
This is a repository copy of NMR Self Diffusion and Relaxation Time Measurements for 
Poly (vinylidene fluoride) (PVDF) Based Polymer Gel Electrolytes Containing LiBF4 and 
Propylene Carbonate.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100044/

Version: Accepted Version

Article:

Richardson, PM, Voice, AM and Ward, IM (2016) NMR Self Diffusion and Relaxation Time 
Measurements for Poly (vinylidene fluoride) (PVDF) Based Polymer Gel Electrolytes 
Containing LiBF4 and Propylene Carbonate. Polymer, 97. pp. 69-79. ISSN 0032-3861 

https://doi.org/10.1016/j.polymer.2016.03.074

© 2016, Published by Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 0% PVDF
 20% PVDF
 30% PVDF

In
te

ns
ity

Gradient Strength (G cm-1)

*Graphical Abstract



NMR Self Diffusion and Relaxation Time Measurements for
Poly (vinylidene fluoride) (PVDF) Based Polymer Gel

Electrolytes Containing LiBF4 and Propylene Carbonate

P.M. Richardson, A.M. Voice, I.M. Ward∗

Soft Matter Physics, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK

Abstract

Polymer gel electrolytes (PGEs) have been prepared using lithium tetrafluoroborate

(LiBF4), propylene carbonate (PC) and poly (vinylidene fluoride) (PVDF). Self diffu-

sion coefficients have been measured using pulse field gradient nuclear magnetic resonance

(PFG-NMR) for the lithium cation, BF4 anion and solvent molecules using 7Li, 19F and

1H nuclei, respectively. It was found that lithium ion diffusion was slow compared to the

much larger fluorinated BF4 anion, which is attributed to a large solvation shell around

the lithium ions. The 7Li and 1H diffusion measurements also exhibited two unique envir-

onments for the diffusive species. The measurement of NMR transverse relaxation times

has confirmed the presence of lithium ions in multiple phases as shown by the diffusion

measurements.

Keywords: NMR, diffusion, polymer gel electrolyte, LiBF4, transverse relaxation,

PVDF

1. Introduction

Polymer gel electrolytes (PGEs) are membranes which consist of a polymer, an or-

ganic solvent and a salt. Polymer electrolytes are the focus of much research due to their

primary application of use in electrochemical devices and more specifically secondary

lithium batteries. The first instance of conductive polymers for use as possible electro-

chemical devices were presented in research carried out by Armand[1, 2] and Wright[3, 4].
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Since this early research into solid polymer electrolytes there has been significant research,

which has resulted in the evolution of dry polymer electrolytes to polymer gel electrolytes

which contain high levels of organic solvent, this evolution is detailed in several reviews

of polymer electrolytes [5, 6, 7, 8]. The introduction of an organic solvent increased ion

mobility and thus ionic conductivity. These gels are considered important as they offer

many properties that traditional lithium ion batteries do not exhibit, such as enhanced

safety features (since polymer gel electrolyte batteries do not contain free liquid out-

side the polymer structure). PGEs are also highly flexible and versatile and are easily

produced. Due to easy fabrication by an extrusion lamination method, patented at the

University of Leeds, there is no need for external casing or a polymer separator used to

stop electrodes shorting [9].

Conducting polymer electrolyte research at the University of Leeds was initiated by

Bannister et al [10], who showed that through the use of amorphous comb shaped poly-

mers relatively high conductivities could be achieved, these comb shaped polymers con-

sisted of methacrylate backbones and short poly(ethylene glycol) side chains and teeth

[11]. The next approach explored at Leeds consisted of producing gel electrolytes from

poly (N,N dimethylacrylamide) (PDMA), conductivities of around 10-4 S cm-1 were ob-

tained at room temperature [12]. These high conductivities were achieved with lithium

salts and including the incorporation of N,N dimethylacetamide (DMAc) as a plasti-

ciser [12]. The promising conductivities values achieved here led to a major research

programme exploring thermoreversible polymer gel electrolytes based on poly(vinylidene

fluoride) (PVDF) for use in advanced secondary battery applications [13].

In this paper we describe thermo-reversible gels produced from PVDF, this was chosen

as the host polymer due to it being chemically inert and stable under 4V; which is required

for battery applications. PVDF is a polar polymer and thus has a relatively high dielectric

constant, which aids in ionic dissociation of the salt ions and therefore increases ionic

conductivity. PVDF is a semi crystalline polymer, which forms non chemically cross

linked junctions, allowing the resulting polymer gel electrolytes to be thermo-reversible.

The semi crystalline gels form crystalline junctions within the solution below the melting

temperature. The crystalline junctions will enter a melt if the melting temperature

is exceeded due to the absence of chemical cross-links. These distinct properties of
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PVDF have resulted in many publications on PGEs containing PVDF, as both the host

polymer [13, 14, 15, 16, 17, 18] and as part of co-polymer systems (such as PVDF-

HFP)[19, 20, 21, 22].

Research into solid polymer electrolytes by Armand[1, 2] and Wright[3, 4] using

poly(ethylene oxide) (PEO) mixed with various lithium based salts, resulted in very low

conductivities (≈10-5). It was found that within these solid polymer electrolytes the ions

located in the amorphous regions of the polymer were responsible for the conductivity[4].

In order to enhance the conductivity in the polymer gel electrolytes the location of the

ions and the conduction mechanism must be understood. It is therefore the aim of this

paper to address the location of the anion and cation within the gel structure.

The precise structure of the polymer gel electrolytes is dependent on many con-

tributing factors. However, the gels are usually found to be formed from aggregations

of spherulites, which are believed to contain highly ordered crystalline lamellae which

are connected by amorphous polymer to form spherical structures. It has been found

that the size and shape of the spherulites are highly dependent on the rate of cooling

once the gel has been formed [23]. A paper by Shimizu et al [24] shows via SEM that

gels produced using diethyl carbonate (DEC) produces rough edged spherulites, where

as γ-butyrolactone (GBL) and propylene carbonate (PC) both produce smooth edged

spherulites. Although the term spherulite is commonly used in the literature regarding

the gelation process, it is not clear the means by which these spherulites are formed. It

has been suggested by Chou et al that the gelation is a four step process; nucleation

and growth into spherical structures, aggregation of the spherical structures, diffusion

controlled coarsening and finally Ostwald ripening [25]. Chou et al [26] have suggested

that the spherulites may not be crystalline and instead the structure of the gels consists

of an aggregation of non crystalline spherulitic structure, however it has been observed

by Voice et al [13] at the University of Leeds that there are clearly crystalline regions

within the polymer gel structure.

Since the primary application of these polymer gel electrolytes is for use in secondary

lithium batteries, it is important to understand the location of the ions within the gels.

T1ρ measurements carried out by Hubbard et al [27] showed that PVDF based polymer

gel electrolytes contain multiple phases including a crystalline lamellae phase, an inter-
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lamellae amorphous polymer phase, a solvated amorphous polymer phase and a pure

liquid phase. These phases were determined by using NMR relaxation times using the

hydrogen (1H) nucleus which will therefore have detected the polymer and the solvent

molecules[27]. However, it is important to understand the role of the salt ions as these

are responsible for conduction. In this paper we discuss the possibility of the lithium

ions being present in multiple phases of the gels and in a subsequent publication will link

these results with conductivity data in order to show that there are likely at least two

conduction mediums for the lithium ions[28].

In this paper we have used NMR self diffusion measurements to understand the

mobility of the solvent molecules, lithium cations and BF4 anions using 1H, 7Li and 19F

resonant frequencies, respectively. NMR diffusion measurements have been proven to be

a useful tool in understanding the mobility in polymer gel electrolytes [29, 30, 31, 32,

16, 33, 34]. However, the possibility of multiple diffusive species of both the lithium ions

and solvent molecules is discussed in this paper, which has previously been reported by

us [18] and also in a publication by Magistris et al [17]. However, this paper will contain

a more in depth observation of the NMR diffusion as a function of salt concentration,

polymer concentration and temperature.

2. Experimental Methods

2.1. PGE Preparation

All samples were prepared in an oxygen-free nitrogen filled glove box, in order to

reduce the moisture content within the sample. The liquid electrolytes were prepared by

mixing LiBF4 (lithium tetrafluoroborate) salt with propylene carbonate (PC) at different

concentrations. The PVDF polymer was then added to the liquid mixture and heated

to 433K (160oC). The weight percentage of polymer to solvent used was 0%wt (liquid

electrolyte), 20%wt and 30%wt PVDF. The thermo-reversible gels were produced under

high temperature (433 K) and stirring and allowed to cool at ambient temperature.

The 99.7% anhydrous propylene carbonate and LiBF4 from Sigma-Aldrich were used as

received. The Solef ®1015 PVDF used was supplied by Solvay chemicals and placed in

the dry glove box before use.

4



2.2. NMR Diffusion

The diffusion coefficients were measured using a 400 MHz Bruker AVANCE II NMR

spectrometer. The NMR pulse sequence used was a complex bipolar stimulated echo

pulse field gradient (BPStE-PFG) originally designed by Cotts [35]. The Cotts sequence

is an adapted from the Stejskal-Tanner pulse sequence [36] which eliminates background

magnetic fields. Background magnetic field gradients manifest due to inhomogeneities

in the magnetic field. This produces cross terms of the applied magnetic gradients and

the background magnetic gradients. This introduces the relation for intensity of signal

in the form of equation 1.

I = I1 exp

(

−D1 (2πγδG)
2

(

∆−
δ

3

))

(1)

where G is the gradient field strength, ∆ is the time between subsequent gradient pulses

and δ is the gradient pulse duration. The introduction of bipolar pulses resolves the

problem of the background magnetic field and allows measurement of the self diffusion

coefficients. Bipolar pulses are two gradient pulses of equal magnitude with opposite

sign.

The different nuclei were isolated by applying radio frequency pulses corresponding

to the resonant frequency of the nuclei. The duration of the π/2 pulses were 18.5 µs and

19.6 µs at a power level of 3 dB for 7Li and 19F, respectively. The NMR parameters used

were ∆ = 40 ms, δ = 10 ms. These values were used as they have been proven to work

with this type of measurement elsewhere [37].

2.3. Transverse Relaxation Times

The transverse relaxation times were measured on a Bruker 400 MHz AVANCE II

Ultrashield NMR spectrometer for the 7Li 19F measurements and a 50 MHz Maran bench

top NMR spectrometer for the 1H measurements. The π/2 pulses were set as 18.5 µs

and 19.6 µs at a power level of 3 dB for 7Li and 19F, respectively. The bench top NMR

spectrometer was only capable of measuring using the 1H resonant frequency, the pulse

duration was set as 3.5 µs.

Both spectrometers used 10 mm diameter glass tubes. Due to the viscous nature

of the resulting polymer gel electrolytes, the samples were placed inside the glass tubes
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while in the molten state (above 433K). The gels were created and sealed inside the tube

while inside the oxygen free glove box, this was to ensure no moisture or impurities were

introduced to the sample.

The transverse relaxation times (T2) were measured using the Carr-Purcell-Meiboom-

Gill (CPMG) pulse sequence [38] on both NMR spectrometers. The CPMG sequence is

an extension of a simple Hahn echo sequence [39]. This pulse sequence involves applying a

π/2 excitation pulse, after time τ the spins will have lost coherence and can be recovered

using a spin echo. The echo pulse (π) is applied after time τ , then after another τ interval

the spins will be realigned causing a spin echo. The CPMG sequence only records every

second spin echo, this is to reduce the effect of an imperfect pulse sequence. The CPMG

pulse sequence takes the form;
π

2
− [τ − π − τ ]n (2)

where π/2 and π refers to the 90o and 180o pulses, respectively, τ is an arbitrary time

and n is an integer that must be even for the CPMG pulse sequence.

The sequence was iterated with varying values of τ , the decay of the intensity as a

function of time takes the form;

Mxy(t) = M0exp

[

−t

T2

]

(3)

where Mxy(t) is the magnetisation in the xy plane as a function of time, M0 is the

magnetisation in the xy plane immediately after the initial excitation pulse, t is the time

after the initial pulse and T2 is the transverse relaxation time. When measuring using

the Bruker AVANCE II the sequence records the number of spin echoes which have been

performed rather than the time taken. Therefore in order to use equation 3 the number

of spin echoes must be converted into time, the time taken can be determined in terms

of the pulse durations;

t = τπ/2 + necho(2τ + τπ) (4)

where τπ/2 and τπ are the durations of the π/2 and π pulses, respectively and necho is

the number of spin echoes which have been applied. The values of τ used had to be

determined for each sample, as if the value of τ is too long then the magnetisation will

fully decay before the measurement has been carried out.
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3. Results

3.1. NMR Self Diffusion

The self diffusion coefficients for the solvent, anion and cation were measured inde-

pendently using hydrogen (1H), lithium (7Li) and fluorine (19F) resonant frequencies,

respectively. The 1H resonant frequency was used to measure the diffusion of the PC

molecules, however will also detect the polymer; as will the 19F resonant frequency. Since

the polymer is not as mobile as the solvent and ion molecules, the polymer signal will

not affect the diffusion measurement. Therefore it can be assumed that the signal from

the 1H and 19F measurements are therefore attributed to the solvent and BF4 ions in

solution, respectively. It should be noted that although there are different formations

and clusters of the ions and solvent molecules within the solution, they will be indistin-

guishable with NMR unless the timescales of the diffusive species are very different, the

values obtained are therefore an ensemble average.

It has been previously concluded via T1ρ in research carried out at the University of

Leeds that there are several distinct phases within the PVDF polymer gel electrolytes,

including; a crystalline lamellae polymer phase, an inter-lamellae polymer phase, a solv-

ated amorphous polymer phase and a pure liquid electrolyte phase [27]. It is important

to understand where the ions are located in the structure, as this will directly affect the

ionic conductivity of the gels.

Figure 1 displays the diffusion intensity decay curve as a function of gradient strength

(G) for 0% (liquid electrolyte), 20% and 30% PVDF/ PC/ LiBF4 (1.0M) polymer gel

electrolytes at 293 K. An interesting feature of the lithium diffusion measurements for

the gels was that the data could not be fitted with a single exponential in the form of

equation 1, suggesting that the decay in the intensity was caused by multiple distinct

diffusive species. Two diffusive regions has been previously reported by this group for

PVDF based gels[18] and also elsewhere using PVDF-HFP as the host polymer [17].

The data displayed in figure 1 was fitted with equation 3 (dashed line) which was

insufficient to fit the data for the polymer gel electrolytes. All of the data in figure 1 was

also fitted with an additional exponential term (solid line) in series of the form;

I = I1 exp

(

−D1 (2πγδG)2
(

∆−
δ

3

))

+ I2 exp

(

−D2 (2πγδG)2
(

∆−
δ

3

))

(5)
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Figure 1: Intensity decay profile for 7Li NMR self diffusion measurements for 0% (liquid electrolyte),

20% and 30% PVDF/ PC/ LiBF4 (1.0 M) polymer gel electrolytes at 293 K. The data in each case has

been fitted with equation 1 (dashed line) and 5 (solid line), which represents a single and two diffusive

species, respectively.
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Diffusion (x10-10 m2 s-1) Intensity (%)

PVDF wt. D1 D2 Dliquid I1 I2

20 0.27 0.67 0.86 28 72

30 0.17 0.66 0.86 37 63

Table 1: 7Li diffusion constant fitting parameters for 20% and 30% PVDF/ PC/ LiBF4 polymer gel

electrolytes shown in figure 1.

where I1 and I2 are the intensities of the fitting and D1 and D2 are the diffusion constants

of the two diffusive species. In figure 1 it can be noted that for the liquid electrolyte data

the single exponential (equation 1) and double exponential (equation 5) perfectly overlap

suggesting a single diffusive species. As previously mentioned the liquid electrolyte will

contain different arrangements of the lithium ion, i.e. lithium solvated by PC molecules

and lithium ions associated with BF4 anions. Therefore the single diffusion coefficient

obtained for the liquid here is an ensemble average over all arrangements. The single

exponential shown in figure 1 is clearly insufficient for the gels. However, the introduction

of a second exponential term (solid line) greatly increased the fit. Unlike in the liquid

electrolytes, the lithium ions in the polymer gel electrolytes seem to be located within

two distinct environments.

All of the fitting parameters from figure 1 are summarised in table 1. The diffusion

constants obtained from figure 1 for the 20% PVDF/ PC/ LiBF4 (1.0M) were 0.27 and

0.67 (10-10 m2 s-1) with corresponding intensity values of 28% and 72%, respectively. The

faster diffusing species is also the more dominant signal for the intensity decay. Since the

value of the slower diffusive species is of the same order of magnitude the signals likely

originate from two different phases, both with relatively low viscosity. Both of these

phases are relatively mobile and therefore suggests that the faster of the two phases is

linked with the pure liquid electrolyte phase and the slower of the two is the solvated

amorphous phase [27]. Magistris et al [17] observed two possible phases, which they

attributed to the liquid and solvated amorphous polymer phase within their polymer

gel electrolytes based on PVDF-HFP. The diffusion values for the 30% PVDF/ PC/

LiBF4 (1.0M) polymer gel electrolyte from figure 1 were 0.17 and 0.66 (10-10 m2 s-1)

with corresponding intensity values of 37% and 63%, respectively.
9
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Figure 2: Intensity decay profile for 1H NMR self diffusion measurements for 20% and 30% PVDF/ PC/

LiBF4 (0.5 M) polymer gel electrolytes at 303 K. The data in each case has been fitted with equation 1

(dashed line) and 5 (solid line), which represents a single and two diffusive species, respectively.

With the introduction of more polymer the intensity of the slower phase has increased

from 28% up to 37%, which is reasonable if the slower phase is indeed the solvated polymer

phase, as this would cause an increase the amount polymer in the system. The faster

diffusion (liquid electrolyte phase) value for the two gels were very similar, suggesting

that the viscosity liquid electrolyte phase remains approximately constant, however the

proportion of the liquid phase has been reduced.

Figure 2 shows the intensity decay curve for the diffusion of 20% and 30% PVDF/ PC/

LiBF4 using the 1H resonant frequency at 303 K, the fitting parameters are summarised

in table 2. As previously stated, since the diffusion of the solvent molecules is orders of

magnitude greater than the gyration of the polymer, a contribution from the polymer

will not be observed. The hydrogen measurements have also been fitted with equations 1

and 5, to represent a single (dashed line) and two exponential fit (solid line), respectively.

Much like the lithium measurements shown in figure 1, it can be noted that the hydrogen

decay curve also requires a second exponential term. The diffusion values obtained from
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Diffusion (x10-10 m2 s-1) Intensity (%)

PVDF wt.% D1 D2 Dliquid I1 I2

20 0.64 2.59 4.10 13 87

30 0.83 2.55 4.10 31 69

Table 2: 1H diffusion constant fitting parameters for 20% and 30% PVDF/ PC/ LiBF4 (0.5M) polymer

gel electrolytes shown in figure 2.

figure 2 for the 20% PVDF gel are 0.64 and 2.59 (10-10 m2 s-1) with corresponding

intensity values of 13% and 87%, respectively. The diffusion values obtained for the

30% PVDF gel were 0.83 and 2.55 (10-10 m2 s-1) with corresponding intensity values

of 31% and 69%, respectively. As with the lithium measurements, the introduction of

more polymer into the system increased the intensity of the slower (solvated amorphous

PVDF) phase. The value of the diffusion for the liquid phase are very similar in each gel

suggesting again that the amount of polymer does not effect the viscosity of the solution

but rather the contribution of each phase.

Unlike the lithium measurements, the two phases determined via the diffusion con-

stant measurements were not as easily detected for the 20% PVDF gels, as they were in

the 30% PVDF gel electrolytes. It is likely that there is solvent within the two phases

of the gels since there are clearly lithium ions present in both phases. The difficulty in

distinguishing the solvent molecules in the two phases within the gel likely arises either

due to lower concentration of solvent molecules located in the secondary phase due to

the lower polymer concentration or that the diffusion constant values of the two phases

are similar. By observing the intensity of the solvated amorphous phase of the lithium

and hydrogen measurements, it can be noted that the solvated amorphous phase con-

tained a greater ratio of lithium: solvent molecules than in the liquid phase, however it

is presumed that the lithium ions are still fully solvated in the amorphous phase.

The fluorine (19F) diffusion intensity decay curve can be seen in figure 3 for the liquid

electrolyte and 30% PVDF/ PC/ LiBF4 (1.0M) at 303 K. Unlike the other two nuclei

investigated here, the 19F measurements did not display two clear distinct phases. The

inset of figure 3 is present to highlight that the two fitting procedures do not perfectly

overlap and there is therefore some indication that the BF4 anions are present in both
11
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Figure 3: Intensity decay profile for 19F NMR self diffusion measurements for 0% (liquid electrolyte)

and 30% PVDF/ PC/ LiBF4 (1.0 M) polymer gel electrolytes at 303 K. The data in each case has

been fitted with equation 1 (dashed line) and 5 (solid line), which represents a single and two diffusive

species, respectively. Inset shows high gradient strengths to highlight deviance between the two fitting

procedures.
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phases, however it is difficult to accurately fit the data. It is reasonable to assume that

if there are solvent molecules and lithium ions present in the solvated amorphous phase,

then there are likely anions also present. In a previous publication it has been shown

that in the liquid electrolytes the lithium ions are the largest entity, followed by the

solvent molecules, with the smallest entity being the BF4 anion [40]. The detection of

a second phase via diffusion measurements relies on there being a significant difference

in value between the two phases, making them distinguishable. If the viscosity of the

two phases were constant then as the size of the molecules decrease the diffusion of the

two phases would converge, making them indistinguishable via NMR diffusion measure-

ments. Therefore the 7Li measurements would display the biggest difference between the

two phases and the 19F would be the most indistinguishable. Also as the polymer con-

centration is increased the proportion of the solvated amorphous PVDF would increase,

which would also affect the ability to detect location of ions in two phases. This would

explain the presence of a secondary phase located in all of the 1H 30% PVDF gels but

only some of the 1H 20% PVDF gel measurements.

The diffusion constants obtained for the 19F NMR measurement on the 30% PVDF

gel were 0.39 and 1.17 (10-10 m2 s-1) with corresponding intensity values of 6% and 94%,

respectively. Therefore the intensity from the solvated amorphous polymer phase is not

very significant and it therefore proves difficult to accurately fit the data for the second

phase. Therefore for the purpose of this publication it will be assumed that the BF4

anions are located in only the liquid electrolyte phase.

It has previously been shown that the size order of the constituents in the liquid elec-

trolytes from NMR diffusion measurements is 19F < 1H < 7Li. This has been attributed

to a large solvation shell around the lithium ions, which on average is around four PC

molecules on per lithium cation [41], the fluorine ions were found to be unsolvated by the

solvent molecules [42]. In order for two diffusive species to be distinguished via NMR

diffusion measurements the viscosity of the two systems must be distinct, otherwise an

average of the two phases will be observed.

Table 3 shows the 1H NMR diffusion constants for the liquid electrolyte and 20% and

30% PVDF/ PC/ LiBF4 (0.3M and 1.0M) polymer gel electrolytes. As discussed above

the 1H measurements were observed to exhibit two distinct phases for the 30% PVDF

13



Diffusion (x10-10 m2 s-1)

0.3M 1.0M

Temp. (K) Liquid 20% 30% 30% Liquid 20% 30% 30%

Slow Fast Slow Fast

303 5.00 3.09 1.08 3.15 2.79 1.67 0.62 1.74

313 6.18 3.87 1.50 4.05 3.54 2.18 0.70 2.12

323 7.43 4.68 2.10 5.26 4.46 2.73 1.23 3.02

333 8.86 5.48 2.52 6.12 5.32 3.31 1.66 3.94

343 — 6.43 3.00 7.02 6.56 3.86 2.01 4.48

Table 3: 1H diffusion constants for liquid, 20% and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes

with 0.3M and 1.0M LiBF4 salt concentrations.

gels but only a single phase in the 20% PVDF gels, therefore there is only one diffusion

constant for the 20% PVDF gels.

Firstly observing the 20% PVDF single fit data, it can be readily observed that the

liquid electrolyte diffusion constants are consistently larger than the corresponding gels at

all temperatures. If the solvent molecules were contained only in a pure liquid electrolyte

phase, then the liquid and gel diffusion constants should be comparable. The deviance

here can be described by two likely factors, firstly, the value for the 20% PVDF gels are an

average of solvent molecules found in both the liquid phase and the solvated amorphous

PVDF phase therefore reducing the absolute value. Secondly, there is a decrease in free

volume of the liquid when inside the polymer gel electrolytes, which would likely cause

some restricted diffusion in smaller channels which would yield a lower diffusion constant.

It is likely due to the first factor here, however all of the gel data was fitted with two

diffusion constants, however, most of the 20% 1H data was fitted well with a single fit,

and the introduction of the second exponential did not improve the fit to the data and

therefore was not accurate to carry out. This effect is most likely due to there being a

lower concentration of solvent molecules located in the secondary phase or similar values

of the diffusion constants in both phases.

The 30% PVDF slow diffusive phase is attributed to the solvated amorphous poly-

mer phase. Since this phase is likely to have a distinguishable viscosity difference when

14



compared to the liquid electrolyte phase, it would be expected to have a lower diffusion

constant. It can be seen in table 3 that the solvated amorphous PVDF phase (30% slow)

is consistently lower than the liquid phase (30% fast). The slower diffusion constant is

usually no less than 25% of the corresponding faster phase, this strengthens the hypo-

thesis that the slower of the two diffusion phases is indeed the solvated amorphous phase,

as the molecules would still be relatively mobile.

A direct ratio of the solvated amorphous PVDF (DSlow) and liquid phase (DFast)

diffusion constants in table 3 for the 0.3M LiBF4 sample are given as 0.343 and 0.427

at 303 K and 343 K, respectively. This result suggests that the diffusion of the 1H

containing molecules in the slower phase is increasing faster with temperature than the

liquid electrolyte phase. The Stokes-Einstein equation is given by;

D =
kBT

6πηrξ
(6)

where kB is the Boltzmann constant, T is the absolute temperature of the system, η

is the viscosity, r is the radius of the diffusing species and ξ is a factor which corrects

for deviations away from a perfect spherical model. Therefore the ratio of DSlow/DFast

would take the form;
DSlow

DFast
=

ηFastrFastξFast

ηSlowrSlowξSlow
(7)

assuming that the parameter ξ is independent of temperature. If we also assume that

the average radius of the diffusing species in each phase has a negligible change with

temperature then the increase in the ratio must be due to a change in relative viscosity.

This result therefore suggests that at higher temperatures the two mobile phases converge

in terms of the viscosity. This conclusion would also rely on the structure of the gel to

remain constant over the measured temperature range, however since the gel is far away

from the melting temperature this is a reasonable assumption.

Table 4 displays the 7Li NMR diffusion constants for both liquid electrolyte and 20%

and 30% PVDF/ PC/ LiBF4 (0.3M and 1.0M) polymer gel electrolytes. Similar to the 1H

results, the 7Li NMR diffusion measurements exhibit two distinct environments within

the polymer gel electrolytes. These have been also labeled "‘slow"’ and "‘fast"’ which

correspond to the solvated amorphous PVDF phase and the liquid electrolyte phase,

respectively. The diffusion of the liquid phase of the gels in the 20% and 30% PVDF gels
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Diffusion (x10-10 m2 s-1)

0.3M 1.0M

Temp(K) Liquid 20% 20% 30% 30% Liquid 20% 20% 30% 30%

Slow Fast Slow Fast Slow Fast Slow Fast

283 1.22 — — 0.25 1.00 0.61 0.24 0.55 0.11 0.46

293 1.64 — — 0.35 1.33 0.86 0.29 0.63 0.23 0.91

303 2.17 0.69 1.94 0.48 1.82 1.19 0.41 0.88 0.27 0.94

313 2.75 0.97 2.45 0.56 2.06 1.56 0.53 1.13 0.29 1.02

323 3.35 1.18 3.13 0.72 2.42 1.97 0.59 1.35 0.35 1.25

333 4.06 1.52 3.65 0.89 2.96 2.44 0.81 1.64 0.55 1.74

343 5.63 1.75 4.14 1.06 3.23 2.96 0.93 1.92 0.65 2.03

Table 4: 7Li diffusion constants for liquid, 20% and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes

with 0.3M and 1.0M LiBF4 salt concentrations.

are comparable suggesting that in each case the ions in the liquid phase are acting in the

same manner regardless of polymer concentration. Taking for example the PVDF/ PC/

LiBF4 (1.0M) sample at 313 K, the diffusion values are 1.56, 1.13 and 1.02 (10-10 m2 s-1)

for the liquid electrolyte, 20% PVDF gel liquid phase and 30% PVDF gel liquid phase,

respectively. Therefore with the initial addition of the polymer there is a decrease in the

diffusion which is attributed to the decrease in free volume for the ions and molecules to

translate, however the decrease in diffusion of the liquid phase with a further increase in

polymer is much less significant. This trend holds for all of the data displayed in table

4 and supports the theory that the faster diffusing phase corresponds to a pure liquid

electrolyte phase.

Figure 4 shows the ratio of the solvated amorphous and liquid phase diffusion (DSlow/

DFast) for the 20% and 30% PVDF/ PC/ LiBF4 (1.0 M) polymer gel electrolytes. From

figure 4 it can readily observed that the ratio for both the 1H and 7Li measurements

increases with increasing temperature. The sizes of the ions and solvent molecules are

likely comparable in both phases. It is possible that the lithium cations are less solvated in

the secondary solvated amorphous phase, which would change their radius and diffusion

constant, however here it is assumed that the lithium-solvent molecules are stable and
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Figure 4: Ratio of diffusion constants for solvated amorphous PVDF phase (DSlow) and liquid phase

(DFast) DSlow/DFast for 1H and 7Li NMR self diffusion measurements for 20% and 30% PVDF/ PC/

LiBF4 (1.0 M) polymer gel electrolytes. The data in each case has been fitted with a linear fit to highlight

the positive gradient.

have comparable radii. This suggests that the viscosity of the solvated amorphous phase

is converging with the pure liquid phase with increasing temperature.

Table 5 shows the 19F NMR diffusion measurements for the liquid electrolytes and

20% and 30% PVDF/ PC/ LiBF4 (0.3M, 0.7M and 1.0M) polymer gel electrolytes. From

previous work carried out on the liquid electrolytes it was found that the BF4 anions are

not solvated by the solvent molecules, this results in their radius being relatively small

[42]. This could be one explanation for the lack of presence in the solvated amorphous

phase. Therefore, it is highly likely that there are some anions located in the solvated

amorphous phase, which can not be accurately fitted due to the apparent similarity

between the viscosities of the two phases. The results in table 5 are an average of

all species within the polymer gel electrolyte. The liquid electrolyte diffusion constant

measurements are again consistently higher than the corresponding gels, this is attributed

to the anions in the solvated amorphous phase, which would be lower than the liquid

phase reducing the overall value. The deviation between the liquid electrolyte data and
17



Diffusion (x10-10 m2 s-1)

0.3M 0.7M 1.0M

Temp. (K) Liquid 20% 30% Liquid 20% 30% Liquid 20% 30%

283 2.18 1.92 1.80 1.26 1.14 0.98 0.86 0.65 0.59

293 2.87 2.54 2.22 1.71 1.47 1.31 1.19 0.86 0.86

303 3.64 3.11 3.02 2.25 1.79 1.65 1.60 1.11 1.08

313 4.52 3.68 3.55 2.84 2.14 2.04 2.07 1.37 1.41

323 5.59 4.42 4.17 3.56 2.51 2.34 2.55 1.66 1.67

333 7.02 5.01 4.61 4.71 2.89 2.67 3.25 2.01 1.87

343 8.12 5.64 4.98 5.46 3.23 2.96 3.94 2.36 2.12

Table 5: 19F diffusion constants for liquid, 20% and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes

with 0.3M, 0.7M and 1.0M LiBF4 salt concentrations.

the liquid electrolyte gel phase increases at higher temperatures, which might suggest

the presence of some restricted diffusion.

In previous studies the liquid electrolyte counterparts were analysed with Arrhenius

plots in order to determine the temperature dependence of the diffusion measurements

[40]. The same method will be applied here in order to compare the activation energies

obtained for the polymer gel electrolytes. Figure 5 shows the 1H, 7Li and 19F Arrhenius

plot for the 20% PVDF/ PC/ LiBF4 polymer gel electrolytes. The Arrhenius plot con-

sists of taking the natural logarithm of diffusion and plotting it against 1000/T . If the

resulting trend is linear then the system is said to be displaying Arrhenius type temper-

ature dependence, otherwise is considered non-Arrhenius and usually described by the

Vogel-Fulcher-Tammann (VFT) equation [43, 44, 45]. The Arrhenius type behaviour is

described by an equation of the form;

D = D0exp

[

−
ED

RT

]

(8)

where ED is the activation energy of diffusion, D0 is the diffusion at infinite temperature,

R is the universal gas constant and T is the absolute temperature. The VFT equation

is described in the form;

D = D0exp

[

−
E′

D

R(T − T0)

]

(9)
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Figure 5: Arrhenius plot for 1H, 7Li and 19F NMR self diffusion measurements for 20% PVDF/ PC/

LiBF4 (0.5 M) polymer gel electrolytes. ’Slow’ and ’Fast’ phases refer to the solvated amorphous PVDF

and liquid phases, respectively.

where T0 is the ideal glass transition temperature and E′

D is a temperature dependent

energy term distinct from the activation energy in equation 8. VTF type dependence

usually describes systems that are approaching their glass transition temperatures, it has

been shown in previous studies that PC/ LiBF4 liquid electrolytes exhibit Arrhenius type

temperature dependence over the temperature range used in this study, however in the

same paper it was shown that for the conductivity measurements below 273 K the trend

was VTF [40]. Therefore for the data in this paper it is a reasonable to assume that the

liquid phase of the polymer gel electrolytes should exhibit Arrhenius type temperature

dependence.

Figure 5 shows an Arrhenius plot for 1H, 7Li and 19F NMR self diffusion measurements

for 20% PVDF/ PC/ LiBF4 (1.0 M) polymer gel electrolytes. It can be readily observed

from figure 5 that all of the data can be fitted with linear lines, suggesting that all of the

measurements have Arrhenius type temperature dependence in this temperature range.

The activation energies obtained from figure 5 are (14.1±0.4) kJ mol-1, (24.7±0.9) kJ
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mol-1, (17.8±0.4) kJ mol-1 and (12.8±0.8) kJ mol-1 for the 1H, 7Li slow, 7Li fast and 19F,

respectively. A high activation energy means that the entity is requiring more energy

to translate and therefore is either in a more viscous medium or has a larger radius.

From the four values taken from figure 5 it can be readily noted that the fluorinated BF4

anions have the lowest activation energy. It is fair to assume that the 1H, 7Li fast and

19F values are all within the same medium and therefore share a common bulk viscosity

since they are all located in the liquid phase. Therefore from the activation energies a

size order can be determined, to be 19F<1H<7Li. This size order was observed in the

PC/ LiBF4 liquid electrolytes and was attributed to the the lithium ions having a large

solvation shell of around 3-4 solvent molecules on average [41, 40]. Since the diffusion

measured is an average of all species in the liquid phase the hydrogen measurement has

a smaller radius than the lithium ions because although it is part of the solvation shell,

there are also lots of free solvent molecules, effectively reducing the average radius. It has

been seen in previous work that the fluorinated BF4 anion does not get solvated by the

PC molecules and therefore usually has a radius of around 0.229 nm [46]. However the

BF4 anions can associate with the lithium ions in favour if the solvent molecules which

will increase their radius by a small amount.

It is possible to compare the two different lithium ion phases in the polymer gel

electrolyte by considering the relevant activation energies. The values as quoted above

from figure 5 are (14.1±0.4) kJ mol-1 and (24.7±0.9) kJ mol-1 for the liquid electrolyte

phase and the solvated amorphous phases, respectively. The activation energy of the

solvated amorphous phase is significantly higher than the liquid electrolyte phase. Since

in each of these phases it is likely that the same species are contained (i.e. LiBF4 ion pairs

and various solvated lithium ions), the average radius would be comparable. Therefore

this significant difference in activation energies is likely due to a difference in viscosity

between the two phases. The same conclusion was reached from observing the ratio of

the diffusion from the solvated amorphous and liquid electrolyte phases (figure 4).

Figure 6 shows the Arrhenius plot for the 30% PVDF/ PC/ LiBF4 (0.5M) polymer

gel electrolytes for the 1H, 7Li and 19F nuclei. As with the 20% PVDF gels all of the

plots show a linear relationship over the temperature range measured (293-343 K), which

allows for the determination of an activation energy. The energies obtained from figure
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Figure 6: Arrhenius plot for 1H, 7Li and 19F NMR self diffusion measurements for 30% PVDF/ PC/

LiBF4 (0.5 M) polymer gel electrolytes. ’Slow’ and ’Fast’ phases refer to the solvated amorphous PVDF

and liquid phases, respectively.
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6 are (22±1) kJ mol-1, (16±1) kJ mol-1, (18.8±0.9) kJ mol-1, (15.1±0.6) kJ mol-1 and

(13.9±0.7) kJ mol-1 for the 1H slow, 1H fast, 7Li slow, 7Li fast and 19F, respectively.

Firstly looking at the liquid electrolyte phases it can be observed again that the size

order is 19F<1H≈
7Li, this time the hydrogen activation energy is slightly higher than the

lithium one suggesting that it may be larger. It should also be noted that the two values

for the solvated amorphous phases are again significantly larger than the corresponding

liquid counterpart, suggesting that there is a noticeable viscosity difference between the

two phases. It is clear that there are ions present in both the solvated amorphous

PVDF and liquid electrolyte phases, however, it is important to understand whether the

conductivity arises from both phases or just the liquid electrolyte phase. This will be

addressed in a subsequent paper, which addresses the conductivity of the polymer gel

electrolytes and comparing them to the diffusion measurements presented here[28]. In

this subsequent paper it is concluded that there is evidence to suggest that the ionic

conductivity arises from not only the pure liquid phase but also the solvated amorphous

phase [28].

When fitting the diffusion decay curves with equation 5 the intensity values were

determined which gives an indication of the relevant contribution from each phase. For

both the 7Li and 1H measurements the intensity values were observed to not have a

trend with either temperature or salt concentration. Therefore it was possible to take

an average over all these measurements to obtain a universal value for each polymer

concentration. The average value for the 7Li 20% PVDF/ PC/ LiBF4 measurements is

(0.66±0.01), which corresponds to the liquid electrolyte (fast) phase representing 66% of

the signal with the remaining 34% being from the solvated amorphous PVDF phase; the

intensity values have been normalised to add to one so that they represent a percent-

age. The intensity value for the 7Li 30% PVDF/ PC/ LiBF4 polymer gel measurements

is (0.61±0.01), corresponding to 61% liquid contribution and 39% solvated amorphous

PVDF phase. The increase in polymer concentration has caused the intensity values

to shift resulting in a stronger contribution from the solvated amorphous PVDF phase.

This result is reasonable as the increase in polymer would likely cause more solvated

amorphous phase locations within the polymer gel electrolytes.

The intensity values were also determined for the 1H measurements of the 30% PVDF/
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T2 (ms) Intensity (%)

T 1

1
T 2

1
T 3

1
I1 I2 I3

1 fit 297 — — 100 — —

2 fit 399 76 — 59 41 —

3 fit 419 107 22 52 36 12.7

Table 6: 1H transverse relaxation time (T2) fitting parameters for 20% PVDF/ PC/ LiBF4 (0.5M)

polymer gel electrolytes shown in figure 7.

PC/ LiBF4 polymer gel electrolytes. The intensity for the liquid electrolyte phase is

(0.59±0.01), which corresponds to 59% of the signal arising from the liquid electrolyte

phase and the remaining 41% from the solvated amorphous PVDF phase. This value is

comparable to the lithium value for the 30% PVDF polymer gel electrolyte, suggesting

there is an even distribution of the lithium and hydrogen containing species in the two

phases. However, this is clearly not the case for the fluorine NMR measurements, as

fitting a second exponential term to the 19F data was difficult.

4. NMR Relaxation Times

Transverse relaxation measurements have been taken for the 1H and 7Li nuclei for

the 20% and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes. Multiple environments

have been observed from transverse relaxation measurements for the 7Li nuclei [17] and

from T1ρ measurements for the 1H nuclei from our previous research at the University

of Leeds[27]. It was concluded that for the 1H measurements that there are at least

four phases; a crystalline PVDF lamellae phase, inter-lamellae amorphous PVDF phase,

solvated amorphous PVDF phase and a liquid electrolyte phase [27]. Figure 7 shows an

example 1H T2 decay curve for the 20% PVDF/ PC/ LiBF4 polymer gel electrolyte. The

data has been fitted initially with equation 3 (green line); it can readily observed that

the fit is insufficient to describe the data.

Since the data in figure 7 could not be fitted with equation 3 subsequent exponential

terms have been added in series to describe the other phases present in the form of;

Mxy(t) = M1

0
exp

[

−t

T 1

2

]

+M2

0
exp

[

−t

T 2

2

]

(10)
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Figure 7: T2 decay curve for 1H NMR relaxation time measurements for 20% PVDF/ PC/ LiBF4 (0.5M)

polymer gel electrolytes at 303 K. The ’1 Fit’, ’2 Fit’ and ’3 Fit’ lines have been fitted with equations

3, 10 and 11, respectively. The inset shows the data at low times in order to differentiate between the

three fitting procedures.
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and

Mxy(t) = M1

0
exp

[

−t

T 1

2

]

+M2

0
exp

[

−t

T 2

2

]

+M3

0
exp

[

−t

T 3

2

]

(11)

where T 1

2
, T 2

2
and T 3

2
are the transverse relaxation times of each phase, M1

0
, M2

0
and M3

0

represent the relative contribution from each phase.

The data in figure 7 has been fitted with equations 10 (blue line) and 11 (red line),

it can be seen that with the addition of a second exponential term the fit to the data is

greatly enhanced, however, at very low times the fit deviates from the data. The addition

of the third exponential term accounts for this and likely represents another phase within

the polymer gel electrolytes. The inset of figure 7 shows the data at short times in order

to highlight the difference between the three fitted lines. The fitting parameters from

figure 7 are summarised in table 6. The T2 values obtained from figure 7 are (297±2)

ms for single exponential fit, (399±2) ms and (76±1) ms for the double exponential fit

and (419±2) ms, (107±3) ms and (22±2) ms for the three exponential term fit. It was

not possible to fit anymore exponential terms to the data and therefore the gels in this

instance are considered to have three distinct phases. It is likely that there are four phases

present as listed above, however the crystalline PVDF T2 value is known to be around 20

µs [47], which is significantly lower than the lowest T2 measured here. Therefore the three

phases detected are assumed to be the inter-lamellae amorphous PVDF phase, solvated

amorphous phase and liquid electrolyte phases. The intensity of the fits from figure

7 were determined to be 12.7%, 35.7% and 51.6%, which corresponds to contributions

from the inter-lamellae amorphous PVDF phase, solvated amorphous phase and liquid

electrolytes phase, respectively. As indicated by the diffusion measurements, the most

significant phase is the pure liquid electrolyte phase.

Figure 8 shows a 1H T2 decay curve for a 30% PVDF/ PC/ LiBF4 polymer gel

electrolyte, the fitting parameters for the three different fits have been summarised in

table 7. The data has again been fitted with equations 3, 10 and 11 to identify the

number of phases present. The T2 values obtained from figure 8 are (173±2) ms for

single exponential fit and (255±1) ms and (41±1) ms for the double exponential fit. The

T2 values obtained from equation 11 were determined as (263±2) ms, (49±1) ms and

(5.1±0.5) ms representing the liquid electrolyte phase, solvated amorphous PVDF phase

and inter-lamellae amorphous PVDF phase, respectively. As with the 20% PVDF gels
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Figure 8: T2 decay curve for 1H NMR relaxation time measurements for 30% PVDF/ PC/ LiBF4 (0.5M)

polymer gel electrolytes at 303 K. The ’1 Fit’, ’2 Fit’ and ’3 Fit’ lines have been fitted with equations

3, 10 and 11, respectively. The inset shows the data at low times in order to differentiate between the

three fitting procedures.
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T2 (ms) Intensity (%)

T 1

1
T 2

1
T 3

1
I1 I2 I3

1 fit 173 — — 100 — —

2 fit 255 41 — 51 49 —

3 fit 263 49 5.1 44 42 14

Table 7: 1H transverse relaxation time (T2) fitting parameters for 30% PVDF/ PC/ LiBF4 (0.5M)

polymer gel electrolytes shown in figure 8.

only three phases were detected, this was again attributed to very small timescale of

the crystalline PVDF. The intensities for these fits were determined as 44%, 42% and

14% for the liquid electrolyte, solvated amorphous PVDF and inter-lamellae amorphous

PVDF phases, respectively. Therefore with the addition of more polymer to the system

the intensities of the two polymer containing phases has increased and the liquid region

has decreased in volume.

The average intensities for the 1H diffusion measurements for the 30% PVDF gels were

reported above to be 59% and 41% for the liquid and solvated amorphous PVDF phases,

respectively. The inter-lamellae amorphous PVDF phase was not present in the diffusion

measurements because the diffusion constants are significantly smaller than for the mobile

phases so were difficult to detect at these timescales. Therefore if the inter-lamellae

amorphous PVDF phase T2 measurements are ignored the contributions for the two

remaining phases become 51%. and 49% for the liquid and solvated amorphous PVDF

phase, respectively; therefore the values obtained from the diffusion and T2 measurements

are comparable.

Figure 9 displays a 7Li T2 decay curve for 20% PVDF/ PC/ LiBF4 (1.0M) at 303 K.

Unlike the 1H measurements displayed in figures 7 and 8 the lithium data only required

two exponential terms to accurately fit the data. The inset of figure 9 has been included to

highlight the deviation of the two fits. It can be readily noted that the single exponential

term is insufficient, which indicates that there are two distinct phases containing lithium

ions. This correlates with the diffusion measurements, which also exhibited two distinct

phases. The fitting parameters for the two parameter fit have been summarised in table

8. The T2 values obtained from figure 9 are (807±15) ms and (379±10) ms for the liquid
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Figure 9: T2 decay curve for 7Li NMR relaxation time measurements for 20% PVDF/ PC/ LiBF4 (1.0M)

polymer gel electrolytes at 303 K. The ’1 Fit’ and ’2 Fit’ lines have been fitted with equations 3 and

10, respectively. The inset shows the data at low times in order to differentiate between the two fitting

procedures.
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PVDF Conc. (%wt.) T2 (ms) Intensity (%)

T 1

1
T 2

1
I1 I2

20 807 379 58 42

30 837 255 64 36

Table 8: 7Li transverse relaxation time (T2) fitting parameters for 20% (from figure 9) and 30% (from

figure 10) PVDF/ PC/ LiBF4 (0.5M) polymer gel electrolytes.

electrolyte and solvated amorphous PVDF phases, respectively. The liquid electrolyte

phase contributed 58% to the total decay, determined from the fitting of equation 10.

The contribution from the liquid electrolyte phase for the diffusion measurements was

given as 66% and is therefore comparable to the T2 result.

Figure 10 displays a 7Li T2 decay curve for 30% PVDF/ PC/ LiBF4 (1.0M) at 303

K. As with the 20% PVDF gel measurements, the 30% gels are well described with the

introduction of the second exponential term. The values of T2 obtained from figure 10

are (837±16) ms and (255±12) ms with relative intensities 64% and 36% for the liquid

electrolyte and solvated amorphous PVDF phases, respectively. Therefore the liquid

accounts for 64% of the total decay, this is comparable to the 61% contribution from the

liquid phase determined from the diffusion measurements.

The lithium measurements give a strong indication that there are lithium ions present

in two distinct phases, which have been attributed to the liquid electrolyte and solvated

amorphous PVDF phases. However, an issue not addressed in this publication is the con-

ductivity contribution, and whether the lithium ions in the solvated amorphous polymer

phase contribute to the total conductivity or not. This will be addressed in a subsequent

paper which will focus on the conductivity results and comparing them to the diffusion

results presented in this publication[28], in which we conclude that there is a strong

indication that the lithium ions in both phases contribute to the overall conductivity.

5. Conclusions

In this publication NMR self diffusion measurements have been conducted for 20%

and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes using the 1H, 7Li and 19F nuclei.
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Figure 10: T2 decay curve for 7Li NMR relaxation time measurements for 30% PVDF/ PC/ LiBF4

(1.0M) polymer gel electrolytes at 303 K. The ’1 Fit’ and ’2 Fit’ lines have been fitted with equations

3 and 10, respectively. The inset shows the data at low times in order to differentiate between the two

fitting procedures.
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The 1H nucleus will detect the hydrogen on the solvent molecules and also the polymer

backbone, the 7Li nucleus will detect the lithium ions and the 19F nucleus will detect the

BF4 anion and fluorine on the PVDF backbone.

The diffusion measurements for the 1H and 7Li exhibit two distinct diffusive regions

within the polymer gel electrolyte, which have been attributed to the liquid electrolyte

phase and solvated amorphous phase of the gel. The 19F diffusion measurements showed

some indication of a second phase, however not strong enough to fit confidently. Therefore

for the duration of this publication it was assumed that the BF4 anions were located solely

in the liquid electrolyte phase.

The diffusion measurements were taken with varying temperature and salt concen-

tration. The diffusion constants were observed in general to decrease with increasing salt

concentration and increase with temperature, which was attributed to viscosity effects.

The order of the diffusion constants were 19F<1H≈
7Li, suggesting that this was also the

size order as all diffusing species have the same viscosity. This order was also observed

for liquid electrolyte measurements taken previously [40].

All diffusion measurements were observed to exhibit Arrhenius type temperature

behaviour. Therefore activation energies were determined for the three nuclei, for the

1H and 7Li measurements, both the liquid and solvated amorphous PVDF phase were

determined. The activation energies for the solvated amorphous phase were significantly

higher than for the corresponding liquid electrolyte phase, suggesting that the viscosity

of the solvated amorphous phase is significantly higher than the liquid phase. A ratio

of the solvated amorphous PVDF (DSlow) and liquid phase (DFast) diffusion constants

(DSlow/DFast) was found to increase with increasing temperature, indicating that the

viscosity of the two phases is converging at elevated temperatures.

Transverse relaxation (T2) measurements have been taken using the 1H and 7Li nuclei

for both 20% and 30% PVDF/ PC/ LiBF4 polymer gel electrolytes. The fitting of the 1H

T2 decay curve shows three distinct phases within the gels. These have been attributed

to the inter-lamellae amorphous PVDF, solvated amorphous PVDF phase and liquid

electrolyte phase. The crystalline PVDF phase, observed in T1ρ measurements previously

carried out at the University of Leeds [27] was not observed as it occurs on timescales

around 20 µs [47], which is significantly lower than the machines capability. The 7Li
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T2 decay curves show two distinct phases in the gels containing lithium ions which have

been attributed to the solvated amorphous PVDF and the liquid electrolyte phases.

The intensities from both the diffusion and T2 measurements are comparable, strongly

suggesting that there are lithium ions located in two phases in the polymer gel electro-

lytes. In a subsequent publication we will assess the likelihood that the ions within

the solvated amorphous phase contribute to the bulk conductivity of the sample by

comparing the diffusion constants measured in this publication with ionic conductivity

measurements of the polymer gel electrolytes[28].
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 Temperature and salt concentration study of PVDF/ PC/ LiBF4 polymer gel electrolytes. 

 Lithium ions were found to be located in two distinct phases in the gel structure. 

 Pulse field gradient diffusion and transverse relaxation measurements both confirm lithium 

ion location in two mobile liquid-like phases. 

 The two liquid-like phases are attributed to a liquid electrolyte and solvated amorphous 

PVDF phase with distinct viscosities. 

 Fluorinated BF4 anion gave less of an indication of presence in both phases. 
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