information, and all possible combinations of N 459 

models were tested. 460 
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 461 

3.4. Agro-climatic Sensitivity  462 

Correlations of the 1981-2010 modeled grain yields and observed grain yields with mean 463 

growing season solar radiation, temperature, and precipitation are shown in Figure 4 across the 464 

four locations.  In Argentina simulated grain yields are positively correlated with wet seasons in 465 

all but one model, with more than 75% of the models demonstrating significant correlations.  A 466 

strong sensitivity to rainfall anomalies is also seen in the cultivar trials; however, national grain 467 

yields are not significantly correlated with the precipitation at Balcarce, Argentina, as the wheat 468 

area covers a much larger region.  The simulations and cultivar trials agree that lower 469 

temperatures significantly favor grain yields, with even the national grain yields following suit as 470 

warm and cooler seasons tend to spread more widely than the precipitation anomalies.  At all 471 

sites, for both temperature and precipitation, the magnitude of the ensemble average’s correlation 472 

is substantially higher than that of the median model; indicating that precipitation and 473 

temperature sensitivities are a unifying factor describing grain yield across the model members.  474 

Solar radiation variability is not significantly correlated for the bulk of models. 475 

 476 

The Australian location is characterized by an even stronger sensitivity to rainfall.  This site is 477 

also significantly sensitive to solar radiation anomalies, with negative correlations suggesting 478 

interdependence as cloudier seasons correspond with wetter conditions.  National and regional 479 

yields are less responsive to precipitation anomalies and are governed more by temperature, as 480 

temperature anomalies may be widespread while droughts in the east are often offset by wetter 481 

conditions in the west.   482 

 483 
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Simulated yields at the Indian site are significantly correlated with precipitation despite irrigation 484 

applications totaling 383 mm over the growing season using fixed application dates (as applied  485 

in the field experiment). While an irrigation amount of 383 mm was sufficient for the 1984-1985 486 

field trial, in other years the amount and timing of these applications may not have been adequate 487 

to prevent water stresses from influencing crop growth and final yields.  It is also possible that 488 

precipitation anomalies are correlated with particular temperature and solar radiation regimes  489 

 490 

 491 

Figure 4: Box-and-whiskers plots of Pearson’s correlation coefficients between the 27 wheat models’ 1981-2010 492 

simulated grain yields at single locations in each country and corresponding growing season mean solar radiation 493 

(Srad), average temperature (Tavg) and precipitation (Prcp).  The median of the model simulations is marked by the 494 

red line, the box contains the middle two quartiles (from 25% to 75%), and the whiskers extend to the most extreme 495 

data points of the simulations that are not considered outliers (displayed as red dots). The correlation of the 496 

ensemble performance (red star), national observations (blue asterisk), regional observations (magenta triangles; 497 

where available), and the mean of other field trial results or local observations (green triangles) over the years data 498 

were available are also presented (as in Figure 1).  Dashed lines indicate thresholds for correlations that are 499 

significant at the 90th percentile (t-test). 500 
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that are favorable for irrigated wheat growth.  Cool seasons here are favorable for wheat 501 

production, and solar radiation correlations are not significant.  National level correlations with 502 

the Delhi weather series are understandably weaker for all variables, as heterogeneous climate 503 

across India’s wheat-growing regions reduces the prominence of anomalies and results in 504 

insignificant correlations in all but average temperature. 505 

 506 

Wheat at the Netherlands site follows a different agro-climatic pattern from that at the other three 507 

sites.  Warm seasons are positively correlated with yields in the bulk of models, suggesting a 508 

growing degree day limitation.  Simulations and observations also suggest a radiation limitation 509 

at this high latitude, with sunnier seasons (and the associated temperature and rainfall patterns) 510 

favoring higher yields.  The field site is notably different from the regional and national level 511 

observations in that the aggregated observations are either not correlated with temperature or 512 

suggest that yields favor cooler temperatures.  The models also indicate stronger yields in wet 513 

years, while observations indicate better production during drier seasons.  This likely comes 514 

from the fact that local and regional management of shallow groundwater tables in this region 515 

helps control against water stress but this management is not considered in the models at the test 516 

site. Contrary to the models’ perception of drought, elevated regional yields are recorded in dry 517 

seasons as higher solar radiation and groundwater provisions increase yield potential (Asseng et 518 

al., 2000).  519 

 520 

3.5. Clusters of agro-climatic response 521 

Figure 5 shows each of the 27 wheat models as plotted on a three-dimensional space of 522 

temperature, precipitation, and solar radiation correlations with that model’s grain yield.  Models 523 
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falling in the same agro-climatic cluster are represented with a common symbol and color.  The 524 

full ensemble average and cluster averages do not fall as an average of the individual model 525 

members’ correlations as the ensemble averaging reduces individual models’ yearly anomalies to 526 

produce a unique time series.  The results illustrate that the model spread is not randomly 527 

distributed in the agro-climatic sensitivity space, but rather distinct families of responses are 528 

evident.  Several clusters also correspond much more closely with the full ensemble average 529 

responses. 530 

 531 

Figure 6 shows the spread of model correlations within each cluster as well as the cluster 532 

ensemble correlations against the full 27-model ensemble’s interannual yield variability.  One or 533 

two clusters at each location demonstrate substantially better coherence to the ensemble average 534 

than the others.  Even within a given cluster there are substantial differences in correlation 535 

between individual models and the ensemble average; particularly among clusters that are 536 

furthest from the ensemble average sensitivities (e.g., the “x” cluster in Argentina or the diamond 537 

cluster in Australia).  The ensemble average for each cluster is also a marked improvement on 538 

the median model within that cluster, although occasionally there is one model that outperforms 539 

even the cluster mean.   540 

 541 

542 
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  543 

Figure 5: Clusters of the 27 wheat model simulations (cluster membership denoted by shape of symbols), the 544 

ensemble average, and observational data according to their grain yield correlation coefficients versus mean growing 545 

season solar radiation (Srad), average temperature (Tavg), and precipitation (Prcp) from 1981-2010 for single 546 

locations in (a) Argentina; (b) Australia; (c) India; and (d) The Netherlands.  The correlation coefficients of the 547 

ensemble yield performance (boxed star) and the centroids of the clusters (corresponding symbols with circles) are 548 

also presented.  Note that the perspective is rotated and axes limits adjusted in each panel in order to best visualize 549 

the differences in the model clusters. 550 

 551 

 552 
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Despite the fact that many of these wheat models have common heritage in pioneering crop 553 

modeling groups and approaches developed in the last 30 years, only two pairs of models (#1/#5 554 

and #20/#22 from Figure 2; making <0.3% of possible combinations and thus potentially just a 555 

coincidence) fall in the same agro-climatic cluster at all four Pilot locations.  7% of model pairs 556 

fall in the same cluster at three of the four sites, while 24% of model pairs are never in the same 557 

cluster.  The remaining 69% of model pairs share one or two clusters, which would be expected 558 

for independent models.  No individual model stands out as being particularly divergent from the 559 

others, as each model has at least three other models that never appear in the same cluster, and at 560 

least four models that fall in the same cluster for two or more sites.  Only one model falls into the 561 

highest-correlating cluster at all four locations, and likewise only a single model always falls into 562 

the lowest-correlating cluster. In total 15 different models are included in the lowest-correlating 563 

cluster for at least one site, and 21 different models are part of the highest-correlating cluster at 564 

least once.  This independence likely contributes to the strength of the full ensemble, as more 565 

independent models are less likely to share common response biases.  Model similarities and 566 

differences from site to site also cautions against assuming that performance of a given model at 567 

a limited number of sites is indicative of its likely performance at a new site.  The high 568 

sensitivity of the models’ response to climate variability demonstrates high sensitivity to 569 

location, representing different growing environments.  Results suggest that there is little basis 570 

on which to categorize groups of models based upon expected commonalities in climate 571 

variability response, as these responses show high sensitivity to location rather than models 572 

imposing the same response to all sites. 573 

 574 

We created subsets of models with the rule that only one model could be drawn from each 575 
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cluster to test the hypothesis that diverse model combinations would more efficiently capture 576 

responses of the full ensemble than would a random combination of wheat models.  However, 577 

performance of these subsets was not significantly different from the random subsets tested in 578 

Section 3.3 above. Selecting more diverse models via cluster analysis is therefore not an  579 

 580 

 581 

Figure 6: Correlations between simulated grain yield by the wheat models against the 27-member ensemble average 582 

series of interannual grain yields for single locations in (a) Argentina; (b) Australia; (c) India; and (d) the 583 

Netherlands.  The correlations of the cluster ensembles are shown in the dark black symbol above the box-and-584 

whiskers distribution of individual models within that cluster (corresponding to the symbols from Figure 5). 585 

 586 

effective strategy for creating multi-model subsets for new studies, although the construction of 587 

subsets based upon model structure and parameter sets (rather than response characteristics) 588 
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merits further study.  Additional work may also explore agro-climatic responses in perturbed 589 

physics ensembles as an alternative to multi-model ensembles (PPEs and MMEs, respectively; 590 

Wallach et al., 2015). 591 

 592 

 593 

3.6. Relationship between interannual and climatological temperature sensitivities 594 

While the above analyses focused on the ways in which simulated grain yields are sensitive to 595 

interannual variability in temperature, rainfall, and solar radiation, the temperature sensitivity 596 

tests (-3˚C, +3˚C, +6˚C, and +9˚C) isolate the effect of mean changes in temperature.  Popular 597 

impressions of climate change impacts are often based upon temporal proxies, or the assumption 598 

that an x-degree warmer mean climate at a given location would have grain yields similar to the 599 

yields observed in that location in past years when an x-degree anomaly occurred.  Empirical 600 

models based upon historical regressions are often premised on such an assumption, although 601 

developed to a greater extent (e.g., Lobell and Burke, 2010).  This is indeed a logical hypothesis 602 

as one would expect that a crop’s response to mean warming would mimic its response to 603 

interannual temperature anomalies.  Models that are most responsive to interannual temperature 604 

variability would therefore be expected to also be the most sensitive to mean temperature 605 

changes.   606 

 607 

For example, consider two models: Model A (which simulates higher yields in warm years and 608 

thus whose response is positively correlated with interannual temperatures) and Model B (which 609 

simulates lower yields in warm years and thus whose response is negatively correlated with 610 

interannual temperatures).  A temporal proxy assumption would anticipate that Model A would 611 
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have more positive simulated yield changes (as a percentage of the historical simulations’ yields) 612 

than Model B if both were exposed to warmer mean conditions.  Likewise, if both models were 613 

simulated under cooler mean conditions Model A would have more negative yield changes than 614 

Model B.  These comparisons between climate variability sensitivities and climate change 615 

responses are informative not only for the relationship of a single given model, but the pattern of 616 

the full ensemble provides a basis on which to evaluate model consistency and simple statistical 617 

modeling approaches. 618 

 619 

The 27 wheat models’ interannual temperature sensitivity and mean temperature change 620 

responses are compared for each of the temperature sensitivity tests and each of the four 621 

locations in Figure 7, with each dot representing a single wheat model.  A model’s position on 622 

the x-axis represents the correlation of its interannual yields against growing season temperature 623 

anomalies in the 1980-2010 period, and its position on the y-axis represents the percentage 624 

change in mean yield (over the 30 growing seasons) for each of the temperature sensitivity tests 625 

in comparison to the 1980-2010 mean yield (with CO2 held at historical concentrations of 360 626 

ppm).  A linear fit is also drawn for each color-coded sensitivity test (quadratic fits were not 627 

substantially better). 628 

 629 

As expected, the slopes of the linear fits indicate that models with greater interannual 630 

temperature sensitivity are more sensitive to mean temperature changes.  The +3˚C, +6˚C, and 631 

+9˚C sensitivity tests’ linear fits have a positive slope at all sites.  This indicates that the mean 632 

warming tended to lead to relatively higher simulated grain yields in models with more positive 633 

correlations between interannual temperature and grain yield compared to models with more 634 
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negative correlations (which had lower simulated grain yield in the sensitivity tests).  Also as 635 

expected, the -3˚C sensitivity test’s linear fit has a negative slope, as decreases in mean 636 

temperature lead to larger grain yield losses when models’ interannual temperature anomalies are 637 

more positively correlated with yields compared to models.  638 

 639 

640 
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 641 

Figure 7: Comparison between each model’s Pearson’s correlation coefficient of interannual temperature and grain 642 

yield with its response to mean temperature change sensitivity tests (-3˚C, blue; +3˚C, green; +6˚C, orange; +9˚C, 643 

red; each compared against 1981-2010 historical period at single location in each country). Ensemble averages for 644 

each sensitivity test are represented by a star, and colored lines represent the least-squares linear fit for each 645 

sensitivity test with R2 correlation and t-test significance documented for each fit. Vertical dashed lines indicate t-646 

test significance at the 90th-percentile level for interannual correlations between average temperature and simulated 647 
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grain yield.  The R2 correlation and significance level for the fitted slope of each least-squares-fitted line is also 648 

presented in text of the corresponding color in each panel.  p-levels presented for the slope were the lowest possible 649 

among 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, and 1. 650 

 651 

While the slopes of these lines support the use of temporal proxies for climate impact analyses, 652 

other aspects of the analysis cast serious doubt on the utility of the temporal proxy approach 653 

(even when CO2 is held constant).  Firstly, there is a dramatic spread among the 27 wheat models 654 

around the fitted line, with the sign of many models’ mean temperature change responses 655 

opposite from what would be predicted by the interannual temperature response.  As shown in 656 

Figure 7, R2 correlations are quite low (between 0 and 0.24), with lowest values in the +9°C 657 

sensitivity test.  Correlations are particularly low in Australia (R2≤ 0.07) where interannual 658 

temperature sensitivity was weak in most models, and are highest in the +3°C and +6°C 659 

sensitivity tests for India (R2 = 0.24) where irrigation likely enabled a stronger temperature 660 

signal.  t-test evaluations of the least-squares fit reveal many instances where the slopes are not 661 

statistically significant at the p=0.05 level, particularly in Australia and for the higher 662 

temperature change sensitivity tests (where only India is significant at the p<0.1 level).  663 

Together, these low correlations and the weak significance of fitted slopes suggest that the 664 

temporal proxy cannot be reliably applied, especially for conditions that are substantially warmer 665 

than the calibration period.   666 

 667 

Secondly, a temporal proxy would predict that models with no sensitivity to interannual 668 

temperature variability would have no response to climate change (as represented by the 669 

temperature sensitivity tests), and therefore all linear fits should intersect at the origin of the 670 

axes.  This is not the case as nearly all temperature sensitivity test lines fall below the origin with 671 
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increasing distance as temperatures rise, suggesting that additional factors impart a mean grain 672 

yield reduction above what would be expected from examining the impacts of historical 673 

temperature variability.  Several potential explanations for these differences merit further study. 674 

 675 

A first candidate factor is that this simple temporal proxy based solely on temperature lends itself 676 

to biases as a result of interdependence of climate variables (Sheehy et al., 2006).  For example, 677 

temperature anomalies may correlate with yield losses only because they coincide with dry 678 

seasons, which would suggest that a rainfall-based empirical model would be more appropriate.  679 

Interdependence of climate variables would somewhat explain the deviations of the wheat 680 

models around the least-squares fitted lines in Figure 7 as the interannual correlation would not 681 

be solely a temperature sensitivity.  This factor cannot explain the extent of these deviations, 682 

however, nor is this explanation sufficient to explain the offset at the origin.   683 

 684 

A second factor is the non-linearity in grain yield responses as mean climate change pushes 685 

systems beyond critical thresholds and tipping points, some of which may not have been present 686 

in the historical conditions.  Within each temperature sensitivity test there are 30 years of 687 

climate variability including warm seasons with extreme events that are amplified by an 688 

increasing mean temperature and which may have a disproportionate impact on the mean yield 689 

shift.  In combination, the mean warming and interannual extremes can produce conditions 690 

never experienced during the 1981-2010 period.  In many cases this leads to a non-linear impact 691 

on grain yields beyond a simple extrapolation of interannual proxies (Porter and Semenov, 692 

1995).  For example, Lobell et al. (2012) found an acceleration of leaf senescence in Indian 693 

wheat during extreme heat events beyond what would have been expected from average 694 
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temperatures alone.  Interactions with other variables can also compound yield losses.  Chief 695 

among these are increases in water stress during critical growth stages, as warmer temperatures 696 

lead to increased vapor pressure deficit and higher potential evapotranspiration (although 697 

accumulated water requirements may be partially counter-balanced by a shorter growing 698 

season).  Non-linear effects could be identified if particular years in the sensitivity tests 699 

experienced much larger losses than the average year (compared to the historical climate).  700 

Thresholds and plant stresses at critical growth stages can also lead to complete loss of grain 701 

yields, as is clear in the number of models reporting 100% grain yield loss under the highest 702 

temperature conditions (Figure 7).   703 

 704 

A third factor relates to different responses of grain yield to temperature variability and change 705 

during different parts of the crop growing season or during different parts of the year. This is 706 

probably particularly relevant for crops with a long growing period such as winter wheat in the 707 

Netherlands. An example of this is winter wheat in Denmark, where Kristensen et al. (2011) 708 

found a positive response of yield to increased temperature at low temperatures during winter, 709 

but a highly negative response during summer. Also Liu et al. (2013) found differential effects 710 

of warming on winter wheat yield in the North China Plain depending on whether the warming 711 

mainly affected winter or summer conditions. The effects of warming for crops that have long 712 

growing seasons with large seasonal differences may therefore be obscured by positive effects 713 

of warming in some parts of the growing season and negative ones in other parts of the growth 714 

period. 715 

 716 
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A final candidate factor for the differences between interannual temperature variability and mean 717 

warming is the extent of within-season climate variability.  In the historical record extremely 718 

warm seasons tend to be only marginally warm on the average day but feature a substantial heat 719 

wave (or several), which has a fundamentally different effect on plant function from that of a 720 

season where a slight warming is relentless (even if the average temperature is the same).  With 721 

prolonged warming maturation is accelerated and yields may be reduced as a result of lower net 722 

radiation interception.  There is also an increased chance that warm temperatures will negatively 723 

affect key phenological stages and/or interact with precipitation or solar radiation to create 724 

evaporative demand that the plants cannot meet.  These alterations to phenological development 725 

and/or heat and water stresses can have cascading effects on plant growth throughout the season 726 

with net yield reductions on average compared to the historical temperature variability.  The 727 

models respond to high temperatures according to a large variety of parameterizations (Alderman 728 

et al., 2013), with responses to extreme heat an area in particular need of development (Lobell et 729 

al., 2012).  730 

 731 

4. Conclusions and next steps 732 

Analysis of the 27 models participating in the AgMIP Wheat Model Intercomparison Pilot 733 

reveals substantial differences in the ways that models respond to interannual variations in 734 

rainfall, temperature, and solar radiation at four diverse locations.  These differences provide 735 

useful context to differences in the abilities of the same models to reproduce detailed field 736 

observations (Martre et al., 2015) and climate change responses (Asseng et al., 2013, 2015).  The 737 

large differences apparent in interannual climate sensitivity suggest that multiple years of 738 

consistent field trials are desirable to enable proper initialization of field conditions, and field 739 
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experiments during extreme conditions would benefit the calibration of crop models for both 740 

mean yields and interannual variability.  Such long-term agricultural research datasets are rare, 741 

unfortunately, so in typical applications such as those done here it is likely that any biases in 742 

calibration are amplified when a single-year’s calibration is used for multiple seasons.  It is 743 

therefore useful to take advantage of the tendency of multi-model ensemble statistics to reduce 744 

overall errors beyond the calibration period.  745 

 746 

The AgMIP Wheat Pilot offers a far larger multi-model sample than would be expected in the 747 

applications for which each of the participating models was designed; however several of the 748 

interannual response results help guide the formation of practical subsets and application 749 

protocols.  Although calibration information has been shown to reduce errors in mean yields and 750 

details in crop growth (Asseng et al., 2013), the results presented here suggest that interannual 751 

yield variability for most models is not strongly affected by the availability of more detailed field 752 

observations (e.g., evapotranspiration, biomass, leaf-area index, plant available soil moisture) for 753 

calibration. This is encouraging as high-information field trials are much less common.  Adding 754 

a second (and third) wheat model dramatically increases the likelihood that the simulated results 755 

will reproduce the interannual behavior of the full 27-model ensemble, with a diminishing 756 

benefit to efforts that utilize additional models beyond that.  This information is directly relevant 757 

to the design of new studies looking to take advantage of multi-model ensemble statistics despite 758 

resource constraints, including AgMIP efforts to form crop modeling tools that may link with 759 

global agricultural monitoring and outlooks on a sub-seasonal to seasonal scale (Singh et al., 760 

2012; Vitart et al., 2012).  Use of an ensemble also highlights the sensitivity of simulated yields 761 
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to interannual climate variability as common features rise above the ensemble’s diminished noise 762 

more easily than the individual models’ larger noise.   763 

 764 

The wheat models demonstrate several common patterns of climate variability response at each 765 

tested location.  In some cases there is a fundamental disagreement between models about 766 

whether grain yield responds positively or negatively to a given anomaly, although 767 

interdependence of climate variables (e.g., wet and cool years vs. hot and dry years) muddles the 768 

picture.  Even when two models respond in a very similar manner at one location, differences in 769 

calibration method and quality, parameters, model structure, and environmental conditions can 770 

lead to strong deviations in model response at other sites.  These results therefore suggest that 771 

there are still strong differences in wheat models’ climate sensitivities, and that further work is 772 

needed to create models that are truly applicable across a wide range of current and future 773 

conditions.  The analysis presented here focuses on mean growing season climate anomalies at 774 

four locations; however consideration of intra-seasonal variability and extremes (e.g., heat 775 

waves, dry spells, frosts, floods, waterlogging, monsoon dynamics) require further study.  776 

Comparing multi-model simulation experiments against long-term field trials (e.g., Dobermann 777 

et al., 2000) would also be desirable in order to provide true observations upon which to evaluate 778 

simulated outputs (rather than assuming the value of the ensemble average as done here).   779 

 780 

The effects of interannual temperature variability and mean climate warming were shown to be 781 

only weakly related among the 27 wheat models, indicating that a temporal proxy for climate 782 

change is likely oversimplified.  State-of-the-art empirical models use far more than interannual 783 

temperature for climate impacts projection, however these findings underscore the importance of 784 
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considering complex interactions between variables and non-linear responses that may not be 785 

present in the historical period datasets to which models are fit.  Further work is needed to 786 

elucidate additional physiological factors that differentiate the effects of a warm season from 787 

those of a warmer climate (Porter and Semenov et al., 2005).   788 

 789 

Follow-on phases of the AgMIP Wheat Pilot are focusing on more sites and experiments 790 

designed to better distinguish between heat waves and warmer mean climate conditions.  The 791 

analyses presented here would also be of interest for other completed AgMIP Crop Model Pilots 792 

(e.g., for maize, Bassu et al., 2014; rice, Li et al., 2014; and sugarcane, Singels et al., 2013) as 793 

well as pilots planned for millet and sorghum, potato, canola, and grasslands.  AgMIP’s 794 

Coordinated Climate-Crop Modeling Project (C3MP; Ruane et al., 2014; McDermid et al., 2015) 795 

and Global Gridded Crop Model Intercomparison (GGCMI; Rosenzweig et al., 2014; Elliott et 796 

al., 2015), as well as the impact response surface studies conducted in FACCE MACSUR 797 

(Pirttioja et al., 2015) provide additional fora in which to compare climate sensitivities across 798 

multiple locations and crop models, assuming that observational yield data also are available for 799 

those points or aggregated grid cells.  This study’s yield response analyses are currently being 800 

applied to GGCMI’s historical period intercomparison, helping to determine the causes for 801 

differences in interannual yield variation for more than a dozen models with global coverage of 802 

multiple crops (Elliott et al., 2015).  Wheat model development would benefit from a future 803 

intercomparison centered upon a region where long-term variety trials overlap with similar 804 

detailed field experiments so that calibration and the response to interannual climate variability 805 

may be more comprehensively evaluated.  Of particular interest would be the way in which 806 
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interannual yield observations affect calibration and the resulting climate variability and climate 807 

change sensitivities.   808 

 809 

Results from this study underscore the need for model intercomparison results to avoid 810 

anonymity in order to enable careful analysis of structural and parameter differences that cause 811 

differences in yield response.  Current and future phases of the AgMIP Wheat intercomparisons 812 

no longer hold the models anonymous, and evaluation of the mechanisms driving different 813 

climate responses is a crucial line of continuing inquiry (as was performed for the AgMIP Rice 814 

Pilot; Li et al., 2015).  Through these activities the efforts of the AgMIP Wheat Pilot will better 815 

accomplish integrated assessments of climate impact on the agricultural sector.   816 
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