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Reconstruction of Coronary Arteries from X-ray Angiography: A Review
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aDepartment of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
bPhilips Research, Röntgenstraße 24-26, 22335 Hamburg, Germany

Abstract

Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its
2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease
and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary
arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several
aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography
has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we
review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We
mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries,
and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making
and interventional guidance, and highlight areas for future research.
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1. Introduction

Coronary artery disease (CAD), also known as coro-
nary heart disease (CHD), is a serious illness, which is
responsible for 1 of every 5 deaths in Europe (Nichols
et al., 2013) and 1 of every 6 deaths in US (Go et al.,
2014). In addition to the severe mortality rates, the direct
and indirect costs associated with CAD are major bur-
dens on healthcare systems (Nichols et al., 2013; Go et al.,
2014). Early diagnosis of CAD, effective prognostic mark-
ers of treatment outcome, and the availability of minimally
invasive treatment options for CAD have all motivated
steady progress in diagnostic and interventional imaging
modalities to quantify the anatomy and function of the
coronary arteries.

Current clinical practice for assessing the presence and
the extent of the CAD relies on medical imagery acquired
through various diagnostic (cardiac computed tomographic
angiography (CCTA) (Kachelriess et al., 2000; Shechter
et al., 2003b; Mark et al., 2010) and magnetic resonance
angiography (MRA) (Stuber and Weiss, 2007)) and in-
terventional (invasive X-ray coronary angiography (Sones
and Shirey, 1962; Klein and Garcia, 2009)) imaging mod-
alities. Other hybrid imaging modalities such as intravas-
cular ultrasound (IVUS), optical coherence tomography
(OCT) (Hetterich et al., 2010) can be used diagnostically,
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but require an intervention. Apart from their diagnostic
role, these imaging modalities also help clinicians to se-
lect between therapeutic options and plan interventional
procedures.

Invasive (catheter-based) X-ray coronary angiography
is one of the most commonly utilized method to assess
CAD and is still considered the gold standard in clinical
decision making and therapy guidance (Mark et al., 2010).
This imaging modality is based on the radiographic visu-
alisation of the coronary vessels with injection of a ra-
diopaque contrast material (Scanlon et al., 1999).

Although X-ray coronary angiography has drastically
evolved since its first introduction five decades ago, it is
known to be fundamentally limited in some aspects (Green
et al., 2004; Carroll et al., 2009). X-ray coronary angio-
graphy represents complex 3D/4D (3D+time) structure of
the contrast filled coronary arteries by 2D X-ray projec-
tions or silhouette images, which can be degraded by imag-
ing artifacts (Green et al., 2004). A considerable amount
of 3D/4D information of the coronary arteries is lost due
to the consequences of the projection operation. Specific-
ally, the cumulative effect of suboptimal projection angles,
vessel overlap, foreshortening, tortuosity and eccentricity
may all lead to underestimation of stenoses severity and
incorrect stent size selection (Green et al., 2004).

In order to obviate the fundamental limitation of X-
ray coronary angiography described above, a 3D/4D de-
scription of the coronary arterial tree may be reconstruc-
ted from the 2D projection images. This inverse problem
of reconstruction is known to be ill-posed and it entails
some additional challenges in the context of X-ray coro-
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nary angiography. These challenges include: intensity in-
homogeneities due to blood flow inside the arteries, overlap
of different structures (e.g. catheters, bones), and more
importantly respiratory and cardiac motions (Cardenes
et al., 2012). These challenges are addressed in different
manners depending on the type of X-ray coronary angio-
graphy.

Thanks to the advances in the C-arm based angio-
graphy systems in the cardiac catheterization laboratory
(cath-lab), various kinds of X-ray coronary angiography
exists, namely single plane (standard/conventional), bi-
plane, rotational and dual-axis rotational coronary angio-
graphy (DARCA). The diversity of the X-ray coronary
angiography strategies inevitably leads to the diversity
of the 3D/4D reconstruction algorithms, because different
strategies necessitate special considerations for the recon-
struction algorithms.

In this review, we focus on the 3D/4D reconstruction
of coronary arteries from invasive X-ray coronary angio-
graphy. The most recent reviews (Chen and Schäfer, 2009;
Schoonenberg et al., 2009a) about coronary artery recon-
struction provide a good overview of the subject but are
partial reviews of the topic. In this review, we follow the
taxonomy proposed by (Chen and Schäfer, 2009; Schoon-
enberg et al., 2009a), and divide the literature into two
main categories, dealing with model-based methods (mod-
elling) and tomographic reconstruction aspects. Model-
based methods try to find a binary representation of the
3D/4D structure of the coronary arteries (Chen and Schäfer,
2009). On the other hand, tomographic reconstruction
methods aim to reconstruct the 3D/4D volume of atten-
uation coefficients (Schoonenberg et al., 2009a). Specific-
ally, we distinguish between the tomographic reconstruc-
tion of high contrast arteries from rotational coronary angio-
graphy and low contrast cardiac reconstruction from C-
arm cone-beam CT (CBCT). In this review, we merely
focus on the papers about high contrast coronary artery
reconstruction.

The goal of this review is to identify the trends and
the developments in the area rather than explaining ap-
plication specific details. Moreover, we briefly aim to dis-
cuss the necessity of 3D/4D reconstruction and potential
impact of those reconstructions on the clinical decision
support systems and interventional planning. Compared
with the previous reviews, we provide a more comprehens-
ive technical overview of 3D/4D reconstruction from X-
ray coronary angiography, focusing on the recent develop-
ments in the model-based and tomographic reconstruction.
With respect to model-based reconstruction methods, we
cover multi-view reconstruction techniques and put a spe-
cial emphasis on 4D reconstruction and vascular lumen
reconstruction. In addition, we discuss the progress in
motion estimation and optimization techniques for tomo-
graphic reconstruction methods. We also discuss the meth-
ods on how to evaluate the performance of the reconstruc-
tions, and summarize available databases for validation
and comparison purposes.

This review is organized as follows. Section 2 provides
brief descriptions of the types of the C-arm based invasive
X-ray coronary angiography systems. Section 3 justifies
the necessity of 3D/4D reconstruction of coronary arter-
ial trees from X-ray coronary angiography and discusses
the potential uses in the diagnosis and the interventional
guidance. Section 4 details the model-based approaches
and tomographic reconstruction approaches to the 3D/4D
reconstruction of coronary arteries from X-ray coronary
angiography. A summary of these two sections are given
in Tables 1 - 3. Section 5 discusses the methods of valida-
tion and comparison, and finally, Section 6 concludes the
review.

2. Types of X-ray Coronary Angiography Systems

Invasive X-ray coronary angiography is the visualiz-
ation of coronary arteries using X-rays during catheter-
based injection of iodine contrast material (Scanlon et al.,
1999). X-ray coronary angiography essentially provides
anatomical information about the coronary arteries and
the morphology of the stenoses. It could also provide lim-
ited functional information such as blood flow in the main
coronary vessels and the existence of collateral flow (Green
et al., 2004).

Since X-ray coronary angiography creates 2D projec-
tion images of the complex 3D/4D anatomy of the coro-
nary artery arteries, multiple images should be collected
by placing X-ray source and detector in different positions
to ease CAD assessment. Positioning is handled by C-Arm
based angiography system (Figure 1). C-arm is essentially
a C-shaped device, which holds X-ray source and flat-panel
detector (image intensifier in older systems). Depending
on the setup, C-arm allows movement of X-ray source and
the detector along several axes. In fact, the trajectory of
the movement of C-arm is the fundamental design para-
meter that differs between different types of X-ray coro-
nary angiography protocols.

Clinical decision making requires an appropriate num-
ber of angiography images which depends on the difficulty
of the clinical case. On the other hand, several other
factors should be taken into account for the design of an
X-ray imaging protocol which may bound the total num-
ber of acquired angiography images: i) Contrast material
may cause chemotoxic adverse reactions (such as contrast-
induced nephropathy) directly related to the dose, molecu-
lar structure, and physiochemical characteristics (Messen-
ger and Casserly, 2009; McCullough, 2008). ii) Modern
X-ray coronary angiography systems equipped with auto-
matic exposure control units that try to balance the im-
age quality and the X-ray tube voltage parameters. Al-
though automatic exposure control effectively limits the
exposure to X-ray radiation, further reduction is desired
for increased safety. iii) Finally, the procedural time is
also another important matter due to the high number
of percutaneous coronary interventions (PCI) (Go et al.,
2014).
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Standard X-ray angiography is the traditional way of
X-ray coronary angiography, which consists of imaging the
coronary arteries from a few fixed, operator chosen views.
Therefore, the success rate of the diagnosis and the fol-
lowing treatment are solely dependent on the skills of the
operator (Green et al., 2004). Although expert recommen-
ded views for standard X-ray angiography exist, they do
not necessarily lead to satisfactory images due to the pa-
tient variability (Green et al., 2004). Even though stand-
ard X-ray angiography is currently the gold standard in
interventional cardiology, it has some limitations in terms
of contrast material use, procedural time and radiation
exposure.

A biplane X-ray angiography system consists of two
C-arms, which are generally configured to collect angio-
graphy images from orthogonal views. As a result, the
biplane X-ray angiography system doubles the number of
images that are acquired during a single contrast injection.
However, operator dependency of the image acquisition
quality persists.

Rotational X-ray angiography is an advanced scanning
technique, which is devised to standardise and automatize
the image acquisition (Green et al., 2004). It provides an
operator independent, panoramic view of the coronary ar-
teries by collecting a series of images during a predefined
C-arm rotation (Tommasini et al., 1998). The continuity
in the collected images help the operator to mentally visu-
alise the dynamic spatial structure of the coronary arterial
tree.

Traditionally in rotational X-ray angiography, rotation
of gantry starts from 55◦ to 60◦ right anterior oblique
(RAO) and ends at 55◦ to 60◦ left anterior oblique (LAO)
with some cranial (CRA) or caudal (CAU) angulation. Ex-
tended rotational X-ray angiography is a novel acquisition
protocol in which the arc that goes from 120◦ LAO to 60◦

RAO with no angulation is introduced (Figure 1) (Klein
et al., 2011). Extended rotational X-ray angiography fa-
cilitates the use of tomographic reconstruction based al-
gorithms to reconstruct the contrast filled high contrast
coronary arteries. However, it should be noted that ex-
tended rotational X-ray angiography is different than car-
diac C-arm CBCT, which also provides tomographic re-
construction. Extended rotational X-ray angiography runs
faster than cardiac C-arm CBCT and requires less im-
ages because it is used to reconstruct high contrast ob-
jects (Unzué Vallejo et al., 2013). Nonetheless, extended
rotational X-ray angiography capability is also integrated
into the state-of-the-art C-arm CBCT devices. Extended
rotational X-ray angiography has some specific issues be-
cause of the prolonged acquisition time, such as prolonged
contrast injection (Klein et al., 2011) and motion due to
breathing.

Dual-axis rotational coronary angiography (DARCA)
is an improved form of rotational X-ray angiography, which
further increases the patient safety and eases the acquisi-
tion of the angiography images. DARCA combines the ac-
quisitions with CRA and CAU angulation into one single

CAU

LAO
CRA

RAO

DARCA

Extended

RA

RA

X-ray

source

Flat panel

detector

Figure 1: C-arm trajectories for different X-ray angiography types:
Typical trajectories that X-ray source follows during rotational X-ray
angiography, extended rotational X-ray angiography, and DARCA
are shown by green, blue, red curves, respectively.

acquisition run (Klein and Garcia, 2009). Moreover, the
trajectories for the rotation of C-arm is not randomly se-
lected but optimized in DARCA (Figure 1). The optimized
trajectories allows to collect images with minimal vessel
overlap and foreshortening and consistent with the expert
recommended views (Garcia et al., 2009).

3. Necessity and Potential Uses of Coronary

Artery Reconstruction

Despite the advent of 3D non-invasive imaging mod-
alities (CCTA, MRA) to visualise the coronary arteries,
2D invasive X-ray coronary angiography is still considered
the gold standard for the clinical decision making and ther-
apy guidance due to several reasons (Mark et al., 2010).
The technology is widespread and trained staff is avail-
able. Moreover, X-ray coronary angiography still deliv-
ers highest spatial and temporal resolution. More import-
antly, it is an interventional imaging modality, which does
not only provide diagnostic information but also guides
the following therapeutic procedures (Chen and Schäfer,
2009). However, X-ray coronary angiography is funda-
mentally limited since it could only produce 2D projection
images of complex 3D anatomies of the coronary arteries.
A 3D/4D reconstruction could i) ease diagnostic decision
making, ii) assist pre-operative planning, iii) provide intra-
operative guidance, and iv) supply virtual physiological
indices.

Traditionally, the assessment of stenoses, the selection
of the correct treatment for the patient, and the deliv-
ery of the treatment depend on operator’s interpretation
of 2D projection images (Chen and Schäfer, 2009). Lesion
lengths, angles of bifurcations and vessel tortuosity may be
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Figure 2: Three-dimensional quantitative coronary angiography:
Segment of interest is reconstructed from X-ray coronary angio-
graphy to obtain lesion measurements (e.g. vessel diameter along
segment). Reprinted from Int. J. Cardiovasc. Imaging 28 (7), Lee,
J., Chang, S., Kim, S., Lee, Y., Ryu, J., Choi, J., Kim, K., Park,
J., Assessment of three-dimensional quantitative coronary analysis
by using rotational angiography for measurement of vessel length
and diameter, 1627-1634, doi: 10.1007/s10554-011-9993-0, Copyright
c©(2012) CC BY-NC, with permission from authors.

misinterpreted in 2D projection images. In addition, sub-
jective interpretation of 2D images could also lead to inter-
observer and intraobserver variability. More importantly,
misinterpretation could also lead to over/under estima-
tion of lesion severity and incorrect selection of stent size
(Gollapudi et al., 2007; Eng et al., 2013). Consequently,
suboptimal selection of the stent dimensions could reduce
the effectiveness due to poor lesion coverage (Gollapudi
et al., 2007), cause restenosis (Mauri et al., 2005) or throm-
bosis (Mauri et al., 2005; Moreno et al., 2005) and increase
the cost of the treatment (Gollapudi et al., 2007). In or-
der to overcome these diagnostic problems and select an
optimal stent dimension, computerized measurements of
lesions (such as minimum luminal area, percentage area
stenosis, minimum luminal diameter etc.), which are con-
sidered to be correlated with the degree of the stenosis, are
utilized (Pantos et al., 2009). This procedure is generally
known as quantitative coronary angiography (QCA). With
the development of 3D coronary artery reconstruction al-
gorithms, QCA can now performed in 3D reconstruction of
the lesion of interest (Figure 2) (Dvir et al., 2008; Garcia
et al., 2007), which is shown to be in an agreement with
ground truth measurements via guidewire or IVUS meas-
urements (Agostoni et al., 2008; Lee et al., 2012; Meerkin
et al., 2010; Neubauer et al., 2010).

Image fusion is another emerging field in medical imag-
ing. It aims to supply complementary information (anatom-
ical/functional information, pre/post-operative informa-
tion, device visibility, soft tissue visibility) from different
imaging modalities. Specifically, X-ray coronary angio-
graphy could be supplemented by pre-operative 3D images
from CCTA, cross-sectional morphology information from
IVUS or OCT. Fusion of X-ray coronary angiography with
pre-operative CCTA could bring the intervention planning
visually into the cath-lab (Rivest-Hénault et al., 2012) and
provide additional information especially in the patients

Figure 3: Fusion of X-ray coronary angiography with OCT: Corres-
ponding locations are shown with the same colors in different views.
Fusion provides clinician with complementary information from both
modalities for the assessment of vessel lumen. Reprinted from Int.
J. Cardiovasc. Imaging 28 (6), Tu, S., Xu, L., Ligthart, J., Xu, B.,
Witberg, K., Sun, Z., Koning, G., Reiber, J., Regar, E., In vivo
comparison of arterial lumen dimensions assessed by co-registered
three-dimensional (3D) quantitative coronary angiography, intravas-
cular ultrasound and optical coherence tomography, 1315-1327, doi:
10.1007/s10554-012-0016-6, Copyright c©(2012) CC BY-NC, with
permission from authors.

with chronic total occlusions (Baka et al., 2013; Dibildox
et al., 2014). Although most of CCTA/X-ray coronary
angiography fusion algorithms are formulated as 2D/3D
registration (Rivest-Hénault et al., 2012; Baka et al., 2013),
one recent study showed that the problem can be cast
as a 3D/3D registration problem by the help of 3D re-
constructions from biplane X-ray angiography (Dibildox
et al., 2014). Fusion of X-ray coronary angiography with
IVUS or OCT is also desirable since these imaging mod-
alities are known to provide cross-sectional morphological
information about the stenosis and plaque characteristics
(Bruining et al., 2009). This type of fusion employs 3D
reconstruction of coronary artery centreline and comple-
ments it with the surface information from IVUS/OCT
(Figure 3) (Bruining et al., 2009; Tu et al., 2012).

The search for the link between the coronary anatomy
and its physiology has led to a remarkable amount of re-
search carried out in the image based hemodynamics mod-
elling field (Taylor and Steinman, 2010; Zhang et al., 2014).
Large scale randomized clinical studies reveal that signific-
ance of a coronary stenosis could not be determined solely
on anatomical information and conclude that anatomical
information from any imaging modality should be coupled
by intra-coronary physiological measurements (Kern et al.,
2006). Among those physiological measurements, a com-
prehensive investigation is devoted to fractional flow re-
serve (FFR) (Pijls et al., 2007; Tonino et al., 2009). Re-
cently, there is a strong interest in estimating virtual FFR
values using the flow and pressure values obtained through
CFD simulations inside 3D anatomical models of the coro-
nary arteries (Johnson et al., 2013; Morris et al., 2015).
Virtual FFR via non-invasive imaging (CCTA, MRA) could
pave the way for a non-invasive diagnosis of moderate sten-
osis. On the other hand, it is also feasible to calculate
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virtual FFR from the 3D reconstruction obtained from in-
vasive X-ray coronary angiography (Morris et al., 2013;
Papafaklis et al., 2014; Tu et al., 2014).

Although there is a plethora of research evidence that
highlights the clinical potential of the aforementioned ap-
plications, a large amount of the research carried out over
the last ten years is still not ready for prime time and is
unfortunately not available in clinical routine. There are,
however, a number of methods that start appearing as
part of clinical research (see, for instance (Campbell and
Mahmud, 2014; Ligthart et al., 2014; Morris et al., 2013;
Tu et al., 2014; Calmac et al., 2015; Lansky and Pietras,
2014)). One of the major limiting factors for their trans-
lation into the clinics is that 3D reconstruction still needs
to be simultaneously robust, accurate and real-time and
meeting these three constraints at once has proven really
challenging. As method become more involved to deal with
accuracy, they tend to be computationally expensive and
sensitive to various parameters. As techniques attempt to
achieve speed, they become prone to inaccuracies and lack
robustness. To date, most of the commercially available al-
gorithms still rely on intensive off-line manual interactions.
Over the last few years, while parallel efforts on addressing
this requirement trilogy has continued, many researchers
have also focused on extracting functional or physiological
information from imaging in addition to anatomical in-
formation (Lansky and Pietras, 2014). However, auto-
mated algorithms that could provide reconstructions in
(near) real-time are still required as input to these methods
so the quest for accurate, robust and efficient algorithms
for coronary anatomy reconstruction continues.

4. Reconstruction of Coronary Arteries from

X-ray Coronary Angiography

In recent years, a significant amount of work has been
devoted to obtain a 3D/4D representation of the coronary
tree from X-ray coronary angiography. Different types of
X-ray coronary angiography systems, strategies to handle
cardiac and respiratory motion, and additional require-
ments have resulted in the diversity of the coronary artery
reconstruction methods. Nevertheless, the methods in the
literature could be classified into two main groups, namely
model-based reconstruction (modelling) (Section 4.2) and
tomographic reconstruction (Section 4.3). The main dis-
tinction between two classes of reconstruction methods
is the reconstruction output. While modelling generates
a binary 3D/4D representation of the coronary arteries,
tomographic reconstruction produces a volume represent-
ing the X-ray absorption of the coronary arteries. Des-
pite the separation of reconstruction methods, there are
some general aspects, which are applicable to both classes.
These aspects are discussed in Section 4.1.

xsrc

ysrc

X-ray source

xpat

zsrc

ypat

SOD

zpat

xdet

SID

ydet

isocentre

X-ray detector

zdet

Figure 4: X-ray coronary angiography image acquisition geometry:
Three coordinate systems, which are related to each other by a ri-
gid transformation, are defined for X-ray detector, patient, and X-
ray source. The origin of the patient coordinate system is typic-
ally assumed to coincide with the isocentre (centre of rotation of
the gantry). Intrinsic and extrinsic parameters specify the mapping
between patient and detector coordinates.

4.1. General Aspects of the Reconstruction Methods

4.1.1. X-ray Coronary Angiography Type

One fundamental aspect is the selection of X-ray coro-
nary angiography type. Due to specific requirements of
the reconstruction methods, all types of X-ray coronary
angiography are not suitable for both types of reconstruc-
tion (Section 2). While all types of X-ray coronary angio-
graphy are suitable for modelling, only rotational X-ray
angiography allows tomographic reconstruction.

4.1.2. Image Acquisition Geometry and Calibration

Another common aspect is the acquisition geometry.
The acquisition geometry for reconstruction methods is
commonly described using the tools from the computer
vision, since the acquisition principle of X-ray is similar
to the finite projective camera model (Hartley and Zisser-
man, 2004)1. The main difference is that the X-ray images
are magnified. Three coordinate systems are defined for
the acquisition geometry, namely, X-ray source (camera),
X-ray detector (image) and patient (world) coordinate sys-
tems (Figure 4). X-ray source coordinates are centred at
X-ray source location (camera centre). Flat panel X-ray
detector is modelled with a plane (image plane) perpendic-
ular to one of the main axis of the X-ray source coordinate

1This is a simplification of the system model. Non-standard scan
geometries can be incorporated using iterative tomographic recon-
struction methods (see Section 4.3.1).
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system. Distance between the X-ray source and X-ray de-
tector is known as source to image distance (SID). The line
from the X-ray source perpendicular to X-ray detector is
known as principal line and it intersects X-ray detector
at principal point. Image formation is determined by in-
trinsic parameters of the camera model, which are SID,
coordinates of the principal point in the X-ray detector
coordinate system, and sometimes skew parameter. These
parameters form a matrix called camera calibration mat-
rix, which is used to describe the mapping between points
given in X-ray source coordinates and their 2D projection
given in 2D X-ray detector coordinates. The centre of ro-
tation of the gantry is called isocentre and considered to
be the origin of the patient coordinate system. It is gen-
erally assumed to lie on the principal line. The relation
between the X-ray source and patient coordinates is de-
scribed by a rigid transformation. The parameters (rota-
tion angles and source to object/patient distance (SOD))
for the rigid transformation are known as extrinsic para-
meters. Intrinsic and extrinsic parameters constitute cam-
era projection matrix, which defines the mapping between
patient and X-ray detector coordinate system2. The ac-
quisition geometry enables us to define another important
concept called projection line. A projection line for a point
is the line that passes through the X-ray source and the
projection of the point in the X-ray detector.

One minor point is the image distortion related to the
X-ray detector. Older angiography systems are equipped
with image intensifier that generates images with distor-
tion due to its design. These distortions must be cor-
rected either before applying the reconstruction method
(Shechter et al., 2003a) or within the reconstruction method
(Cañero et al., 2000). However, now the new angiography
systems make use of flat panel detectors, which can create
distortion free X-ray images (Strobel et al., 2009).

It is necessary for both class of reconstruction meth-
ods to obtain the parameters describing the acquisition
geometry. However, the way how the acquisition geo-
metry obtained changes between different reconstruction
strategies. Some methods rely on a prior calibration step
to record the geometry parameters. During the image ac-
quisition the X-ray gantry follows the recorded geometry
to generate the X-ray coronary angiography images. In
earlier, mechanically unstable C-arm systems, calibrations
can be performed just before image acquisition (Wiesent
et al., 2000). However, in stable C-arm systems, the cal-
ibration is performed once in a while with regular inter-
vals to ensure its stability (Rougée et al., 1994; Koppe
et al., 1995; Fahrig et al., 1997). The calibration is usu-
ally completed by using phantom objects (Wiesent et al.,
2000; Rougée et al., 1994; Koppe et al., 1995; Fahrig et al.,
1997). Nevertheless, some methods opt for non-calibrated
data because of the possible table translation during image
acquisition or because of noise in the calibrated paramet-

2Modern X-ray imaging systems store both extrinsic and intrinsic
parameters.

ers. These methods either estimate geometry parameters
before computing the reconstruction or jointly estimates
the geometry parameters and the reconstruction. How-
ever, joint optimization aggravates the problem by increas-
ing the ill-posedness of it, and is not really realistic. On
the other hand, all of the tomographic coronary artery re-
construction methods assume calibrated geometry, while
modelling based reconstruction can adopt calibrated and
non-calibrated geometries (Section 4.2).

4.1.3. Handling of Cardiac and Respiratory Motion

Another important aspect with regard to both classes
of reconstruction is the respiratory and cardiac motion ex-
perienced by coronary arteries during image acquisition.
Respiratory motion could be reduced during the acquisi-
tion by asking the patients to hold their breaths (see Tables
1 and 2). Considering there is no residual respiratory mo-
tion, retrospective gating strategies are commonly utilized
to overcome cardiac motion. The main principle of retro-
spective gating is to select the subset of images that are at
the same cardiac phase in order to eliminate the cardiac
motion. The number of available cardiac cycles during the
acquisition is important; high heart rates are preferable
to low or normal cardiac phase in order to have sufficient
number of images for reconstruction. Two different ap-
proaches are investigated for retrospective gating: ECG
and surrogate based gating.

The most common way to achieve gating is to use ECG
signal simultaneously acquired with the image acquisition.
Specifically, this signal is used to assign cardiac phases to
the collected X-ray images assuming a cyclic heart motion
(Figure 5). Typically, the phases of least motion, end-
systole and end-diastole (Shechter et al., 2006; Husmann
et al., 2007), are employed for gating to obtain a higher
3D reconstruction quality.

Missing or unusable ECG (e.g. due to mislocation of
electrodes), and irregular heartbeats pose further chal-
lenges for retrospective gating of images collected using
a C-Arm system (Rohkohl et al., 2008b, 2009b). In X-
ray coronary angiography, motion phases can be assigned
based on a surrogate function extracted from the intens-
ity information in the X-ray images (Blondel et al., 2006;
Lehmann et al., 2006). To find such a surrogate func-
tion, several assumptions are made. First, it is assumed
that there is no CRA/CAU angulation during acquisition
and consequently axial direction of the patient is roughly
aligned with vertical axis of the X-ray detector. Second,
predominant motion in the axial direction is assumed to be
caused by the cardiac motion. Under these assumptions,
motion in the axial direction can be used as the surrog-
ate function. (Blondel et al., 2006) determined the motion
by estimating the shift between horizontal line integrals of
subsequent X-ray images. (Lehmann et al., 2006) calcu-
lated centroid of the horizontal line integrals and use its
motion to define the surrogate. From a different perspect-
ive, these methods find an optimal time point to compute
the reconstruction.
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Figure 5: Retrospective ECG gating: A subset of images correspond-
ing to the same cardiac phase are selected to discard the cardiac mo-
tion before reconstruction (top). Each image is assigned a cardiac
phase using the ECG signal recorded simultaneously with the image
acquisition (middle). A windowing function specifies a temporal slot
and weighting for image selection (bottom).

A related problem is to select the optimal cardiac phase
for the reconstruction, given the gating signal. Because of
the heart rate differences and other special conditions (e.g.
arrhythmia) of the patients, the optimal cardiac phase for
reconstruction is different between the patients (Husmann
et al., 2007). Moreover, it is known that the reconstruc-
tion quality varies among different cardiac phases (Schäfer
et al., 2006). Apart from using aforementioned surrogate
functions, several methods are devised to determine the
optimal phase. The methods described in (Rasche et al.,
2004, 2006a) build a series of gated reconstructions and
define a quality metric based on the histogram analysis
of those reconstructions. The mean intensity value of the
high contrast voxels are used as the quality metric. (Han-
sis et al., 2008b) used minimum intensity projections of a
back-projected distance map to determine a quality meas-
ure for the cardiac phases assigned via ECG signal.

The selection of images are generally conducted by a
windowing function. A windowing function defines a tem-
poral slot around the selected cardiac phase; the X-ray
images inside that domain are selected for reconstruction.
The shape of the windowing function introduces a weight-
ing to X-ray images depending on temporal distance of
X-ray image to the selected phase. Most commonly used
windowing functions are nearest-neighbour (Schäfer et al.,

2006; Rasche et al., 2006b) or power of cosine function
(Schäfer et al., 2006; Rohkohl et al., 2008a; Schwemmer
et al., 2013b). The nearest-neighbour function selects the
image that is closest to the selected cardiac phase. This
gating function strictly eliminates the cardiac motion by
selecting one image for each cardiac cycle. However, it
severely undersamples available X-ray projection data and
this can lead to artifacts in the reconstruction (Schäfer
et al., 2006). Instead of nearest-neighbour gating, bell-
shaped functions are also used as the windowing function.
One popular choice is cosine squared windowing function
(Schäfer et al., 2006). A more general family of cosine
functions, namely power of cosines, are introduced in (Ro-
hkohl et al., 2008a). Specifically, the shape of the window-
ing function is controlled using a parameter describing the
power of the cosine function. In addition, there are also
some attempts to determine the optimal window length
from X-ray images using value of the surrogate function
(Lehmann et al., 2006). Finally, one should note that car-
diac motion type (e.g. twisting motion (Unberath et al.,
2015)) and magnitude could still lead to undersampling
problems even using bell-shaped or surrogate based win-
dowing functions.

4.2. Model-based Reconstruction

Model-based reconstruction (or modelling) methods try
to build a 3D/4D binary model of coronary arteries, which
consists of a 3D/4D centreline and, occasionally, the ves-
sel surface. These methods are flexible tools for recon-
struction, since they allow us to use images from all X-ray
coronary angiography modalities or from calibrated and
non-calibrated systems. However, the flexibility is usually
accompanied by requirement of manual processing. Al-
though these methods commonly use ECG gating to re-
move the motion of coronary arteries (Table 1), there are
efficient ways to propagate the 3D reconstruction for one
cardiac phase to the remaining phases to obtain 4D recon-
struction.

Based on the overall design, modelling methods could
be further divided into two groups, namely forward-projec-
tion based (Section 4.2.1) and back-projection based (Sec-
tion 4.2.2) methods. Modelling methods could also differ
in terms of ability to obtain 4D reconstruction (Section
4.2.3), multi-view modelling capability (Section 4.2.4) and
vascular lumen reconstruction (Section 4.2.5).

4.2.1. Forward-projection Based Methods

Forward-projection based modelling methods for coro-
nary artery reconstruction employ a 3D model, which ad-
apts itself to the vessel structures in 2D X-ray projection
images.

Deformable models are frequently employed in forward-
projection based reconstruction. The deformable model
evolves under the influence of an external energy, which
is obtained from the 2D images and an internal energy,
which is due to the smoothness and topology of the model
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itself. The most commonly used 3D deformable model for
modelling of the coronary arteries are active contour model
(Kass et al., 1988). In the context of coronary reconstruc-
tion, each coronary artery branch is represented by one
active contour model and these models are optimized in-
dividually. The main concern for active contour based
reconstruction is the design of the external and internal
energy terms.

Two-dimensional external energy terms are generally
computed using the image information from the 2D pro-
jection images and used in various ways to update the
location of the 3D landmark points describing the active
contour. In order to calculate 2D external energy terms
for each landmark point, common approaches are to com-
pute the Gradient Vector Flow (GVF) (Xu and Prince,
1998b), Generalized Gradient Vector Flow (GGVF) (Xu
and Prince, 1998a), and Potential Energy (PE) (Cohen
and Cohen, 1993) from the 2D projection images and use
the resulting 2D vector fields (Cañero et al., 2000, 2002;
Cong et al., 2013, 2015; Yang et al., 2014). Centrelines seg-
mented from 2D projection images are used as the feature
map input to GVF, GGVF and PE computation. Altern-
ative to this approach, image intensity information can be
directly used to compute the external energy term. The in-
tensity values are locally minimum at the image pixels cor-
responding to the vessel axis, since X-rays passing through
the vessel axis penetrate the thickest layer of contrast (Hui
and Friedman, 2002). The direct (Hui and Friedman,
2002) or normalized (Zheng et al., 2010) sum of intens-
ity values from different projection images are used to for-
mulate the external energy term. In (Zheng et al., 2010),
authors also added the gradient of the intensity to the for-
mulation to gain some robustness to noise on the 2D pixel
values.

In order to update the position of the 3D landmark
points of the active contour, one strategy is to update the
projections of the landmark in 2D (Cañero et al., 2000,
2002). Specifically, the 3D landmarks for the current iter-
ation of the active contour evolution are projected onto the
2D images. The 2D projections of landmarks are moved to
new locations in 2D according to the external force. Be-
cause of the epipolar geometry, a new 3D position for the
landmark must located at the intersection of the projec-
tion lines. However, updated 2D projections do not com-
ply with the epipolar constraints, since they have been
updated independently in the projection images. There-
fore, the new 3D position of the landmark is found as the
3D position, which minimizes the distance to all projec-
tion lines (Figure 6a). Another strategy is to compose a
3D external force term using the 2D external force terms
(Cong et al., 2013, 2015; Yang et al., 2014). To this end,
the 2D external forces are back-projected onto the world
coordinate system by ignoring the out-of-plane component
of the 3D external force. The back-projected external en-
ergy forces are added together to obtain the 3D external
force (Figure 6b). The main advantage of this strategy is
to update the 3D landmark points without violating the

epipolar constraints, which is proven to increase the ac-
curacy and the convergence rate (Cong et al., 2015; Yang
et al., 2014). Additionally, this strategy is easy to adapt
to multi-view scenarios since the 3D external force is given
by a simple vector addition operation (Cong et al., 2015).

As the internal energy, the elastic and bending energy
from the original active contour model (Kass et al., 1988)
are generally used. Zheng et al. (Zheng et al., 2010) de-
vised a new elastic term to avoid shrinkage problem of
the open active contour model. This new term produces
an additional penalty for the landmark pairs, which are
not separated by the average distance between all pairs of
neighbouring landmarks.

Initialization of the active contour model in 3D is per-
formed manually (Cañero et al., 2000, 2002; Cong et al.,
2013, 2015; Yang et al., 2014; Hui and Friedman, 2002;
Zheng et al., 2010). Some corresponding points (including
the start and end point) for a branch are selected from
different views and rough reconstructions are obtained for
these points. These points are used to generate a piece-
wise linear active contour model to start with.

Although the literature on the forward-projection based
modelling of coronary arteries revolves around paramet-
ric active contour models, there are some exceptions to
this trend. As one notable example, (Sarry and Boire,
2001) used Fourier descriptors as the parametric deform-
able model. An analytical relationship between the 3D
Fourier descriptor and its projection is derived. This rela-
tionship yields to an energy functional, which consists of
intensity, epipolar constraint and smoothness terms. An-
other interesting example uses geometric active contours
as the deformable model (Keil et al., 2009). A 3D level
set surface for the coronary artery is defined in a reference
cardiac phase. It is assumed that this level set surface is
mapped to a 2D projection image by rigid transform due
to motion of the arteries followed by a projection opera-
tion. An energy minimization framework is formulated to
evolve the level set in the reference phase and to estim-
ate the rigid transformation for all the projection images.
(Çimen et al., 2014) et al. used a statistical bilinear model
of ventricular epicardium as spatio-temporal model, and
estimated parameters of the bilinear model along with the
arterial locations on the bilinear model.

Forward-projection based modelling methods do not
require any correspondence between centrelines extracted
from 2D X-ray images. Moreover, 2D segmentations are
unnecessary for some of the methods, which work directly
on the intensity values. These features provide serious
advantages over most of back-projection based modelling
methods in the literature. In addition to that, it is easy
to adapt forward-projection modelling methods for recon-
struction from multiple views. However, these methods
rely on manual selection of corresponding points from pro-
jection images for each branch of the artery, which might
be time consuming and prone to errors.
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Figure 6: Computation of external force for active contour based reconstruction methods: (a) 3D external force can be computed using new
2D locations updated using 2D external forces. (b) Alternatively, 3D external force can be computed using back-projections of the 2D external
forces.

4.2.2. Back-projection Based Methods

Back-projection based modelling methods build the coro-
nary artery tree from back-projection of 2D information
extracted from projection images that are selected via ECG
gating. These methods could be divided into two main
groups: i) methods based on 2D feature matching, and ii)
methods based on back-projection of vesselness responses.

The first group of back-projection based methods are
the methods based on 2D feature matching. These meth-
ods start with a segmentation of artery centrelines and of-
ten several salient structures (e.g. start/end points, bifurc-
ations) from the projection images. Correspondences are
established between the centrelines from different views
using epipolar geometry, and 3D points representing the
coronary artery tree are reconstructed using the triangula-
tion method (Hartley and Zisserman, 2004) from the com-
puter vision (Figure 7a).

Two-dimensional feature matching based modelling meth-
ods are designed to work with the non-calibrated systems
(Hoffmann et al., 2000; Chen and Carroll, 2000, 2003;
Mourgues et al., 2001; Blondel et al., 2006; Fallavollita
and Cheriet, 2008; Yang et al., 2009), although excep-
tions exist (Cardenes et al., 2012; Movassaghi et al., 2004).
This is because the estimation of geometry parameters
that relate the projection images used for reconstruction
can be easily integrated into the method. One way is
to estimate the geometry parameters before reconstruc-
tion commences. For this purpose, the salient points (e.g.
start/end, flexion and bifurcation points) that are extrac-
ted during the segmentation step are exploited (Hoffmann
et al., 2000; Chen and Carroll, 2000, 2003; Andriotis et al.,
2008). A set of corresponding points are formed via manual
establishment of correspondence. This set can be used to
write constraint equations using the fundamental or es-
sential matrix (Hoffmann et al., 2000) or to formulate an
energy function whose minimum is given by the optimal
values for the geometry parameters (Chen and Carroll,
2000, 2003). Generally, rotation and translation between
the X-ray sources are considered to be the geometry para-
meters to optimize, and intrinsic parameters are assumed
to be known. The energy function mainly consists of the

reprojection error of points and the reprojection error of
direction vectors (Chen and Carroll, 2000, 2003; Andri-
otis et al., 2008). Another popular way is to estimate
geometry parameters jointly with the reconstruction. In
this strategy, estimation of the geometry parameters and
reconstruction, and the establishment of the correspond-
ences are iteratively performed until a convergence criteria
is met (Mourgues et al., 2001; Blondel et al., 2006; Fallavol-
lita and Cheriet, 2008; Yang et al., 2009). These methods
are advantageous because they are robust against outliers
and provide a mechanism to estimate the intrinsic para-
meters as well. In (Yang et al., 2009), a total of 14 para-
meters are optimized including intrinsic (SID, principal
point coordinates, skew) and extrinsic parameters (rota-
tion, translation, table translation). For any approach to
estimate the geometry parameters, initialization is import-
ant. In most of the cases, the geometry parameter estima-
tion starts from the values recorded by the X-ray system.

Correspondence establishment is the critical step for
feature matching based methods, since the corresponding
points are directly used to triangulate the 3D position.
The simplistic approach is to use hard epipolar constraints
to establish the correspondences (Hoffmann et al., 2000;
Chen and Carroll, 2000, 2003; Andriotis et al., 2008). How-
ever, epipolar lines usually do not produce a single match
and this necessitates more sophisticated approaches. One
solution is the exploitation of dynamic programming al-
gorithms. (Yang et al., 2009) used a method similar to
dynamic time warping (DTW) (Sakoe and Chiba, 1978)
to find the correspondences. Dynamic programming can
also be used to put soft epipolar constraints (Mourgues
et al., 2001; Blondel et al., 2006). Soft epipolar constraints
allow for a point in the first view to match a point in
the second view that is not strictly on the epipolar line
but around it. To this end, an energy function is for-
mulated for matching that consists of unary and binary
terms. Unary terms penalize according to the distance to
the epipolar line (Mourgues et al., 2001) or any feature
that reflects correct correspondence (e.g. high tubularity
value) (Blondel et al., 2006). On the other hand, bin-
ary terms ensure that the linked points in the first view
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Figure 7: Summary of back-projection based methods: (a) Methods based on 2D feature matching establish correspondences of centrelines
from different 2D views and compute reconstruction using triangulation. (b) Some of the 2D feature matching based methods divide the 3D
space into parallel planes representing the depth levels. Each centreline point in the reference frame is assigned to one of the depth levels
using the information from multiple X-ray images. (c) Methods based on back-projection of vesselness response compute a 3D volumetric
vesselness response from 2D vesselness responses for further processing.

are paired with points that are close to each other in the
second view (Blondel et al., 2006) or ensures that the devi-
ation from epipolar lines varies smoothly (Mourgues et al.,
2001). In order to avoid point-to-point correspondences, a
branch-to-branch correspondence establishment method is
proposed in (Cardenes et al., 2012). The projection lines
formed by the 2D points in the projection images and cor-
responding X-ray source position form ray bundles for each
view. Closest points on the ray bundle from first view with
respect to the ray bundle from the second view establishes
a correspondence. Another way to support the corres-
pondence finding is to estimate some 3D features from 2D
features and use the estimations to put a constraint on the
correspondences. One particular example is the study in
(Fallavollita and Cheriet, 2008). Given an initial corres-
pondence, 3D curvature value for a point is estimated from
the 2D curvature values from projection images. They
compared estimated curvature and the curvature obtained
from the reconstruction for the initial correspondence, and
if the values are very different from each other the point
correspondence is discarded. Although the authors used it
for outlier removal, it is a promising strategy to put prior
information on the 3D reconstruction.

One alternative strategy for 2D correspondence estab-
lishment is proposed in (Liao et al., 2010) and later ad-
apted for dynamic reconstruction in (Liu et al., 2014b).
The problem is formulated as a depth map estimation,
inspired by multi-view stereo in the computer vision lit-
erature. To this end, the 3D space between X-ray source
and detector is divided into parallel planes of equal depth
increments (Figure 7b). To obtain the reconstruction, all
2D centreline points in one reference view are assigned to
a plane, i.e. assigned a depth value using an energy func-
tion minimization. (Liao et al., 2010) proposed an energy
function consisting of a reprojection error term and a term
for smoothness of depths in 3D. The energy minimization
can be performed through efficient methods such as graph

cuts or belief propagation (Szeliski et al., 2008).
Modelling methods based on 2D feature matching pro-

vide flexible and modular approaches to reconstruction.
There is a wide selection of methods to choose from for
segmentation, estimation of imaging geometry, and es-
tablishing the correspondences. More importantly, their
ability to estimate the imaging geometry is indispensable
for reconstruction from standard X-ray angiography, since
table movements are common during image acquisition.
Requirement of 2D segmentation is the main disadvantage
of these methods. First, it hinders its use for multi-view
reconstruction because segmentation of 2D projection im-
ages is generally a demanding (especially if there is overlap
and foreshortening) and time consuming task. Second,
one should select projection images at the same cardiac
phase, with some angular difference (between 35-145 de-
grees (Movassaghi et al., 2004)), without overlap and fore-
shortening, and with sufficient contrast. These conditions
may not be satisfied easily and as a result the method may
output suboptimal reconstructions.

The second group of back-projection based methods
are the methods based on back-projection of vesselness re-
sponses. These methods compute vessel responses, which
highlight coronary arteries in 2D projection images. These
responses are back-projected given the imaging geometry
to compute a volumetric vessel response in 3D. Segment-
ation methods are applied on the 3D vessel response to
obtain the coronary artery reconstruction (Figure 7c).

The first choice for these methods is the type of the
2D vessel response. Binary segmentation (Law and Chan,
2003), tubularity response (Jandt et al., 2009a), and dis-
tance map to centreline (Li and Cohen, 2011) are used in
the literature. Second choice is the back-projection oper-
ator. Different operators have been studied in the liter-
ature, namely multiplicative combination from all views
(Law and Chan, 2003), weighted multiplicative combina-
tion from all pairs of views (Jandt et al., 2009a) and max-
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Figure 8: Propagation of initial 3D reconstruction by transformation optimization: The transformation for cardiac phase p (T p) is estimated
such that the projection of deformed initial reconstruction is aligned with the vessel structures in 2D projection images at phase p. The initial
reconstruction (Rref ) at the reference phase pref and deformed initial reconstruction (Rp) at phase p are shown in red and blue, respectively.

imum of 2D distances to centrelines (Li and Cohen, 2011).
Three-dimensional segmentations can be obtained from a
variety of methods, although fast marching propagation
(Law and Chan, 2003; Jandt et al., 2009a) and minimal
paths (Li and Cohen, 2011) are the only ones used so far.
Owing to low number of projection images, 3D vessel re-
sponses are generally very noisy and robust methods for
segmentations are required. Otherwise, post-processing
steps might be required to prune the segmentation (Law
and Chan, 2003; Jandt et al., 2009a).

Modelling methods based on back-projection of ves-
selness response work with minimum level of interaction.
Additionally, being inherently multi-view is a merit, how-
ever these methods might require extended rotational X-
ray angiography images to increase the number of images
available for reconstruction and to reduce the noise in the
3D vessel response function.

4.2.3. 3D+time (4D) Model-based Reconstruction

3D+time (4D) reconstruction of coronary arterial tree
could give the clinician a better assessment of the target
lesion by providing information about motion and extent
of deformation near the lesion (Chen and Carroll, 2003).
Modelling methods could be extended such that they have
the ability to generate 4D reconstructions of coronary ar-
teries.

The most straightforward 4D reconstruction strategy
to obtain 3D reconstructions for a number of cardiac phases
separately (Chen and Carroll, 2003; Mourgues et al., 2001;
Jandt et al., 2009b; Cardenes et al., 2012). This could
be achieved by completely handling the reconstruction for
each cardiac phase independent from each other (Chen
and Carroll, 2003; Jandt et al., 2009b). To avoid complete
independence of reconstruction at different cardiac phases,
temporal constraints penalizing the difference between neigh-
bouring cardiac phases can be used (Liu et al., 2014b).
The disadvantage of processing each cardiac phase indi-

vidually is the requirement of segmentations for every car-
diac phase, which may sometimes be infeasible. Another
drawback of working on each cardiac phase separately is
that the resulting 3D reconstructions are independent from
each other and there is no notion of temporal correspond-
ence. If the motion field for the coronary artery tree is
needed, temporal correspondences should be sought (Chen
and Carroll, 2003; Jandt et al., 2009b). This can be achieved
by branch matching or tree matching algorithms. For ex-
ample, (Chen and Carroll, 2003) proposed a branch match-
ing algorithm using a physics based principle to formulate
matching energy. (Jandt et al., 2009b) devised an energy
formulation for iterative matching of tree structures.

A popular strategy for 4D reconstruction is to propag-
ate an initial 3D reconstruction from a reference cardiac
phase to the rest of the phases (Hui and Friedman, 2002;
Zheng et al., 2010; Sarry and Boire, 2001; Shechter et al.,
2003a; Bouattour et al., 2005; Tsin et al., 2009). De-
pending on the reconstruction methodology, there are two
ways to accomplish this propagation. If it is a forward-
projection based modelling method, the 3D deformable
model representing the reconstruction for the reference
cardiac phase is evolved such that its projection fits to
the 2D projection images corresponding to the other car-
diac phases. The easiest way is to use the 3D reconstruc-
tion as the initialization at the next cardiac phase and to
apply the same reconstruction strategy (Sarry and Boire,
2001). However, this strategy does not introduce any tem-
poral constraints. To overcome this drawback, the deform-
able model energy for 3D reconstruction might be enriched
with some additional terms that enforce temporal smooth-
ness (Hui and Friedman, 2002; Zheng et al., 2010). Four-
dimensional propagation strategies for forward-projection
based methods are generally designed to work with intens-
ity values of 2D projection images in order to avoid the
necessity of centreline segmentations for all the 2D im-
ages. On the other hand, back-projection based modelling
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Figure 9: An example of vessel lumen reconstruction: (a) X-ray image. (b) The forward projection of reconstructed vessel lumen onto the
X-ray image. (c)-(d) Surface rendered views of reconstructed model in the left-right and cranio-caudal direction. Reprinted from Phys. Med.
Biol. 54 (1), Jandt, U., Schäfer, D., Grass, M., Rasche, V., Jan, J., Automatic generation of time resolved motion vector fields of coronary
arteries and 4D surface extraction using rotational x-ray angiography, 45-64, doi: 10.1088/0031-9155/54/1/004, Copyright c©(2009) Institute
of Physics and Engineering in Medicine, with permission from IOP Publishing.

method approaches 4D reconstruction as a temporal trans-
formation estimation problem. Specifically, these methods
parameterise a 3D/4D transformation, which is applied to
the reference 3D reconstruction, such that the projections
of the deformed reconstruction align with the 2D projec-
tion images (Figure 8) (Shechter et al., 2003a; Bouattour
et al., 2005; Tsin et al., 2009; Blondel et al., 2006; Bousse
Ast et al., 2009). A rigid or affine transformation for each
cardiac phase is optimized in (Tsin et al., 2009). A set
of hierarchical transformations with increasing degrees of
freedom are proposed to model the motion of the arteries
in (Shechter et al., 2003a; Bouattour et al., 2005). Spe-
cifically, rigid, affine and 3D B-spline transformations are
optimized respectively for each time step. A strategy to
reduce the number of transformation parameters by estim-
ating a transformation separately for each coronary artery
branch is followed in (Bouattour et al., 2005). A 4D B-
spline transformation model is used in (Bousse Ast et al.,
2009). Instead of directly estimating the parameters of
the transform, a motion vector field is calculated using
an energy minimization. A second energy minimization
is performed to estimate the parameters of the transform-
ation using the motion vector field. In (Blondel et al.,
2006), temporal dimension is added to the transforma-
tion via a 4D B-spline transformation. To estimate the
parameters of the transformation, an energy measure de-
scribing the quality of fit is used to estimate the paramet-
ers of the transformations. The energy term consists of a
term for the projection error, a term to constrain struc-
tural changes and a term to ensure smooth transforma-
tion. In order not to segment centrelines, the projection
error term generally depend on intensity based features
such as tubularity measure (Shechter et al., 2003a; Bou-
attour et al., 2005; Blondel et al., 2006) or GVF (Tsin
et al., 2009). The energy term controlling the smoothness
of deformation can be defined using the transformed points
(Tsin et al., 2009) or using the parameters (e.g. control
points for B-spline transformation) of the transformation
(Shechter et al., 2003a; Bouattour et al., 2005; Blondel
et al., 2006; Bousse Ast et al., 2009). Application specific
temporal or structural constraints, such as cyclic deform-
ation constraint (Tsin et al., 2009) or length preservation

constraints (Shechter et al., 2003a), are taken advantage
of as additional energy terms.

4.2.4. Multi-view Model-based Reconstruction

X-ray rotational X-ray angiography and DARCA of-
fer a sequence of projection images from different views,
which provides additional information for model-based re-
construction. Many state-of-the-art modelling methods
benefit from the additional information. These methods
differ in the way they use multiple projection images.

There are various ways to incorporate multiple views.
(Cong et al., 2015) combined back-projections of 2D ex-
ternal forces to compute a 3D external force for an act-
ive contour based reconstruction method. (Blondel et al.,
2006) generated 3D reconstructions for every pair of mul-
tiple views and fused them together to find the final re-
construction. (Liao et al., 2010) showed that, for back-
projection based modelling, it is possible to integrate the
information from multiple images using an elegant energy
formulation for the correspondence. To this end, the au-
thors formulated the problem not as a correspondence es-
tablishment but as a depth assignment to centrelines ex-
tracted from one of the projections. (Li and Cohen, 2011)
and (Jandt et al., 2009b) used modelling based on back-
projection of vesselness response, which inherently sup-
ports multiple views. Finally, (Keil et al., 2009) combined
a geometric active contour model with a transformation
to utilize all the images in a rotational X-ray angiography
sequence.

Multi-view modelling could bring some advantages to
the reconstruction. First, reconstruction methods that
rely on only two projection images discard a significant
amount of acquired images. Multi-view reconstruction be-
nefits from extra information from the additional images,
which improves the accuracy of the reconstruction (Cong
et al., 2015; Liao et al., 2010). Second, two projection
images are not enough for correspondence establishment
between the projections if there is substantial amount of
vessel overlap or foreshortening. In such cases, additional
information from multiple views could assist the corres-
pondence establishment (Liao et al., 2010). Finally, mul-
tiple images provide additional diameter measurements,
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Figure 10: Effect of C-arm movement on the vessel surface reconstruction: (a) Projection plane (light blue triangular area) is often assumed
to be perpendicular to vessel axis. As a result, projection plane and vessel cross section (black circle) are parallel to each other. (b) If the
movement of the C-arm is taken into account, projection plane (light blue triangular area) and vessel cross section (black circle) are no longer
parallel to each other. Furthermore, projection planes from different views (light blue and red triangular area) are non-coplanar.

which could be used to improve surface reconstruction
(Cong et al., 2015; Movassaghi et al., 2004; Andriotis et al.,
2008; Liao et al., 2010; Jandt et al., 2009b). However, ne-
cessity of manual processing from user may hinder the ad-
option of multi-view modelling. Therefore, it is important
to invest on methods with minimal user interaction.

4.2.5. Vascular Lumen Reconstruction

Assessment of stenosis severity or simulations from 3D
reconstruction of arteries demand not only the reconstruc-
tion of centrelines but also the reconstruction of arterial
lumen walls (Figure 9). Vessel surface reconstruction is
performed after centreline reconstruction using the vessel
diameter information from the projection images.

The basic approach to vessel surface reconstruction is
to use vessel diameter information from only one view
(Chen and Carroll, 2000, 2003; Cardenes et al., 2012; Liao
et al., 2010). These methods extract the 2D diameter value
by searching the vessel boundary perpendicular to vessel
axis from one projection image. The diameter value is
scaled to remove the scaling effect due to projection and
the scaled diameter is used to fit a circle cross section
perpendicular to the 3D vessel axis (Figure 10a). These
cross sections are used to create the surface of the coro-
nary artery tree. (Movassaghi et al., 2004) adapted this
basic strategy to multi-view reconstruction. The scaled
diameter values from multiple views put additional con-
straints on the shape of the vessel cross sections. Instead
of limiting the cross sections to circles or ellipses, an inter-
polation scheme is proposed to accommodate various cross
sections in (Jandt et al., 2009b). To this end, the authors
found the points that constrain the cross section and angu-
larly interpolated new points describing the cross section.
The interpolation is defined as a weighted linear combina-
tion and the weights are given based on a local foreshort-
ening value and angular difference. (Andriotis et al., 2008)
observed that the plane where 3D circular cross section lies
might not be perpendicular to 3D vessel axis due to the

rotational movement of X-ray source (Figure 10b). They
proposed a strategy to extract diameter information using
the plane of 3D circular cross section. (Yang et al., 2009)
proposed an ellipse fitting method for two views that re-
spects non-coplanar circular cross sections in 3D. Later,
(Cong et al., 2015) showed that this strategy can be incor-
porated into the multi-view reconstruction scenarios by
using a least squares fitting.

Apart from reconstructing the vessel surface using the
information available in the 2D angiography images, there
is also a recent interest in fusing 3D centreline reconstruc-
tions with vessel surface extracted from IVUS or OCT im-
ages. (Figure 3) (Bruining et al., 2009; Reiber et al., 2011;
Toutouzas et al., 2015). In this type of the vascular lumen
reconstruction, 3D catheter path (Wahle et al., 1999) or
3D vessel centreline (Tu et al., 2010) is generally assumed
to be reconstructed using X-ray images from a biplane sys-
tem using a back-projection based method. The problem
of vascular reconstruction is formulated in three steps: i)
segmentation of IVUS/OCT cross sections, ii) identific-
ation of the centreline locations corresponding to ECG
gated IVUS/OCT cross sections, and iii) correction for
the axial orientations of cross sections (Wahle et al., 1999;
Bourantas et al., 2008; Tu et al., 2010, 2011; Doulavera-
kis et al., 2013). The spatial correspondence is established
assuming an initial correspondence and a constant pull-
back speed (Wahle et al., 1999; Tu et al., 2010). The axial
orientation correction is typically handled using local geo-
metry around identified centreline points (Wahle et al.,
1999; Bourantas et al., 2008; Tu et al., 2010; Doulaverakis
et al., 2013).

4.3. Tomographic Reconstruction

Tomographic reconstruction methods use X-ray coro-
nary angiography images directly to produce a volume rep-
resenting the coronary arteries. In contrast to binary rep-
resentation of model-based reconstruction, tomographic
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reconstruction methods offer information about X-ray ab-
sorption coefficients. These methods can handle unusual
anatomies (e.g. collaterals, tortuous branches) since they
require less, if not none, prior information about the coro-
nary arterial trees (Hansis et al., 2008d). Because of the
same reason, these methods can also provide more accur-
ate vessel surface details (Schoonenberg et al., 2009b). In
addition, tomographic reconstruction methods do not re-
quire any manual interaction.

Tomographic reconstruction methods need to fulfil spe-
cific requirements. All of the tomographic reconstruction
methods assume that the X-ray imaging system is cal-
ibrated prior to the acquisition. Compared with mod-
elling based reconstruction, these methods generally de-
mand more X-ray images with a larger angular coverage.
For this reason, extended rotational X-ray angiography ac-
quisition is preferred as the acquisition protocol (Table 2).
However, one should note that even extended rotational
X-ray angiography does not satisfy Tuy-Smith data suffi-
ciency condition (Tuy, 1983; Smith, 1985). Moreover, as
the coronary artery branches should be visible in the X-ray
sequence, isocentring becomes crucial. Consistent contrast
injection is also important to be able to exploit all the X-
ray images. It is also important since these methods ignore
the contrast agent propagation in their formulation and as-
sume constant contrast distribution over time. Moreover,
these methods typically have high computational demands
compared with the modelling based reconstruction. How-
ever, thanks to the advances in parallel computing, dedic-
ated GPU implementations can be used to overcome this
difficulty (Table 3).

Similar to modelling methods, cardiac and respiratory
motion are the most difficult challenges for the tomographic
reconstruction. Typically, X-ray coronary angiography data
are acquired during breath hold to minimise the respira-
tory motion. Depending on how they handle the cardiac
motion, the tomographic reconstruction methods can be
classified into three groups: i) gated (Section 4.3.2), ii)
motion compensated (MC) (Section 4.3.3), and iii) gated
and motion compensated methods (Section 4.3.4). The
basic considerations and algorithms for tomographic re-
construction are briefly introduced in Section 4.3.1. These
algorithms are generally adapted to the specific problem
of high contrast moving object reconstruction and special-
ized algorithms are proposed. A detailed discussion of spe-
cialized algorithms for coronary artery reconstruction is
provided in Section 4.3.5. Background removal strategies
are discussed in Section 4.3.6. Finally, a brief discussion
on 3D+time (4D) tomographic reconstruction is given in
Section 4.3.7.

4.3.1. Preliminaries

One distinction between different methods is the type
of the tomographic reconstruction approach. Both analyt-
ical and iterative tomographic reconstruction algorithms
have been developed.

Analytical reconstruction algorithms consider a sim-
plified system model and image (volume) model. Thus,
they are best suited to the situations where approxim-
ate solutions are adequate. Yet, these methods are well-
established and fast compared to iterative alternatives.
Popular choice for analytical reconstruction of cone-beam
geometries is Feldkamp-Davis-Kress (FDK) (Feldkamp et al.,
1984) algorithm.

Iterative reconstruction algorithms can integrate wide
range of acquisition geometries (e.g. limited angular cover-
age), image model, forward model, noise model and prior
information into the reconstruction (Hsieh et al., 2013).
The image model mainly deals with the representation of
the volume to be reconstructed. The continuous volume is
approximated by a linear combination of basis functions at
discrete regular rectangular grid locations (Hansis et al.,
2009). Among alternatives, voxel (Blondel et al., 2004),
Gaussian (Hansis et al., 2008c,a), and blob-like (Kaiser-
Bessel) (Zhou et al., 2008; Hu et al., 2010, 2012) basis
functions are utilized3. The forward model describes the
contribution of the voxels along X-ray line (or X-ray beam)
to the corresponding pixels (Xu and Mueller, 2006). Al-
though forward model should be explicit to increase repro-
ducibility of the method, it is not always reported. This
is most probably due to the fact that most of the meth-
ods use the length of intersection between X-ray lines and
voxel grid image model. Unlike most other work, (Blondel
et al., 2004) used the volume of the voxel if the X-ray beam
is passing through the voxel. The image model and for-
ward model can be combined to form an underdetermined
system of linear equations (forward projection equations),
which relate projected pixels and voxels to be reconstruc-
ted by a forward projection matrix. The lack of measure-
ment error modelling in the forward projection equations
is addressed by appropriate noise models. In the context of
coronary artery reconstruction, Poisson (Zhou et al., 2008;
Hu et al., 2010) or Gaussian (Hu et al., 2012) noise mod-
els are employed. Finally, the spatial dependency between
neighbouring voxels can be used to include any prior in-
formation about the volume.

Iterative reconstruction algorithms are classified into
two groups, namely algebraic and statistical. This classi-
fication is made on the basis of whether they account for
a noise model or not. Both group of methods have been
used in the context of coronary artery reconstruction.

4.3.2. Gated Tomographic Reconstruction

As with the modelling methods, one simple way to re-
duce the effect of motion on the reconstruction is to apply
gating, i.e. select a subset of images that correspond to
the same motion state of the coronary artery tree (Section
4.1.3).

The initial attempts to tomographic reconstruction from
X-ray rotational X-ray angiography have focused on the

3Unless otherwise noted, we assume that a voxel basis is used in
the following discussion.
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feasibility and optimization of the acquisition protocols
rather than the reconstruction method (Rasche et al., 2006b;
Movassaghi et al., 2007). Because of this reason, these
studies utilize analytical FDK type reconstruction algo-
rithms with nearest-neighbour gating. On the other hand,
cosine squared windowing function is shown to improve the
reconstruction if an optimal window size is chosen (Schäfer
et al., 2006). If the size of the window is increased, it
possibly reduces the background artifacts but it leads to a
blurred reconstruction due to motion (Schäfer et al., 2006).
These motion corrupted reconstructions are not satisfact-
ory for clinical purposes, however they can be benefited as
an initial coarse reconstruction for a motion compensated
reconstruction (Rohkohl et al., 2008a, 2009b; Schwemmer
et al., 2013b,a).

In recent years, the focus of gated reconstruction meth-
ods has shifted towards incorporation of prior information
to cope with the undersampling due to gating. High con-
trast vessels occupy a small volume, therefore there must
be a small number of voxels in the final reconstruction
with nonzero voxel values (Li et al., 2002, 2004), assum-
ing background pixels are removed from the X-ray images
(see Section 4.3.6). Since it is not possible to embed prior
information into analytical reconstruction algorithms, iter-
ative reconstruction algorithms with some kind of sparsity
prior have been proposed. In (Li et al., 2004; Hansis et al.,
2008c; Liu et al., 2014a), the forward projection equations
are used as constraints and L1 norm of the reconstruction
is minimized. Similarly, (Wu et al., 2011) minimized total
variation (TV) norm of the reconstruction instead of L1
norm. Another way is to take a statistical approach and
integrate the prior information in terms of a prior distri-
bution model for the voxels. In particular, the voxel grid is
considered a Markov Random Field (MRF) and the prior
information is embedded using the clique potentials for the
MRF. As the clique potentials, absolute value (Zhou et al.,
2008) and sign functions (Hu et al., 2010, 2012) are used,
which introduce TV-like and L0-like priors, respectively.
An interesting way to introduce the prior information is
to use a 3D centreline model. The prior probability for
each voxel is defined as a function of the distance from a
reference 3D centreline model to that voxel (Bousse Ast
et al., 2009).

4.3.3. Motion Compensated Tomographic Reconstruction

Since retrospective gating reduces the number of im-
ages available for the reconstruction, some reconstruction
algorithms compensate for the effective motion instead of
gating (Table 2). Essentially, the contributions from all X-
ray images are brought to the same time point. Thus, all
collected X-ray images are effectively used without intro-
ducing motion related artifacts. By means of a phantom
coronary artery reconstruction experiment, (Schäfer et al.,
2006) demonstrated that MC reconstruction can attain the
quality of a static reconstruction from all projections, if the
motion is known or estimated up to a certain accuracy.

Therefore, the crucial part of every MC reconstruction al-
gorithm is generally the motion estimation step.

MC methods require a representation of a motion field
to model the mapping of the pixels or voxels from a refer-
ence time point to other time point. In general, the motion
field is parameterised by a motion vector field or a geomet-
ric transformation. The temporal component of the mo-
tion field is commonly parameterised by cardiac phase as-
suming a periodic motion (Movassaghi et al., 2003; Blondel
et al., 2006; Rohkohl et al., 2008a; Hansis et al., 2008d,
2009; Bousse Ast et al., 2009). However, the periodicity
assumption is problematic for the cases where residual mo-
tion is strong or for the cases with arrhythmic heart motion
(Rohkohl et al., 2009b). Because of this reason, the tem-
poral component is sometimes parameterised by acquisi-
tion time (Rohkohl et al., 2009b,a, 2010b). This strategy
was shown to lead similar, if not superior, reconstructions.

Several types of geometric transformations have been
investigated. A simplistic approach is to model the com-
plex motion of the coronary arteries using 2D geometrical
transformations acting on the X-ray images (Movassaghi
et al., 2003; Hansis et al., 2008d). Two-dimensional rigid
(Movassaghi et al., 2003) and 2D elastic (Hansis et al.,
2008d) transformation are employed. Other studies use
either 3D (Rohkohl et al., 2008a; Bousse Ast et al., 2009)
or 4D (Blondel et al., 2006; Hansis et al., 2009; Rohkohl
et al., 2009b,a, 2010b) B-spline transformation. B-spline
transformations offer spatial (and temporal if 4D) smooth-
ness and achieve better results at the extent of an increase
in the number of parameters to be estimated.

The parameters of the geometric transformation are
estimated by an image registration method. For 2D trans-
formations, an initial 3D reconstruction is obtained at a
reference time and forward projected onto the projection
images with a different time stamp. The parameter es-
timation problem is defined as estimating the registration
between the features extracted from the projection im-
ages and the features extracted from forward projected
images (Figure 11a). 3D reconstructions of markers on the
guidewire (Movassaghi et al., 2003) and ECG-gated tomo-
graphic reconstruction (Hansis et al., 2008d) are utilized to
compute the forward projections. In some cases, the for-
ward projected images are processed to extract some fea-
tures (e.g. centrelines) for the registration (Hansis et al.,
2008d). For 3D and 4D B-spline transformations, various
strategies are proposed. One option is to propagate a 3D
modelling based reconstruction to the remaining projec-
tion images (Section 4.2.3) (Blondel et al., 2006; Bousse
Ast et al., 2009). Instead of a 3D modelling based recon-
struction, a series of ECG-gated reconstructions can be
obtained. These reconstructions are used to define an in-
tensity based registration to estimate the parameters (Ro-
hkohl et al., 2008a). Other possibility is to estimate the
motion parameters jointly with the reconstruction (Figure
11b) (Hansis et al., 2009; Rohkohl et al., 2009b,a, 2010b).
To achieve this goal, the parameters of the transformation
are directly embedded into the analytical (Rohkohl et al.,
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Figure 11: Motion estimation strategies for motion compensated (MC) reconstruction: The motion is parameterised by an appropriate
geometric transformation, T p, and the parameters of the transformation are estimated by a registration process. Rref and Rp denote initial
reconstructions at a reference cardiac phase pref and at an arbitrary cardiac phase p, respectively. (a) For 2D geometric transformation, the

motion estimation can be formulated as a registration between the X-ray images and the forward projection of Rref . The 2D images at phase
p are deformed according to the estimated transformation, and utilized in the reconstruction process. (b) For 3D geometric transformation,
one option is to compute Rref and T p jointly. This is generally achieved by embedding the T p into the reconstruction formulation and
iteratively estimating Rref and T p by minimizing the error between the X-ray projections and forward projection of Rref (T p).

2009b,a, 2010b) or iterative (Hansis et al., 2009) recon-
struction formulations. An energy functional is derived
from these formulations with the addition of appropriate
regularization term. The squared error between the pro-
jections of the reconstruction and X-ray images is used as
the energy term in (Hansis et al., 2009; Rohkohl et al.,
2009a). Voxelwise multiplication of the reconstruction by
a binarized reference 3D reconstruction is another altern-
ative, which require a reference reconstruction (Rohkohl
et al., 2009b, 2010b). Starting from an initial set of para-
meters and reconstruction, parameters are updated by a
gradient based optimization and reconstruction is updated
according to the reconstruction formula in an iterative
manner.

The compensation for the estimated motion is mainly
performed in two ways. First, the X-ray projection im-
ages are deformed using the estimated geometric trans-
formation (Movassaghi et al., 2003; Hansis et al., 2008d).
This is a trivial task if the estimated motion acts on pixels
in 2D. On the other hand, if a 3D/4D motion field is es-
timated, it can be incorporated into the reconstruction
formulation. Section 4.3.5 details how to achieve this for
iterative (Blondel et al., 2004, 2006; Hansis et al., 2009;
Bousse Ast et al., 2009) or analytical (Schäfer et al., 2006;
Rohkohl et al., 2008a, 2009b,a, 2010b,a) formulations.

4.3.4. Gated and Motion Compensated Tomographic
Reconstruction

In gated tomographic reconstruction, the shape of the
gating window is critical since it determines the trade-
off between undersampling and motion artifacts (Schäfer
et al., 2006). It is inevitable, however, to observe motion
artifacts with a finite gating window due to residual mo-
tion (Hansis et al., 2008a). In some difficult circumstances,
such as when the patient is unable to hold breath or in the
presence of arrhythmic motion, motion artifacts are more

severe (Rohkohl et al., 2010a). To improve this aspect of
ECG-gated reconstruction methods, motion compensation
strategies are proposed (Figure 12) (Blondel et al., 2006;
Hansis et al., 2008a, 2010; Rohkohl et al., 2010a; Schwem-
mer et al., 2013b,a).

The gated MC methods typically parameterise the mo-
tion as a 2D geometric transformation (Blondel et al.,
2006; Hansis et al., 2008d; Schwemmer et al., 2013b,a).
Two-dimensional elastic (Hansis et al., 2008d, 2010), a
multiscale scheme of 2D affine and 2D B-spline (Schwem-
mer et al., 2013b,a), and 2D translation (Blondel et al.,
2006) are employed. The estimation of parameters are
carried out by intensity based (Schwemmer et al., 2013b,a)
or feature based (e.g. centrelines) (Hansis et al., 2008d)
registration between the forward projections of the ECG-
gated reconstruction and X-ray images. The estimated
transformation is applied on the projection images and
these transformed images are used for the final MC recon-
struction. In general, these methods compute the recon-
struction and perform motion compensation in an iterative
manner to reduce the effect of motion in the final recon-
structions (Figure 12) (Hansis et al., 2010; Schwemmer
et al., 2013a). Starting with a small gating windows and
gradually increasing the size of the window as iterations
progress is shown to be a reasonable strategy to deal with
the undersampling artifacts and motion at the same time
(Schwemmer et al., 2013a).

As an alternative to 2D geometric transformation, (Ro-
hkohl et al., 2010a) employed 4D affine transformation
to parameterise the residual motion. In particular, a set
of temporal points are selected and assigned a 3D affine
transform, from which the 3D affine transformation for the
remaining time points are interpolated. The parameters of
the affine transforms are estimated altogether and jointly
with the gated reconstruction.
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Figure 12: An example of gated and motion compensated tomographic reconstruction: Top row, using 20% gating window: (a) reconstruction
using FDK without motion compensation; (b) initial reconstruction using START; (c)-(d) reconstruction after first and second motion
compensation cycle, respectively. Bottom row, using 40% gating window: (e) reconstruction using FDK without motion compensation. (b)
initial reconstruction using START. (c)-(d) reconstruction after first and second motion compensation cycle, respectively. Reprinted from
Med. Phys. 37 (4), Hansis, E., Carroll, J. D., Schäfer, D., Dössel, O., Grass, M., High-quality 3-D coronary artery imaging on an interventional
C-arm x-ray system, 1601-9, doi: 10.1118/1.3352869, Copyright c©(2010) Am. Assoc. Phys. Med., with permission from AAPM.

4.3.5. Specialized Tomographic Reconstruction Algorithms

The fundamental tomographic reconstruction algorithms
discussed in Section 4.3.1 mainly deal with the reconstruc-
tion of conventional CT. These algorithms are generally
unsuitable for high contrast non-stationary coronary artery
reconstruction because these may cause artifacts due to
sparse high contrast vessels or undersampling due to gat-
ing. Moreover, modifications to these algorithms are re-
quired if motion compensation is intended. As a result,
several specialized tomographic reconstruction algorithms
are adapted from these basic algorithms.

Analytical FDK reconstruction algorithm is modified
such that it copes with the undersampling due to retro-
spective gating (Movassaghi et al., 2007; Rohkohl et al.,
2008a). A weighting factor is introduced to counteract
the non-equidistant angular sampling (Movassaghi et al.,
2007). (Rohkohl et al., 2008a) observed actual low intens-
ity voxels receive high contributions from some projection
images, and this leads to streak artifacts. Thus, a novel
weighting is devised to reduce the highest and lowest con-
tributions for a voxel.

Some studies investigated the necessary modifications
to FDK in order to convert it into a MC method. (Schäfer
et al., 2006) demonstrated how to incorporate motion into
an analytical FDK reconstruction formulation. Their new
formulation suggests that the filtering and back-projection
steps must take the estimated motion vector field into ac-
count. However, the formulation does not take into ac-
count the effect of the motion vector field on the filtering
in their implementation. In (Rohkohl et al., 2009b, 2010b),
the same MC-FDK formulation is used without ignoring
the filtering step. This formulation is well-suited to the

problems where motion and reconstruction are jointly es-
timated. Specifically, MC-FDK is inserted into an object-
ive function and used multidimensional optimization to
find the motion parameters and the reconstruction iterat-
ively.

Iterative algebraic reconstruction algorithms are refor-
mulated such that they benefit from sparse structure of
the coronary arteries. Instead of directly solving the for-
ward projection equations, L1 norm of the reconstruction
is minimized with the forward project equations used as
constraints (Li et al., 2002, 2004; Hansis et al., 2008c). By
introducing a quadratic perturbation term, the minimiz-
ation problem can be approximated and efficiently solved
via an iterative scheme, which is akin to the conventional
ART (Li et al., 2004). Intuitively, nonzero constraint of
original ART is relaxed and the solution space is enriched
by addition of new subspaces (Hansis et al., 2008c). This
effect is mainly due to a voxelwise thresholding in the new
formulation. Therefore, the algorithm is called threshol-
ded ART (TART). Hansis et al. (Hansis et al., 2008c)
proposed simultaneous TART (START) technique follow-
ing the similar changes to convert ART to SART. Recently,
Liu et al. (Liu et al., 2014a) combined START with a novel
background removal technique (Section 4.3.6).

Incorporation of the motion into iterative algebraic re-
construction formulation is studied in (Blondel et al., 2004).
The authors showed that the forward projection matrix
can be represented such that it depends on the estim-
ated motion vector field. Their formulation states that the
entries of the forward projection matrix are given by the
volume of the intersection of the X-ray beam with the de-
formed voxel. After calculation of the forward projection
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matrix, any iterative algebraic technique can be utilized
for the reconstruction. A similar formulation with a gen-
eric image model and X-ray lines are presented in (Hansis
et al., 2009). Calculation of forward projection matrix is
computationally expensive and approximations are made
(Blondel et al., 2004; Hansis et al., 2009).

Other methods based on joint estimation-reconstruction
or iterative statistical reconstruction algorithms generally
employ well-known energy minimization algorithms. These
algorithms are used without any modifications, however
we mention these algorithms in this section for complete-
ness. Alternatives for energy minimization include gradi-
ent descent (Hansis et al., 2009), stochastic gradient des-
cent (Rohkohl et al., 2009a, 2010a), L-BFGS-B (Rohkohl
et al., 2009b, 2010b), separable paraboloidal surrogates
(SPS) (Erdogan and Fessler, 1999; Hu et al., 2010, 2012),
and block sequential regularized expectation maximization
(BSREM) (de Pierro and Beleza Yamagishi, 2001; Zhou
et al., 2008).

4.3.6. Background Removal

X-ray coronary angiography not only includes coronary
arteries but also background structures such as spine, ribs
or diaphragm. These background structures may cause
truncation errors because they are not visible in all pro-
jection images due to field of view (Blondel et al., 2006).
In addition, the background structures may hinder the use
of sparsity as a prior information (Hansis et al., 2008c). As
a result, most of the tomographic reconstruction methods
require background removal from X-ray images as a pre-
processing or an intermediate step.

Simple image processing techniques are commonly util-
ized for background removal. The most popular choice
is to apply a top-hat filter (Soille, 2004) to suppress the
background (Hansis et al., 2008d,c,a, 2009; Rohkohl et al.,
2010a; Liu et al., 2014a). A good suppression can be
achieved, however the size of the filter may effect the res-
ults (Liu et al., 2014a). On the other hand, some segment-
ation based background removal algorithms are proposed
(Blondel et al., 2006; Zhou et al., 2008; Hu et al., 2010,
2012; Schwemmer et al., 2013b). These methods first seg-
ment the coronary arteries from X-ray images and remove
corresponding pixels. These pixels are filled with intensity
value estimates from neighbouring background structures
to obtain a background image. Hysteresis thresholding of
tubularity image (Blondel et al., 2006; Zhou et al., 2008),
thresholding of top-hat filtered image (Hu et al., 2010;
Schwemmer et al., 2013b), and level set based segment-
ation (Hu et al., 2012) are employed. To fill the removed
pixels, morphological closure (Blondel et al., 2006; Zhou
et al., 2008) and image inpainting (Hu et al., 2012) are
used.

Some reconstruction methods perform background sub-
traction during the reconstruction. In (Rohkohl et al.,
2009b, 2010b), a thresholded reference reconstruction is
integrated into reconstruction formulation to reduce the
effect of the background structures on the optimization.

On the other hand, (Liu et al., 2014a) proposed to segment
intermediate reconstruction of the iterative reconstruction
algorithm and used forward projections of the segmenta-
tion to suppress background structures on the X-ray im-
ages.

The background is generally suppressed or subtracted
from the X-ray projection images. This strategy is prob-
lematic for iterative statistical reconstruction algorithms
since the distribution of the subtraction image does not
follow the original assumption (Zhou et al., 2008). In such
cases, integration of background estimation into statistical
model improves the reconstruction quality (Zhou et al.,
2008).

4.3.7. 3D+time (4D) Tomographic Reconstruction

The simplest way to obtain 3D+time (4D) tomographic
reconstruction is to reconstruct for a number of time points
independently (Figure 13) (Movassaghi et al., 2007; Han-
sis et al., 2010). However, it may be impossible to attain
the same level of accuracy in different time points due to
several factors (e.g. residual motion related to gating win-
dow size). In addition, the motion of the arteries can not
be studied quantitatively (Holub et al., 2011). To over-
come these limitations, (Holub et al., 2011) proposed a
strategy to exploit the motion estimated for a MC recon-
struction method. Because the parameterisation of the
motion is from arbitrary time points to a reference time
points, an energy minimization is proposed to inverse the
estimated motion vector field. Inverse motion vector field
is used to transform the best-quality reconstruction to the
other time points. Unlike this strategy, the methods that
perform joint reconstruction and motion estimation can
directly deliver the 4D reconstruction result (Hansis et al.,
2009).

5. Evaluation Methods for Coronary Artery

Reconstructions

Comparison between different types of the coronary
artery reconstruction methods is difficult to achieve due
to diversity of the acquisition protocols, specific require-
ments for the method (e.g. ECG, calibration, user inter-
action), and especially the lack of standard dataset and
performance metrics. Nevertheless, common evaluation
types (Section 5.1), phantom datasets (Section 5.2) and
evaluation metrics (Section 5.3) can be identified from the
relevant literature to provide insight into the efforts to-
wards a standardized quantitative comparison.

5.1. Evaluation Type

Three main groups of evaluation types can be distin-
guished: qualitative results, quantitative with phantom
experiments, and quantitative with experiments on real
patient data (Table 3).

The methods with qualitative evaluation visually com-
pare the results with the results from other methods to
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Figure 13: An example of 4D tomographic reconstruction: Volume renderings of reconstructions of a left coronary artery at (a) 0%, (b) 25%,
(c) 50%, (d) 75% of the cardiac cycle. Reprinted from Med. Phys. 37 (4), Hansis, E., Carroll, J. D., Schäfer, D., Dössel, O., Grass, M.,
High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system, 1601-9, doi: 10.1118/1.3352869, Copyright c©(2010) Am.
Assoc. Phys. Med., with permission from AAPM.

provide evidence of the feasibility of the method. These
methods are rare in the literature, especially within the
journal publications. Further assessment of these methods
are required to determine their strengths and weaknesses.

Quantitative evaluations are performed by experiments
employing either phantom data or real patient data.

5.2. Phantom Datasets

The ground truth required for the validation is not dir-
ectly available for the reconstruction problem. One way
to address this issue is to utilize physical and software
phantoms where the ground truth is known.

Physical phantoms are advantageous in terms of expos-
ing the reconstruction methods to the practical limitations
of image acquisition. However, they tend to be limited
to simple motion models, since it is hard to imitate the
complex combination of cardiac and respiratory motion.
In addition, ground truth information must be extracted
from a stationary reconstruction of the phantom usually
based on manual or semi-automatic image segmentation.

Several physical phantoms with different levels of com-
plexity have been used. Wire (Hoffmann et al., 2000;
Cañero et al., 2002) and guide-wire (Chen and Carroll,
2000) phantoms are primitive examples. A 3D-printed
static bifurcation and stenosis phantom is used in (Yang
et al., 2009). The ground truth is determined from the
geometric description of the object. In (Movassaghi et al.,
2004), a stenotic coronary artery phantom is used. A static
coronary artery phantom with realistic topology is used in
(Liao et al., 2010). The phantom is scanned with multis-
lice CT (MSCT) and segmented to find the ground truth
centrelines. (Shechter et al., 2003a) used contrast filled
tubes over a compliant latex balloon to mimic the mo-
tion. The motion is controlled with mechanical inflation
of the balloon. The ground-truth is obtained by segment-
ing a gated multislice MR of the object and identifying
the temporal correspondences between ground-truth and
X-ray acquisition. A similar artificial heart and coronary
phantom is proposed in (Rohkohl et al., 2009b, 2010b).
The authors placed tubular structures filled with contrast
over an elastic material filled with water. The cardiac mo-
tion is controlled with a pump that pushes water in an out,

and the respiratory motion is controlled with specialized
hardware. (Jandt et al., 2009b) used a commercially avail-
able complex chest phantom (Radiology Support Devices,
2006).

Software phantoms offer flexible environments for the
reconstruction experiments. These phantoms can simul-
taneously take into account several factors such as the
complex topology of vessels, cardiac and heart motions.
However, imaging geometry and physics of image acquisi-
tion are often simplified.

(Lorenz et al., 2004) built a software phantom from a
mean model of the coronary artery trees adapted from the
clinical information provided in (Dodge et al., 1992). The
motion of the arteries are included using affine transforma-
tions between cardiac phases (Schäfer et al., 2006). (Yang
et al., 2007, 2012) built a phantom from MSCT data to ob-
tain a more realistic results. They segmented the coronary
arteries from MSCT and set the segmented voxel values to
a high value to simulate contrast injection. Another pos-
sibility is to exploit the coronary artery anatomical model
in the 4D XCAT phantom (Segars et al., 2010). (Fung
et al., 2011) generated more complete anatomical model
for XCAT, based on morphometric and physiological rules.
(Rohkohl et al., 2010c) used XCAT phantom to generate
realistic X-ray rotational angiography images. In fact, this
work constitutes the first attempt to define a standardized
quantitative comparison platform. The projection images
and relevant additional information are publicly available.
Any voxelized reconstruction result can be submitted to
the platform for evaluation and ranking.

5.3. Evaluation Metrics

The reconstruction results are qualitatively assessed
via evaluation metrics measuring the similarity of the re-
construction and the ground truth. Depending on the
reconstruction method and the ground truth information
various evaluation metrics have been proposed.

Evaluation metrics for model-based reconstruction meth-
ods are based on ground truth centreline. To emphasize
robustness of the method against foreshortening, the dif-
ference between the length of the ground truth and re-
constructed centreline is typically preferred for the experi-
ments with wire phantom (Chen and Carroll, 2000; Cañero
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et al., 2002; Chen and Carroll, 2003). Angles of specific bi-
furcations are also used to define an error measure (Chen
and Carroll, 2003; Andriotis et al., 2008). Apart from
these metrics, the most common metrics are 2D repro-
jection error and 3D space error. The 2D reprojection
error is used to quantitatively evaluate the performance
in the experiments using clinical X-ray angiography im-
ages. It is defined using the Euclidean distance between
the manually segmented ground truth centrelines from the
X-ray images and forward projection of the reconstructed
arteries onto the 2D detector plane. However, it is demon-
strated in (Cong et al., 2015) that 2D reprojection error
does not correlate well with the 3D space error . There-
fore, the 2D reprojection error must be calculated from
projection angles that are not included in the reconstruc-
tion or favourably supported by appropriate 3D evaluation
metric. The 3D space error is used in the experiments
where the 3D ground truth is available and is generally
considered most conclusive centreline based metric. It is
simply defined using the 3D Euclidean distance between
the reconstruction and the ground truth.

Surface or attenuation coefficient based metrics are pro-
posed for tomographic reconstruction methods. Mean ra-
dius error (Rohkohl et al., 2010b) or mean relative radius
error (Hansis et al., 2008d,c; Liu et al., 2014a) are calcu-
lated from the planes whose normal is the ground truth
centreline. Another metric is defined as the fraction of the
energy (integral of voxel values) located inside the ground
truth surface (Hansis et al., 2008d). Similar to this met-
ric, RMS error or MSE of voxel values over whole volume
or near coronary artery centrelines are employed (Schäfer
et al., 2006; Hansis et al., 2008c; Zhou et al., 2008; Hansis
et al., 2010; Hu et al., 2010). These attenuation value met-
rics are reasonable indicators of the contrast and artifact in
the resulting reconstruction. Another way of assessing the
image artifacts is to employ a noise estimator (Schwem-
mer et al., 2013b). Another popular choice for assessment
is to compare a thresholded reconstruction with the bin-
ary ground truth. Recall rate (Bousse Ast et al., 2009) or
Dice coefficient (Hu et al., 2012) are utilized. In (Rohkohl
et al., 2010c), a set of thresholds are used to convert re-
construction into binary volumes and the maximum Dice
coefficient is assigned as the quality metric. This met-
ric can work with modelling based reconstructions if the
voxelization of the reconstruction is supplied.

There is also some interest in eliminating necessity of
having a ground truth. For this purpose, sharpness met-
ric is adapted in (Schwemmer et al., 2013b, 2014). The
centreline is semi-automatically extracted from the recon-
structed image and intensity profiles perpendicular to the
centrelines are computed. The metric is defined as the in-
verse of the average distance between the point of 80%
and 20% decrease along the intensity profiles. An im-
plementation of this metric is available as a part of a
multi-modality 3D coronary artery reconstruction evalu-
ation software (Schwemmer et al., 2014).

6. Discussion and Conclusions

During the last decade, healthcare has witnessed tre-
mendous advances in the coronary artery imaging tech-
nologies. Three main directions of development efforts
can be distinguished: i) development of non-invasive dia-
gnostic imaging technologies, such as MRA and CCTA, ii)
development of non-invasive interventional technologies,
such as C-arm CBCT, and iii) development of invasive in-
terventional technologies, such as IVUS, OCT and X-ray
coronary angiography. In the current situation, there is
a competition between some of these imaging techniques
to determine the most effective areas of use for particu-
lar imaging technology. However, it is clear that no single
imaging technique can overthrow the others, since they all
have different advantages and limitations. Therefore, it is
crucial to identify the potential of the each imaging mod-
ality and to dedicate imaging and clinical research to each
of those to improve all technologies simultaneously.

Advances in the non-invasive imaging modalities do not
necessarily result in a decline of the invasive technologies.
However, several aspects of clinical decision making, which
now depends on X-ray coronary angiography and recon-
structions obtained from it, can be effectively handled by a
more appropriate imaging modality. The main competitor
of X-ray coronary angiography is CCTA. It is anticipated
that the CCTA will be the dominant imaging modality for
the selection of patients for PCI and the intervention plan-
ning due to its non-invasiveness. However, several import-
ant factors must be considered before adoption of this tech-
nology, such as patient radiation dose, practice guidelines
and financial issues (Mark et al., 2010). In this regard, X-
ray coronary angiography is an established imaging modal-
ity, and it is expected to remain as the main imaging mod-
ality for the guidance during the interventions. In order
to fully exploit X-ray coronary angiography capabilities,
3D/4D reconstruction from X-ray coronary angiography
should make its way to the intervention room.

Reconstruction from X-ray coronary angiography can
facilitate PCI in several ways. In fact, 3D/4D reconstruc-
tions are progressively being integrated into PCI. Optimal
view selection using reconstructions is a remarkable ex-
ample of these integration efforts. Optimal views obtained
without additional radiation or contrast can help with the
stent positioning (Green et al., 2005; Eng et al., 2013). In
a similar fashion, tomographic reconstructions can be used
to simulate intracoronary images to provide further guid-
ance for stent positioning (Schoonenberg et al., 2009b).
Furthermore, live overlay of the reconstruction on the flu-
oroscopy images can provide navigational guidance and
possibly lead to a reduction in the contrast material use
(Schoonenberg et al., 2009a). In the near future, dynamic
reconstructions and holographic imaging can provide a
truly 3D display for the understanding of the spatial struc-
ture of the coronary arteries.

Fusion of different imaging modalities to exploit sup-
plementary information is another promising direction for
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the future of X-ray coronary angiography. In this context,
reconstructions from X-ray coronary angiography can be
utilized instead of raw images. Extracted information from
diagnostic CCTA scans can be overlaid with reconstruc-
tions to bring the pre-operative planning into the cath-
lab (Dibildox et al., 2014). Fusion of reconstructions with
IVUS or OCT can provide useful information concerning
the morphological information about the stenosis and wall
characteristics (Bruining et al., 2009). Moreover, combin-
ation of TEE with 4D reconstructions can supply valuable
soft-tissue information (Rasche et al., 2008). Most im-
portantly, information from functional imaging techniques
must be fused with the anatomical information of the re-
constructions. This is one of the directions that requires a
special attention in the future.

An intriguing direction for the future research is the
investigation of the tomosynthesis capability of the exist-
ing X-ray coronary angiography systems for high-contrast
vascular structure reconstruction (Langan et al., 2015).
In fact, this can be considered the natural next step for
tomographic coronary artery reconstruction from exten-
ded rotational X-ray angiography. Successful results can
lead to reduction in the radiation dose and may result
in the change of the acquisition protocol, analogous to
the transition from conventional to (dual-axis) rotational
angiography.

Novel and robust clinical tools are required to strengthen
X-ray coronary angiography’s position inside cath-lab. Im-
provements on virtual FFR estimation (Morris et al., 2013;
Papafaklis et al., 2014; Tu et al., 2014; Morris et al., 2015)
or virtual stenting (Larrabide et al., 2012) could make
these technologies available for intraoperative decision mak-
ing. Real-time simulation of deployment of stent deploy-
ment and computation of the resulting hemodynamic changes
by the help of 3D/4D reconstructions can be set as the next
targets for clinical tool development.

To achieve the ambitious goals stated above, several as-
pects of the current reconstruction methods must be recon-
sidered. First, the manual interaction required for most of
the modelling based reconstructions hinders clinical trans-
lation of these methods for real-time processing (Table 1).
Almost automated methods are essential to make recon-
struction technology as an irreplaceable part of cath-lab.
Second, the time requirement of the methods should be re-
duced to the order of seconds by the help of modern paral-
lel computing opportunities (Table 3). The recent progress
on this direction is encouraging and shows the feasibil-
ity of online processing inside cath-lab (Eng et al., 2013).
Third, 4D reconstruction methods with reasonable time
requirements should be devised to fully exploit the cap-
abilities of X-ray coronary angiography. Finally, a grand
challenge could be organized to be able to overcome the
lack of comparability in 3D/4D reconstruction research.
Initial endeavour to generate a publicly available database
for comparison (Rohkohl et al., 2010c) is a notable step
toward this direction. A broader quantitative evaluation
should involve validation by appropriate metrics capable

of providing 3D/4D errors on three possible levels, namely,
software phantom, physical phantom and clinical images.
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Table 1: Overview of Model-based Coronary Artery Reconstruction Methods from X-ray Angiography: See list of abbreviations at the bottom.

Reference Type ECG
Breath
-hold

Additional Input Calibration 3D Reconstruction Multi-view
Lumen
surface

4D

T
O
P
-D

O
W

N

Sarry and Boire (2001) BA - + CLs (2) + Fourier deformable model with PEE - - +

Cañero et al. (2002) BA + + CLs (2) + ACM with PEE - - -

Zheng et al. (2010) SA N/A N/A Corresponding
2D points (2)

Opt. of ext.
params

Calibration opt. followed by ACM with
PEE and temporal energy

- - +

Cong et al. (2015) SA + N/A CLs (2-5) + ACM with BPEE + (2-5) + (2-5) -

Yang et al. (2014) SA + N/A CLs (2) Opt. of ext. &
int. params

ACM with BPEE & calibration opt. iter-
atively

- + (N/A) -

B
O
T
T
O
M

-U
P

Chen and Carroll (2000) SA + N/A CLs (2) Opt. of ext.
params

Calibration opt. followed by epipolar
matching + triangulation

- +(1) -

Hoffmann et al. (2000) BA - N/A CLs (2) Opt. of ext.
params

Calibration opt. followed by epipolar
matching + triangulation

- - -

Chen and Carroll (2003) SA + N/A CLs (2) Opt. of ext.
params

Calibration opt. followed by epipolar
matching + triangulation

- +(1) +

Shechter et al. (2003a) BA - + CLs (2) + Used (Mourgues et al., 2001) - - +

Movassaghi et al. (2004) RA + + CLs (Multi, N/A) + Epipolar matching + triangulation - + (Multi, N/A) -

Andriotis et al. (2008) SA + N/A Corresponding
2D points (2)

Opt. of ext.
params

Calibration opt. followed by epipolar
matching + triangulation

- + (8) -

Fallavollita and Cheriet
(2008)

BA - - CLs (2) - Reliable point matching & bundle ad-
justme, iteratively

- - -

Jandt et al. (2009a) RA + + - + Segment from backprojected vesselness
response

+ (5-9) - -

Jandt et al. (2009b) RA + + - + Used (Jandt et al., 2009a) + (5-9) + (5-9) +

Yang et al. (2009) SA + N/A CLs (2) - Epipolar matching & bundle adjustment,
iteratively

- +(2) -

Liao et al. (2010) RA + + CLs (4-5) + Graph-cut based sparse stereo + (4-5) +(1) -

Liu et al. (2014b) SA + N/A CLs (3) + Graph-cut based sparse stereo + (3) - +

List of abbreviations:
ACM = active contour model; BA = Biplane X-ray angiography; BPEE = back-projective (3D) external energy; CL = Centreline; ECG = Electrocardiogram; ext. = extrinsic; int. = intrinsic;
Opt. = Optimization; param = parameter; PEE = projective (2D) external energy; RA = Rotational X-ray angiography; SA = Standard X-ray angiography; (#) = Number of X-ray images to
reconstruct; N/A = not available
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Table 2: Overview of Tomographic Coronary Artery Reconstruction Methods from X-ray Angiography: See list of abbreviations at the bottom.
Reference ECG Breath Acquisition Motion Compensation Reconstruction

-hold protocol Motion Model How obtained How applied

G
A
T
E
D

Li et al. (2004) N/A N/A N/A - - - TART

Hansis et al. (2008c) + + 180◦, 7.2 s, N/A, 30 fps - - - START

Liu et al. (2014a) + N/A 180◦, N/A , N/A , N/A - - - START
with BR

G
A
T
E
D

&
M

C Schwemmer et al.
(2013b)

+ + N/A, 5 s, (133), N/A 2D affine and
2D B-spline

Registration between projection
of initial reconstruction and pro-
jection images

Apply deformations to projec-
tion images

Artifact reduced
FDK

Hansis et al. (2010) + + 180◦, 7.2 s, N/A, 30 fps 2D elastic warp-
ing

Registration between projection
of initial reconstruction and pro-
jection images

Apply deformations to projec-
tion images

START

M
C

Blondel et al. (2004) N/A - 120◦, N/A, (100), N/A N/A N/A Incorporate MVF into ART for-
mulation

Additive Art

Blondel et al. (2006) - - 200◦, 5 s, N/A, 30 fps 4D B-spline Propagation of 3D centerline
construction

Incorporate MVF into ART for-
mulation

Additive Art

Schäfer et al. (2006) + + 240◦, 8 s, (200), N/A N/A N/A Incorporate MVF into FDK MC FDK

Hansis et al. (2008c) + + 180◦, 7.2 s, N/A, 30 fps 2D elastic
warping

Registration between projection
of initial reconstruction and pro-
jection images

Apply deformations to projec-
tion images

FDK

Rohkohl et al. (2010b) + - 200◦, N/A, (133), N/A 4D B-spline Jointly with the reconstruction Incorporate into FDK formula-
tion

Gradient based
energy
minimization

List of abbreviations:
ART = Algebraic reconstruction technique; BR = Background removal; FDK = Feldkamp-Davis-Kress algorithm; fps = frame per second; MC = Motion compensated; MVF = Motion vector
field; START = Simultaneous thresholded algebraic reconstruction technique; TART = Thresholded algebraic reconstruction technique; (#) = Number of X-ray images; N/A = not available
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Table 3: Overview of Evaluation Types for Coronary Artery Reconstruction from X-ray Angiography Methods: See list of abbreviations at the bottom.
Reference Hardware Time/Additional Info Type No Std. of Reference Metric

Q
u
a
li
t
a
t
iv

e Blondel et al. (2004) N/A 60 min Pat 1 N/A N/A
Li et al. (2004) N/A N/A s - Pat N/A - N/A AT - AT N/A - N/A
Blondel et al, 2006 N/A 40 min / 2563 s - Pat 1 - 2 AT - AT N/A - N/A

Q
u
a
n
t
it
a
t
iv

e
:

s
y
n
t
h
e
t
ic

o
r

p
h
y
s
ic

a
l
p
h
a
n
t
o
m

d
a
t
a

Hoffmann et al. (2000) N/A 8-9 min p - Pat 2 - 2 AT - AT Inter/Intra var. -
Inter/Intra var.

Cañero et al. (2002) N/A N/A s - p - Pat 1 - 1 - 5 GT, AT - N/A - N/A Length - N/A - N/A
Movassaghi et al. (2004) N/A N/A p - A 2 - 1 GT - N/A 3D rprj - N/A
Andriotis et al. (2008) N/A N/A s 10 GT 3D rprj, Angle
Jandt et al. (2009b) N/A N/A s - p - A -

Pat
1 - 1 - 1 - 2 GT - GT - N/A - N/A 3D rprj - Radius - N/A -

N/A
Schäfer et al. (2006) 3.2GHz AMD Opteron, 8GB 7-80.7 min / 2563-5123 s 1 GT Voxel err. near CL
Hansis et al. (2008d) 2.8GHz AMD Opteron, N/A 5.4-57.9 min / 0-60%

gating window
s - Pat 1 - 15 GT - N/A Radius, Energy inside

GT - N/A
Hansis et al. (2008c) N/A N/A s - Pat 1 - 3 GT - N/A Radius, Energy inside

GT, Stenosis degree -
N/A

Hansis et al. (2010) N/A N/A s - Pat 1 - 4 GT - AT RRE, Total voxel err.,
Voxel err. near CL -
N/A

Rohkohl et al. (2010b) NVIDIA Quadro FX 5800 3 min / 2563 s - p - Pat 1 - 1 - 3 GT - GT - AT Radius - Radius - N/A
Schwemmer et al.
(2013b)

2.53GHz Intel Xeon E5540, 16GB
NVIDIA Quadro FX 5800 GPU

N/A s - Pat 1 - 6 GT; AT - AT MMO; N/A - Noise
level, VS

Liu et al. (2014a) Intel i5-3210 218-350 s / ∼ 2563 s 1 GT; AT MMO, RRE; N/A

Q
u
a
n
t
it
a
t
iv

e
:

r
e
a
l
p
a
t
ie

n
t

d
a
t
a

Chen and Carroll (2000) Indigo2 R10000, 128MB < 10 min p - Pat 1 - 40 GT - GT Length - 2D rprj
Sarry and Boire (2001) 1.2GHz AMD Athlon, 256MB 5 s Pat 14 GT 2D rprj
Chen and Carroll (2003) Indigo2 1.0 min s - p - Pat N/A - N/A - 40 GT - GT - GT Curvature, Torsion -

Length, Angle - 2D rprj
Shechter et al. (2003a) 0.75-1GHz Intel Pentium III 155 min / per cardiac

phase
p - Pat 1 - 5 GT - GT 3D rprj - 2D rprj

Fallavollita and Cheriet
(2008)

N/A N/A s - Pat 2 - 2 GT - GT 2D, 3D rprj - 2D rprj

Yang et al. (2009) 3.2GHz Pentium IV, 1GB 4.1-9.6 s p - Pat 1 - 5 GT - GT 3D rprj, Radius - 2D rprj
Jandt et al. (2009a) AMD Opteron 2220 4 s s - Pat 1 - 17 GT - ES(6) 3D rprj - N/A
Zheng et al. (2010) AMD Athlon X2 4000+, 1GB 0.21 min / per cardiac

phase
Pat 5 GT 2D rprj

Liao et al. (2010) 2.13GHz Intel Pentium M 12 s p - A - Pat 1 - 1 - 11 GT - GT - GT 2D, 3D rprj - 2D rprj -
2D rprj

Cong et al. (2015) Intel i7-2600, 16G N/A s - Pat 1 - 6 GT - GT 2D, 3D rprj - 2D rprj
Yang et al. (2014) Intel i7-2600, 16G N/A s - Pat 6 - 8 GT - GT 2D, 3D rprj - 2D rprj
Liu et al. (2014b) 3.4GHz Intel i7-3770, 8GB

NVIDIA GTX-780 GPU
3 s s - Pat 1 - 7 GT - GT 2D rprj - 2D rprj

List of abbreviations:
A = Animal data; AT = Alternative technique; err. = error; ES(#) = Expert score, # experts; GT = Ground truth; MMO = Maximum mean overlap; p = Physical phantom; Pat = Patient
data; RRE = relative radius error; s = Software phantom; VS = Vessel sharpness; 2D rprj = 2D reprojection error; 3D rprj = 3D reprojection error; N/A = not applicable/available;
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