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compositional data with zeros
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Abstract

We present an effective approach for modelling compositional data

with large concentrations of zeros and several levels of variation, ap-

plied to a database of elemental compositions of forensic glass of vari-

ous use types. The procedure consists of: (i) partitioning the data set

in subsets characterised by the same pattern of presence/absence of

chemical elements and (ii) fitting a Bayesian hierarchical model to the

transformed compositions in each data subset. We derive expressions

for the posterior predictive probability that newly observed fragments

of glass are of a certain use type and for computing the evidential value

of glass fragments relating to two competing propositions about their

source. The model is assessed using cross-validation, and it performs

well in both the classification and evidence evaluation tasks.

Keywords: Bayes factor; classification; evidence evaluation; foren-

sic glass; Markov chain Monte Carlo
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1 Introduction

Chemical compositions often contain large concentrations of zeros, which

require special consideration during the statistical modelling process. We

focus on the elemental composition of glass and construct a model that deals

with this data complexity in a practical way. The elemental composition

data, described in detail in Section 2, consist of the percentage weights

(wt%) of each chemical element comprising a glass fragment. They contain

many zeros indicating that an element is either below limits of detection

or absent from the composition of a fragment. Our model accounts for the

presence (above limits of detection) or absence (below limits of detection)

of particular elements, and seems to improve performance in tasks related

to the statistical analysis of glass fragments in a forensic context.

Analysis of glass fragments for forensic purposes usually focuses on evidence

evaluation, which relates to the comparison of two sets of fragments under

competing propositions, or, at the investigation stage, on the classification

of a fragment into a use-type category (type of glass object from which the

fragments could have originated). Most glass fragments analysed by forensic

experts are too small for their use type to be determined by their thickness

or colour [1], so measurements of physico-chemical features of the fragments,

such as the refractive index or elemental composition, are obtained. Such

measurements are also used for computing a numerical measure of the evi-

dential value of glass fragments transferred to or from a crime scene.

In this paper we present a model that allows us to address both evidence

evaluation and classification of glass fragments, while dealing with the issue

of large concentrations of zeros in an effective way. Our composite model
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combines models on lower-dimensional subsets of the data, which are de-

termined by presence/absence patterns of the elements iron and potassium,

and performs well in simulation studies to assess classification and evidence

evaluation performance.

The paper is organised as follows: the glass data set and data transforma-

tions applied to it are described in Section 2. Section 3 presents the approach

to handling compositional zeros and Section 4 describes the Bayesian hier-

archical model for the forensic glass data. Section 5 gives details of how

the composite model is put together and describes how the model is used to

classify glass items into use-type categories. Section 6 discusses the evidence

evaluation procedure. Concluding remarks are provided in Section 7.

2 Glass data

The data were provided by the Institute of Forensic Research, Krakow, and

were collected in an experimental setting. Glass fragments from 320 glass

objects of five use types (26 bulbs, 94 car windows, 16 headlamps, 79 contain-

ers and 105 building windows) were analysed. Their elemental content was

measured using a scanning electron microscope with an energy-dispersive

X-ray (SEM-EDX) spectrometer [1]. SEM-EDX produces measurements on

the percentage weight (wt%) of the main elements making up the compo-

sition of the glass items. These are oxygen (O), sodium (Na), magnesium

(Mg), aluminium (Al), silicon (Si), potassium (K), calcium (Ca) and iron

(Fe). Three replicate measurements were taken on four glass fragments from

each of the 320 items, for a total of 3840 measurements in the database.
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The data are compositional: the percentage weights of each fragment are

non-negative and sum to 100%. Some of the percentage weights are zero;

the frequency of zeros for each element is shown in Table 1.

Table 1 about here.

Denoting the number of elements in the composition by D, the percentage

weights w = (w1, . . . , wD) satisfy
∑D

d=1wd = 100 and wd ≥ 0 and can be

transformed by taking the ratio of D−1 elements to the remaining one. This

removes the issue of the constrained sample space and reduces the dimension

of the data vector to D − 1. The transformed vector is

w∗ =

(

w1

wD

, . . . ,
wD−1

wD

)

, (1)

where oxygen (O) was chosen as the common divisor, wD, because it is

always present in glass and has the highest weight percentage.

While the Dirichlet distribution would seem a natural fit to modelling com-

positional data, it is restrictive in a way that prevents it from detecting

correlation between subcompositions from the same full composition; this

is referred to as complete subcompositional independence [2, Chapter 10].

Instead, a data transformation is typically applied to (1) to achieve vari-

ance stability and normality. The most common choice of transformation

for compositional data is the additive log-ratio (ALR) of Aitchison [2] which

takes the logarithm of (1). Other transformations that have been applied

to compositional data include the Box-Cox [3], isometric log-ratio [4], hy-

perspherical [5, 6, 7], centred log-ratio [8], multiplicative log-ratio [9] and

complementary log-log [10] transformations.

4



Some members of the Box-Cox family of transformations were examined,

with improvements in variance stability and normality of the data obtained

by applying the square root transformation to (1). A comparison of the ALR

and square root transformations can be seen in Figure 1 and shows that the

square root transformation is more effective at stabilising the variability

in the data. Furthermore, the square root transformation can be applied

directly to compositional zeros, while logarithmic transformations require

replacing them by a small constant (see Section 3). For these reasons, the

square root transformation was considered the appropriate choice for the

analysis of these data.

Figure 1 about here.

3 Compositional zeros

There are two types of compositional zeros: rounded zeros, indicating that if

present a component is below some detection limit, and essential zeros, de-

noting the absolute absence of a component from an observation [12]. Com-

positional zeros in glass are most often treated as rounded zeros under the

assumption that traces of certain elements are present but below detection.

The simplest strategy then is to replace rounded zeros by some small con-

stant equal to or below the detection limit. Techniques for doing this include

the additive replacement strategy of Aitchison [2] and the multiplicative re-

placement strategy of Mart́ın-Fernández et al. [13]. Palarea-Albaladejo et

al. [14] introduced a parametric approach that reduces artificial correlation

induced by such strategies. For the case of essential zeros Butler and Glas-

bey [15] introduced a latent Gaussian random variable that creates a point

5



mass at zero; see also [16].

Here, we partition the glass data depending on whether the elements iron

and potassium are present (above the detection limit) or absent (below the

detection limit) from each composition. Any (D − 1) dimensional compo-

sition (1) with Z zero elements is reduced to a (D − Z − 1) dimensional

subcomposition, by simply removing the zeros. A separate model is then

estimated for each resulting subset of the data. In fact, Stewart and Field

[9] handled zeros in a similar way by proposing a mixture model that splits

the data according to the presence or absence of components.

Observing the presence or absence of an element from the composition of

a glass item can help determine its use type. For example, none of the

bulbs and headlamps in our database contain iron; therefore, a composition

containing iron is thought as being unlikely to be of either of these types.

Other techniques of obtaining the elemental composition of glass fragments,

such as laser ablation inductively coupled plasma mass spectrometry, may

detect traces of such elements in these glass types [17]. Oxygen, silicon

and sodium are always present in glass. The remaining five elements could

be present or absent, giving 32 possible presence/absence configurations.

Only 10 of these configurations were found in the glass database, with most

accounting for very few items. In fact, as can be seen in Table 1, iron

and potassium are responsible for 87.9% of zero measurements, thus only

focusing on the presence or absence of those two elements allows for the

majority of zeros to be removed from the data. We therefore consider only

four configurations as shown in Table 2.

Table 2 about here.
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Typically, the presence or absence of an element in a glass item is unam-

biguous: out of 320 items, only eight have a chemical element with its 12

measurements not all positive or all zero. In general, we assumed that an

element is present in an item if at least one of its 12 measurements is positive.

Modelling of nonzero subcompositions reduces the biasing influence of zeros

on the distribution of the data. This is shown in Figures 2 and 3, containing

plots of the item means for the whole data set, and for the subset having

configuration 2 (Fe, K) from Table 2. In Figure 3, an improvement can be

seen in the symmetry and concentration of points once the large mass at

zero for iron is removed.

The next section discusses a Bayesian hierarchical model for the glass data.

A separate model is estimated for each subset of the data with a given

pattern of presence/absence of chemical elements, which we call elemental

configuration. We consider four models, one for each configuration m =

1, . . . ,M = 4 reported in Table 2.

Figure 2 about here.

Figure 3 about here.

4 Bayesian hierarchical model

Aitken and Lucy [18] and Neocleous et al. [10] used frequentist approaches

to modelling the elemental composition of glass fragments using random

effects models with two levels of variation: between-item and within-item.

Here we take a Bayesian approach and model the hierarchical structure of
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the data using a mixed effects model. The model contains a fixed effect for

the mean by glass type, and three random effects: at item level, at fragment

level and at measurement level.

For each data set with a given elemental configuration m (often not ex-

plicitly indicated), we denote by ztijk the p-vector of square roots of the

compositional ratios from the k-th measurement on the j-th fragment from

the i-th item of use type t, and assume that

ztijk = θt + bti + ctij + ǫtijk,

bti
iid
∼ Np(0,Ω

−1
t ), ctij

iid
∼ Np(0,Ψ

−1), ǫtijk
iid
∼ Np(0,Λ

−1).

(2)

The parameter θt is the mean vector for use type t; bti is the item-level

random effect; ctij is the fragment within item random effect; and ǫtijk

denotes the measurement error. Multivariate normal distributions are as-

sumed for all random effects, with unknown precision matrices, Ωt, Ψ and

Λ. The dimension p may differ across elemental configurations. The param-

eters in the model are collectively designated as ξm = {θ,Ω,Ψ,Λ}, where

θ = {θt}
T
t=1 and Ω = {Ωt}

T
t=1; for the random effects we use the shorthands

b = {bti}
It
i=1

T
t=1 and c = {ctij}

J
j=1

It
i=1

T
t=1. The symbol T = 5 denotes the

number of use types; It is the number of glass items of use type t (I1 = 26,

I2 = 94, I3 = 16, I4 = 79, I5 = 105); J = 4 is the number of fragments from

each item; and K = 3 is the number of repeated measurements on each frag-

ment. If we denote by z the JK measurements on an item of use type Tz = t,

then model (2) implies that the distribution of z, without conditioning on

the random effects, is

z|Tz = t, ξm ∼ NJKp(1JK ⊗ θt, Σt), (3)
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where the covariance matrix Σt is given by

Σt = (1JK1′JK)⊗ Ω−1
t +

[

IJ ⊗ (1K1′K)
]

⊗Ψ−1 + IJK ⊗ Λ−1, (4)

1d denotes a column vector of d 1’s, and Id is the d× d identity matrix.

The prior distributions on the fixed effects θt are independent multivariate

normals truncated to the positive orthant, to ensure that the means for the

square-root-transformed data are non-negative:

θt
iid
∼ Np(0,Φ

−1), θt > 0, t = 1, . . . , T.

The covariance matrix Φ−1 is fixed and equal to s · Ip, with s a relatively

large constant, we used s = 1000. Conjugate Wishart priors are placed on

the precision matrices of the random effects:

Ωt ∼ Wp(d1t, At), Ψ ∼ Wp(d2, B), Λ ∼ Wp(d3, C),

where the degrees of freedom d1t, d2 and d3 are all set equal to p, and the

precision matrices At, B and C are set to (1/1000) · Ip. It was necessary

to introduce separate precision matrices, Ωt, for each glass type, due to the

random variation between items having different properties across use types,

as can be seen from the results in Section 4.2.

4.1 MCMC implementation

Markov chain Monte Carlo (MCMC) methods are used to sample from the

joint posterior distribution of the parameters in the model, ξm = {θ,Ω,Ψ,Λ}

and the random effects {b, c}. The full conditional distributions of all these
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quantities are standard distributions and are reported in Appendix A.1.

These are used to update b, c, Ω, Ψ and Λ, using Gibbs sampling moves;

see [19] for an introduction to Gibbs sampling. The update of θt is performed

by means of a Metropolis-Hastings (M-H) move, with proposal distribution

equal to the multivariate normal in the full conditional distribution of θt,

disregarding the restriction to the positive orthant. The acceptance prob-

ability is either 1 or 0, depending on whether the candidate vector falls in

the positive orthant or not.

We also use two additional M-H moves to update the θt’s. The first one is

performed on θ1 only, as the samples for this vector displayed appreciable

positive autocorrelation. It is a random walk M-H move, performed on each

element of θ1 separately, with uniform proposal over an interval centred at

the current value, and with interval widths determined from a preliminary

run.

The second move changes at once θ and b, with the candidate state chosen

in a way that leaves the likelihood unchanged. This move is a special case of

the M-H algorithm as described in [20]. It is discussed in detail in appendix

A.2 and, in our experiments, it substantially reduced autocorrelation of the

samples.

4.2 Posterior samples for configuration m = 2 (Fe, K)

The results shown are those for items with configuration m = 2 (Fe, K) from

Table 2. Similar results for the three other configurations are not reported

here. All of the analysis was carried out using the statistical programming

language R [21]. The time taken to obtain the model simulation results was
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approximately 10 hours, which included a burn-in period of 10, 000, and also

thinning of the Markov chain, where every 200th draw was stored and the

rest discarded. The acceptance rate for the M-H move performed on θ1 only

was 31%, and the rate for the joint move on θ and b was 54%. Time series

plots of the sampled fixed effect θt are shown in Figure 4. Scatterplots of

the draws of θt are displayed in Figure 5 and show clear separation in the

means between the five use-type categories.

As can be seen in Table 3, the variability at item level is shown to be rather

different between use types, which is why the model accommodates for these

differences by allowing the covariance matrix at item level, Ω−1
t , to change

by use type. When we compare the variability at fragment level, Ψ−1, with

that for the measurement error, Λ−1, there is little difference observed, with

the variability at fragment level being slightly greater, as would be expected.

As expected the variability between glass items is much greater than that

found within items.

Table 3 about here.

Figure 4 about here.

Figure 5 about here.

5 Composite model

In the previous section we specified multivariate mixed effects models for the

square-root-transformed compositions z, one model for each configuration

Cz in Table 2, and conditional on the known use types Tz. In this section
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we show how these configuration-specific models can be pulled together in a

single model. The model is then used in section 5.1 to compute the use-type

probabilities for a newly observed item y of unknown use type. We begin

with some definitions.

Let D = {zti, i = 1, . . . , It, t = 1, . . . , T} be the reference data, where the

numbers It of items of use type t are under control of the experimenter. Also

let Dm = {z ∈ D : Cz = m} be the subset of D with elemental configuration

m. For any given z ∈ D, the hierarchical model (2) for configuration m

supplies the distribution

p(z|Tz = t, Cz = m, ξ) = p(z|Tz = t, Cz = m, ξm)

where ξ = {ξm}Mm=1 denotes the collection of parameters across all configu-

rations. More specifically, p(z|Tz = t, Cz = m, ξm) is given by formulae (3)

and (4).

Let ϕt = (ϕt1, . . . , ϕtM ) be an unknown vector of configuration probabilities

for an item z of use type t:

ϕtm = p(Cz = m|Tz = t, ϕ, ξ) = p(Cz = m|Tz = t, ϕt). (5)

We assume that a priori the configuration probabilities ϕ = {ϕt}
T
t=1 are

independent of ξ and have independent Dirichlet prior distributions:

ϕt|ξ ∼ Dir(αt1, . . . , αtM ), t = 1, . . . , T, (6)

where the αtm’s are suitable constants reflecting any prior information about

which configurations are likely for each use type. See Section 5.1 for more
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details on the choice of the α’s.

Next we derive the likelihood function L(ξ, ϕ). The distribution of a single

item z ∈ D, given its type Tz and the parameters ξ and ϕ, is

p(z|Tz = t, ξ, ϕ) =
M
∑

r=1

p(Cz = r|Tz = t, ξ, ϕ) p(z|Tz = t, Cz = r, ξ, ϕ)

=
M
∑

r=1

ϕtr p(z|Tz = t, Cz = r, ξr). (7)

Therefore, the distribution of the reference data D, given ξ and ϕ (and the

items use types, fixed by design), is

p(D|ξ, ϕ) =

T
∏

t=1

It
∏

i=1

{

M
∑

r=1

ϕtr p(zti|Tzti = t, Czti
= r, ξr)

}

(8)

The likelihood L(ξ, ϕ) is given by (8), regarded as a function of ξ and ϕ, with

D fixed at the observed data. This means that the configurations Czti
are

all known, which implies that the
∑

r contains only one term corresponding

to the observed configuration of zti. Thus the likelihood can be written as

L(ξ, ϕ) =
T
∏

t=1

It
∏

i=1

ϕtm p(zti|Tzti = t, Czti
= m, ξm)

=

{

T
∏

t=1

M
∏

m=1

ϕNtm

tm

}

·

{

M
∏

m=1

T
∏

t=1

∏

i∈Etm

p(zti|Tzti = t, Czti
= m, ξm)

}

,

(9)

where Etm = {i : Tzti = t, Czti
= m} and Ntm = #Etm. In words, the Ntm’s

are the counts in Table 2: the number of items in D that are of use type t

and configuration m.

Because ξ and ϕ are assumed a priori independent, the preceding factori-
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sation of the likelihood implies that they are also a posteriori independent.

Moreover, combining the first term on the right-hand side of (9) with the

prior distribution of ϕ in (6), yields independent Dirichlet posterior distri-

butions for the ϕt’s:

ϕt|ξ,D ∼ Dir(αt1 +Nt1, . . . , αtM +NtM ), t = 1, . . . , T. (10)

Posterior independence of ϕ and ξ implies that a sample from their joint

posterior distribution can be obtained in two stages: (i) sample ϕ from

the independent posterior distributions in (10) and (ii) sample ξm, for each

configuration m, using the MCMC procedure described in Section 4.1.

We conclude this section by remarking that formula (7) provides a mixture

representation for the density of z. This has been already recognised by

Stewart and Field [9], see their formula (3.1). Because the mixture compo-

nent that has generated z is immediately known on inspection of the item’s

measurements, we prefer the use of the term “composite”, rather than “mix-

ture”, model.

5.1 Glass classification

The object of interest is p(Ty|y, D), that is, the posterior distribution of the

use type Ty of a newly observed glass item y, conditional on the reference

data D and the new item y. Let the elemental configuration of y be Cy = m,

which is known if y is conditioned upon. Then, using Bayes theorem,

p(Ty = t|y, D) = p(Ty = t|y, Cy = m,D)

∝ p(Ty = t|Cy = m,D) p(y|Ty = t, Cy = m,D). (11)
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Next, we derive expressions for the two terms in the right-hand side of (11).

Beginning with the first quantity and using again Bayes theorem, one has

p(Ty = t|Cy = m,D) ∝ p(Ty = t|D) p(Cy = m|Ty = t,D). (12)

On its own, the reference data set D is not informative about Ty, as the

use types of the items in D were under the control of the experimenter.

Therefore, p(Ty = t|D) = p(Ty = t) and (12) becomes

p(Ty = t|Cy = m,D) ∝ p(Ty = t) p(Cy = m|Ty = t,D). (13)

The prior distribution p(Ty = t) should be chosen to reflect any available

information about the prevalence of use types as forensic samples; if no

such information is available, it may be set equal to a discrete uniform

distribution. The second term in the right-hand side of (13) can be computed

as follows:

p(Cy = m|Ty = t,D) =

∫

p(Cy = m|Ty = t, ϕt, D) p(ϕt|Ty = t,D) dϕt

=

∫

ϕtm p(ϕt|D) dϕt

=
αtm +Ntm

∑M
r=1(αtr +Ntr)

, (14)

where we used the definition of the ϕ’s in (5) and the posterior distribution

of ϕt in (10). Substituting in (13) yields the posterior distribution of the

use type Ty conditional only on D and the configuration Cy, but without

conditioning on the actual new item y:

p(Ty = t|Cy = m,D) ∝ p(Ty = t)
αtm +Ntm

∑M
r=1(αtr +Ntr)

. (15)
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Table 4 reports the values of p(Ty = t|Cy = m,D) computed using p(Ty =

t) = 1/T and the hyperparameters αtm = 0.1 for all t and m.

Table 4 about here.

Incidentally, we remark that the choice of 0.1 as the value for the α’s did

not seem to matter much: we repeated five times the classification exercise

reported in Section 5.2, setting the α’s to 0, 0.2, 0.3, 0.4 and 0.5, and in all

cases, the classifications given in Table 5 remained unchanged. Similarly,

the evidence evaluation error rates reported in Section 6.1 were unaffected

by changing the α’s from 0.1 to 0.5.

As for the second term in (11), the posterior predictive distribution of y

conditional on its use type, configuration and the reference data, one has

p(y|Ty = t, Cy = m,D) =

=

∫

p(y|Ty = t, Cy = m, ξm, D) p(ξm|Ty = t, Cy = m,D) dξm

=

∫

p(y|Ty = t, Cy = m, ξm) p(ξm|Dm) dξm

= Eξm|Dm
[p(y|Ty = t, Cy = m, ξm)], (16)

where Eξm|Dm
denotes expectation with respect to the posterior distribution

of ξm. The density p(y|Ty = t, Cy = m, ξm) is provided by the Bayesian

hierarchical model (2) for elemental configuration m. To be more specific,

assuming that y is a vector consisting of K̃ measurements on each of J̃

fragments from the same item of use type t and configuration m, then the

distribution of y|Ty = t, ξm is given by formulae (3) and (4), after replacing

J with J̃ and K with K̃:

y|Ty = t, ξm ∼ N
J̃K̃p

(1
J̃K̃

⊗ θt,Σt)
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Σt = (1
J̃K̃

1′
J̃K̃

)⊗ Ω−1
t +

[

I
J̃
⊗ (1

K̃
1′
K̃
)

]

⊗Ψ−1 + I
J̃K̃

⊗ Λ−1. (17)

Plugging (15) and (16) into (11) gives the expression for the use-type prob-

ability of a future item y:

p(Ty = t|y, D) ∝ p(Ty = t)
αtm +Ntm

∑M
r=1(αtr +Ntr)

Eξm|Dm
[p(y|Ty = t, Cy = m, ξm)],

(18)

where the expectation on the right-hand side can be estimated by averaging

the densities p(y|Ty = t, Cy = m, ξm) over an MCMC sample from the

posterior of ξm, obtained as detailed in Section 4.1.

5.2 Classification results

A simulation study was conducted in order to assess the performance of the

composite model in classifying glass fragments into one of the five use types

(bulb, headlamp, container, car window or building window). Probabilities

that each set of fragments was from an item of a certain use type were

estimated using expression (18) with p(Ty = t) = 1/T and αtm = 0.1 for

all t and m. Fragments were classified into the use-type category with the

highest probability.

The simulation study used five-fold cross-validation with the reference data

D randomly divided into five parts, each consisting of 64 items. One part

was kept as test data consisting of unobserved glass items y. The remaining

four parts were considered as training data containing reference glass items

z, from which model parameters were estimated. This was repeated five

times in order to classify all 320 items.
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The classification results are shown in Table 5, with Figure 6 giving an indi-

cation of the uncertainty about the classification of each item. The overall

misclassification rate was 20.6%, reflecting good classification performance

for bulbs, containers and headlamps, and poorer performance for car and

building windows. From Table 5, it is clear that misclassification of a win-

dow type is most often to the other window type. This is because car and

building windows have a very similar elemental composition, thus making it

difficult to correctly distinguish between them based on this alone. Zadora

[1] reports improved classification rates for car and building windows when,

in addition to the elemental composition, the refractive index before and

after annealing is used.

Table 5 about here.

Comparing our classification results with those obtained using a hierarchi-

cal model that does not take into account the configurations, shows that

the composite model leads to a reduction in the number of items misclas-

sified (misclassification rates of 20.6% for the composite model compared

with 22.8% for the model without configurations). In addition, the com-

posite model achieves a lower misclassification rate (20.6%) than support

vector machines (SVM) [22] (22.8%). The composite model also outper-

forms SVM across two other classification performance measures: Cohen’s

kappa (κ = 0.721 for the composite model compared with 0.688 for SVM)

and Brier score (BS = 0.319 for the composite model, 0.447 for SVM).

Cohen’s kappa [23] is a measure of agreement ranging from 0 to 1 with

κ = 1 indicating perfect agreement. The Brier score [24] is a measure of

prediction strength with BS = 0 implying perfect predictions. For com-

parison, the corresponding performance measures for the hierarchical model
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without considering configurations are κ = 0.693 and BS = 0.338. In both

comparisons, the benefit of modelling the configurations is clear.

Figure 6 about here.

6 Evidence evaluation

Glass fragments obtained from a suspect can be used as evidence in sup-

port of (or against) the proposition that the suspect was at the scene of the

crime. The statistical approach to evaluating the strength or value V of

such evidence stems from [25]; a recent overview is provided by [26, Chapter

10], whose terminology we adopt. Let E be the evidence, Hp the prosecu-

tion proposition, Hd the defence proposition and I additional background

information related to the case. The value of the evidence for Hp, also

known in the forensic literature as the likelihood ratio, is defined as the fac-

tor by which to multiply the prior odds on Hp, as a result of observing E:

V = Pr(E|Hp, I)/Pr(E|Hd, I). Typically, the probability statements in V

are obtained by integrating over the posterior distributions of unknown pa-

rameters, then the appropriate term is Bayes factor [27] for Hp and against

Hd, on evidence E.

More specifically, denote by x the measurements collected from a sample

of glass fragments found at the crime scene (source evidence) and by y

the measurements obtained from fragments found on the suspect (receptor

object), under the assumption that all fragments in y are from the same

item. The glass evidence comprises both control and recovered samples:

E = (x,y). The prosecution proposition, Hp, is that y is from the same
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item as x, that is, the fragments found on the suspect originated from the

broken item found at the crime scene. The defence proposition, Hd, is that

y is not from the same item as x, that is, the fragments found on the suspect

originated from some source outwith the crime scene. The value of the glass

evidence is then

V =
p(x,y|Hp, I)

p(x,y|Hd, I)
. (19)

Here, we assume that two sets of fragments x and y do not come from the

same item if their elemental configurations do not match; that is, Cx 6= Cy,

yielding V = 0. This assumption may not always hold in practice as it is

possible for two sets of fragments from the same item to have non-matching

configurations, although for the glass data, this occurs very rarely (less than

1% of the time). In the following, we assume that Cx = Cy = C = m. Let

Tx = t be the known use type of the glass recovered at the crime scene.

Under Hp, one has that Ty = Tx, while under Hd, the use type of y is

uncertain. Dropping in (19) the explicit conditioning on I, save for the

reference data set D used to assess the competing propositions, the known

elemental configuration C, and the known use type Tx of x, one has:

V =
p(x,y|Tx = t, C = m,D,Hp)

p(x,y|Tx = t, C = m,D,Hd)
. (20)

We show in Appendix A.3 that V can be rewritten as

V =
Eξm|Dm

[

p(x,y|T(x,y) = t, C = m, ξm)
]

T
∑

s=1

p(Ty = s|C = m,D)Eξm|Dm
[p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]

,

(21)

where p(Ty = s|C = m,D) is given in (15). The density p(x,y|T(x,y) = t, C =

m, ξm) in the numerator is that of a N
J̃K̃p

(1
J̃K̃

⊗ θt,Σt) distribution, where
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J̃ = J̃x + J̃y is the total number of fragments obtained, K̃ is the number

of measurements taken on each fragment, and the covariance matrix Σt has

the expression given in (17). The densities p(x|Tx = t, C = m, ξm) and

p(y|Ty = s, C = m, ξm) in the denominator are of N
J̃xK̃p

(1
J̃xK̃

⊗ θt,Σtx)

and N
J̃yK̃p

(1
J̃yK̃

⊗ θt,Σty) respectively, where Σtx and Σty are given by

formula (17), with J̃ replaced by J̃x and J̃y.

6.1 Evidence evaluation results

The performance of the composite model in the evidence evaluation task was

assessed in terms of the percentage of false negative (FN) and false positive

(FP) answers produced in a simulation study. An FN occurs when glass

fragments from the same item are evaluated as originating from different

items, a decision that is made whenever V ≤ v, for some threshold value

v. An FP happens when glass fragments are from different items, but V >

v so that they are evaluated as coming from the same item. Here, V is

obtained using (21), with parameter values and resulting p(Ty = s|C =

m,D) estimates as in Table 4.

Five-fold cross-validation was used in the simulation study to estimate the

percentages of FN and FP answers. Each test set consisted of 64 items with

the percentage of FN answers obtained by randomly choosing two fragments

from each item as the source evidence, x, and comparing them with the

remaining two fragments from the same item as the receptor sample, y. This

was repeated for each of the five test sets yielding a total of 320 same-source

comparisons. The percentage of FP answers was obtained by taking all 12

measurements from an item as x and all 12 measurements from another item

as y, and comparing all
(

64
2

)

= 2016 possible item pairs in a test set. This
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was repeated for each of the five test sets giving a total of 5×
(

64
2

)

= 10, 080

comparisons. Note that because many more comparisons were made for

different-source pairs than for same-source pairs, estimates of FN rates are

more uncertain than those of FP rates.

Using as threshold v = 1, the rates of FNs and FPs produced by cross-

validation were 4.4% and 1.4%, respectively, which are improvements on

previous publications with similar glass databases; see [10]. However, the

two types of error are of different seriousness: because incorrectly evaluating

two sets of fragments as originating from the same item may contribute to

the conviction of an innocent person, emphasis should be placed on avoiding

false positives. This is readily achieved by varying the threshold v. To each

value of v there corresponds a pair of error rates and these are represented

in the receiver operating characteristic (ROC) curve displayed in Figure 7,

where as usual the true positive (TP) rate (TP rate = 1−FN rate) is plotted

against the FP rate. The ROC curve is very steep in the region of FP rates

close to 0: small reductions in the FP rate, say below 1%, can be achieved

only at the cost of noticeably increasing the FN rate to about 10% or more.

The value of the area under the curve is 0.99, a value of 1 is achieved by an

“ideal” procedure with zero FP rate and unit TP rate.

Figure 7 about here.

7 Conclusion

We have presented a composite model to deal with a large point mass at

zero for various components of glass elemental compositions. The glass data
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set was partitioned according to the presence or absence of the elements iron

and potassium, and a Bayesian hierarchical model was fit to each resulting

subset of the data. While this approach allows for the majority of composi-

tional zeros to be accounted for, a small proportion of zeros persists, as seen

from Figure 3, mainly occurring when the element magnesium is absent from

a composition. To check whether accounting for these additional zeros would

improve results, we split configuration 2 in Table 2, (Fe,K), into two con-

figurations based on the presence or absence of magnesium, (Fe,K,Mg) and

(Fe,K,Mg). Repeating the analysis with the resulting five configurations

did not change or improve upon the classification and evidence evaluation

results obtained using the original four configurations.

Before proceeding with the analysis, we have applied a square root transfor-

mation to the ratios of chemical elements’ contents to that of oxygen. This

is a departure from the more commonly used ALR transformation. We have

found that, in addition to being more effective at stabilising the variability

in these data, use of the square root also meant that any remaining zeros in

the data did not require further special treatment such as replacement by a

small amount.

Our hierarchical model is more general than previous random effects models

for similar data [10, 18] as it contains a fixed effect for use type of glass and

three levels of variability (item, fragment and measurement) and allows for

different variances for each use type of glass. A normality assumption was

made for the distribution of all random effects, which may not be ideal for

the between-item distribution in particular. An alternative would be to use

mixture models – this is an area of future work. However, the simplicity of a

normal linear mixed model is rather appealing, especially when it produces
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satisfactory results, as is the case here in both classification and evidence

evaluation tasks.

The composite model outperforms SVM as well as a hierarchical model with-

out configurations in the classification task, with very good results obtained

for the classification of glass items of use types bulb, headlamp and con-

tainer. The relatively high overall misclassification rate of 20.6% is due to

the difficulty in distinguishing between car and building windows, which

are manufactured in a similar way and have similar elemental compositions.

However, whenever a window is misclassified, it is most often misclassified

as the other window type. Perhaps different glass measurements such as

the refractive index would be more useful in distinguishing between window

types.

The performance of the composite model in the evidence evaluation task is

also good. The FP and FN rates, obtained using cross-validation and giving

equal importance to the two types of error, were 1.4% and 4.4%, respectively.

More generally, the ROC curve (area under the curve = 0.99) shows that

very low FP rates can be achieved, if one is willing to accept moderate FN

rates.
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A Appendix

A.1 Full conditional distributions

The full conditional distribution of all the unknown quantities in the model

are reported below. We use “| · · · ” to mean “conditionally on all the other

variables”.

• θt | · · · ∼ Np(φ̃t, Φ̃
−1
t ), θt > 0,

where φ̃t = Φ̃−1
t

[

JKIt(z̄t··· − b̄t· − c̄t··)
]

, and Φ̃t = JKItΛ + Φ.

• bti | · · · ∼ Np(ω̃ti, Ω̃
−1
t ),

where ω̃ti = Ω̃−1
t

[

JKΛ(z̄ti·· − θt − c̄ti·)
]

, and Ω̃t = JKΛ + Ωt.

• ctij | · · · ∼ Np(ψ̃tij , Ψ̃
−1),

where ψ̃tij = Ψ̃−1
[

KΛ
(

z̄tij· − θt − bti
)

]

, and Ψ̃ = KΛ +Ψ.

• Ωt | · · · ∼ Wp(d̃1t, Ãt),

where d̃1t = d1t + It, and Ãt = At +
∑It

i=1 btib
′
ti.

• Ψ | · · · ∼ Wp(d̃2, B̃),

where d̃2 = d2 + J
∑T

t=1 It, and B̃ = B +
∑T

t=1

∑It
i=1

∑J
j=1 ctijc

′
tij .

• Λ | · · · ∼ Wp(d̃3, C̃),

where d̃3 = d3+JK
∑T

t=1 It, and C̃ = C+
∑T

t=1

∑It
i=1

∑J
j=1

∑K
k=1(ztijk−

(θt + bti + ctij))(ztijk − (θt + bti + ctij))
′.
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A.2 MH move on θ and b jointly

This move updates simultaneously the fixed effect θt and the random effects

at item level bti, separately for each use type t. The candidate state is chosen

to leave θt+bti unchanged, so that it shares with the current state the same

value of the likelihood. The candidate for the fixed effect is obtained as

θ̃t = θt + v,

where v = (v1, . . . , vp)
′, with components vl ∼ Unif(−δtl, δtl) indepen-

dently, with interval widths determined from a preliminary run. The candi-

dates for the random effects are then set to

b̃ti = bti − v, i = 1, . . . , It.

Since the likelihood is left unchanged, the ratio of target densities reduces

to the ratio of prior densities evaluated at the candidate and current state.

Then, following the approach in §2.2 of [20], the acceptance probability can

be computed as

α = min

(

1,
p(θ̃t) p(b̃t|Ωt)

p(θt) p(bt|Ωt)

f̃(ṽ)

f(v)

∣

∣

∣

∣

∣

∂(θ̃t, b̃t, ṽ)

∂(θt, bt,v)

∣

∣

∣

∣

∣

)

where f is the density, uniform on a p-hyperrectangle, of the random num-

bers v, and f̃ = f is the density of the random numbers ṽ = −v in the
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reverse move. The absolute value of the determinant of Jacobian matrix is

∣

∣

∣

∣

∣

∂(θ̃t, b̃t, ṽ)

∂(θt, bt,v)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ip 0p,pIt Ip

0pIt,p IpIt −1It ⊗ Ip

0p,p 0p,pIt −Ip

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

Therefore the acceptance probability only involves the prior density at the

current and candidate values:

α = min

(

1,
p(θ̃t) p(b̃t|Ωt)

p(θt) p(bt|Ωt)

)

.

A.3 Computing the evidence value V

Here we show how to derive the expression (21) for V . Starting with (20),

V =
p(x,y|Tx = t, C = m,D,Hp)

p(x,y|Tx = t, C = m,D,Hd)

=

∫

p(x,y|Tx = t, C = m, ξm, D,Hp) p(ξm|Tx = t, C = m,D,Hp) dξm
∫

p(x,y|Tx = t, C = m, ξm, D,Hd) p(ξm|Tx = t, C = m,D,Hd) dξm
.

(22)

For the first term of the integrand in the numerator one has

p(x,y|Tx = t, C = m, ξm, D,Hp) =

T
∑

s=1

p(x,y|Tx = t, Ty = s, C = m, ξm, D,Hp)

· p(Ty = s|Tx = t, C = m, ξm, D,Hp)

= p(x,y|Tx = t, Ty = t, C = m, ξm, D)

= p(x,y|T(x,y) = t, C = m, ξm)
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since Hp implies that Ty = Tx = t, the known use type of x, and we use

the notation T(x,y) to emphasize that, under Hp, x and y are measurements

from the same glass item. Then the numerator of (22) can be written as

∫

p(x,y|T(x,y) = t, C = m, ξm) p(ξm|Dm) dξm =

Eξm|Dm

[

p(x,y|T(x,y) = t, C = m, ξm)
]

. (23)

Consider next the denominator of (22). Under Hd and conditional on the

parameters ξm, x is independent of y so that

p(x,y|Tx = t, C = m, ξm, D,Hd) =

= p(x|Tx = t, C = m, ξm, D,Hd) p(y|Tx = t, C = m, ξm, D,Hd)

= p(x|Tx = t, C = m, ξm) p(y|C = m, ξm, D). (24)

The second term on the right hand side of (24) can be written as

p(y|C = m, ξm, D) =

T
∑

s=1

p(y|Ty = s, C = m, ξm, D) p(Ty = s|C = m, ξm, D)

=

T
∑

s=1

p(y|Ty = s, C = m, ξm) p(Ty = s|C = m,D),

where p(Ty = s|C = m,D) is given in (15). It then follows that the denom-

inator of (22) is

∫

p(x|Tx = t, C = m, ξm)

[

T
∑

s=1

p(y|Ty = s, C = m, ξm) p(Ty = s|C = m,D)

]

p(ξm|Dm) dξm =

=
T
∑

s=1

p(Ty = s|C = m,D)

Eξm|Dm
[p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]. (25)
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Substituting (23) and (25) into (22) yields (21).
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Table 1: Frequency of zero measurements by chemical element.

Element O Si Na Ca Al Mg K Fe

Frequency 0 0 0 108 205 265 1168 3036
Percentage 0.0 0.0 0.0 2.8 5.3 6.9 30.4 79.1
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Table 2: Presence (Fe, K) and absence (Fe,K) at item level by use type.

Glass type Configuration m Total

1: Fe, K 2: Fe, K 3: Fe, K 4: Fe, K

bulb 0 25 0 1 26
car window 23 40 11 20 94
headlamp 0 14 0 2 16
container 12 48 0 19 79
building window 7 55 15 28 105

42 182 26 70 320

34



Table 3: Standard deviations (multiplied by 10) from covariance matrices Ω−1

t ,
Ψ−1 and Λ−1. For Ω−1

t , t = 1, . . . , 5 correspond to use types: bulb, car
window, headlamp, container and building window.

Na Mg Al Si K Ca

Ω−1
1 0.95 0.94 0.28 0.65 1.12 1.34

Ω−1
2 0.10 0.25 0.26 0.30 0.15 0.26

Ω−1
3 0.18 0.91 0.52 0.51 0.31 0.78

Ω−1
4 0.12 0.51 0.15 0.44 0.19 0.37

Ω−1
5 0.10 0.13 0.13 0.26 0.13 0.22

Ψ−1 0.07 0.05 0.09 0.30 0.11 0.25

Λ−1 0.04 0.03 0.04 0.15 0.06 0.11
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Table 4: Use type probabilities p(Ty = t|Cy = m,D), with αtm = 0.1 for all t
and m and p(Ty = t) = 1/T .

Glass type Cy = m
1 2 3 4

bulb 0.008 0.283 0.014 0.047
car window 0.516 0.126 0.432 0.239
headlamp 0.013 0.256 0.022 0.144
container 0.321 0.180 0.005 0.270
building window 0.142 0.155 0.527 0.300
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Table 5: Classification of each glass item into one of five use type categories.

Classification
Glass type

bulb car window headlamp container building window Total

bulb 25 0 1 0 1 27

car window 1 74 0 4 29 108

headlamp 0 1 15 1 1 18

container 0 2 0 72 6 80

building window 0 17 0 2 68 87

Total 26 94 16 79 105 320
(96.2%) (78.7%) (93.8%) (91.1%) (64.8%)
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Figure 1: Plots of fragments’ standard deviations against corresponding means,
using the ALR (left panel) and the square root (right panel) transforma-
tions. For the ALR, 0.005 was added to all compositional zeros. Seven
pairs (mean, sd) are plotted for each fragment, one for each element of
w∗ in (1), computed using the fragment’s three repeated measurements.
While the variability of the square root transformed data is roughly the
same across the range of mean levels, for the ALR transformed data the
range of sd’s changes considerably across mean levels.
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Figure 2: Scatterplots of all item means from the database. The mean of each
item is taken across fragments, i.e. obtained from all 12 measurements.
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Figure 3: Scatterplots of the item means for items with configuration 2 from Table
2. The mean of each item is taken across fragments, i.e. obtained from
all 12 measurements.
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Figure 5: Scatterplots of the draws from the posterior distribution of θt in the
model for configuration m = 2 (Fe, K).
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Figure 6: Plot of the classification probabilities in five-fold cross validation. Each
panel shows the classification probabilities of items of a certain use
type, with five probabilities plotted for each item, one in each circular
sector corresponding to the five classes labelled 1 (bulb) to 5 (building
window). The four grey circles correspond to probability values of 0.25,
0.5, 0.75 and 1, with the center of the circles having a value of 0. In each
circular sector the order of items is the same. The ideal situation, where
items of type t (in panel t) are correctly classified with probability one,
produces a display where all points in sector t are on the outer circle,
while points in the other sectors lie at the center: this is nearly achieved
in panel 1 (except for two items) and, to a lesser extent, in panels 3 and
4.
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44


	Introduction 
	Glass data 
	Compositional zeros 
	Bayesian hierarchical model 
	MCMC implementation 
	Posterior samples for configuration m=2 (Fe, K) 

	Composite model 
	Glass classification 
	Classification results 

	Evidence evaluation 
	Evidence evaluation results 

	Conclusion 
	Appendix 
	Full conditional distributions 
	MH move on bold0mu mumu  and bold0mu mumu bbbbbb jointly 
	Computing the evidence value V 


